
tp

Developer Guide

Developer Guide

Acknowledgements

Design & Implementation

Add Flashcard Feature

Current Implementation

Reason for Current Implementation

Alternative Implementation

Delete Flashcard Feature

Current Implementation

Reason for Current Implementation

Alternative Implementation

Update Flashcard Feature

Current Implementation

Reason for Current Implementation

Alternative Implementation

Review Flashcard Feature

Current Implementation

Reason for Current Implementation

Alternative Implementation

Parser

Current Implementation
ParsedInput

Parser

Reason for Current Implementation

Alternative Implementation

Storage Feature

Current Implementation

Reason for Current Implementation

Alternative Implementation

Product Scope

Target User Profile

Value Proposition

User Stories

https://ay2223s2-cs2113-t15-4.github.io/tp/

Acknowledgements

addressbook-level2

Song Zijin s̓ IP

Design & Implementation

Add Flashcard Feature

The image below shows a partial class diagram involving only the relevant classes when an

AddCommand is created and executed:

Current Implementation

The current add flashcard allows the user to add a flashcard to the list of flashcards, it is

implemented through the following steps:

Step 1: The input of user is collected by getUserCommand() inside class Ui .

Step 2: The input string will be converted into a Command object by being passed through

parseCommand(String userInput) inside Parser .

In this case, an AddCommand will be created and returned, as shown in the object diagram below:

Step 3: The execute() function of AddCommand will run, calling addNewFlashcard(questionText,
answerText) of class FlashcardList to create and add the new flashcard to the list.

Then it will also call printSuccessfulAddMessage(questionText, answerText) of class Ui to

display text indicating the successful adding function to the user.

https://github.com/se-edu/addressbook-level2
https://github.com/SongZijin/ip

At this point, the adding process is completed and the program is ready to take another command.

The following sequence diagram show how the add operation works:

Reason for Current Implementation

Through using AddCommand class, which extends Command class it increases the level of

abstraction as the code can now perform the various commands on a class level.

Moreover, since the creating of new Flashcard of object and adding of the newly created flashcard

are both done in the same class as where the flashcards are stored, this reduces coupling in the

program as the AddCommand will not have access to the inner structure of FlashcardList , which
stores the list of flashcards.

Alternative Implementation

Alternative 1: Have the add command function directly in FlashcardList

Pros: Easy to implement

Cons: Will require another function in another program to differentiate it from other

commands

Alternative 2: Have the constructor of Flashcard include adding the card to list of flashcards

Pros: Simplifies code

Cons: Will cause trouble when temporary flashcard (that need not be stored) are created

Delete Flashcard Feature

The figure below shows a simple class diagram for the Delete Command.

Current Implementation

The current delete flashcard allows the user to remove a flashcard from the list of flashcards, it is

implemented through the following steps:

Step 1: The input of user is collected by getUserCommand() inside class Ui .

Step 2: The input string will be converted into a Command object by being passed through
parseCommand(String userInput) inside Parser .

In this case, a DeleteCommnad will be created and returned.

Step 3: The execute() function of DeleteCommand will run, creating a copy of the list of

flashcards. Then findFlashcards(flashcards, query) is called to find the flashcards with

questions matching the query, before calling printFlashcardList(matchingFlashcards) to display

the found flashcards.

User input is taken to get the index of the flashcard to be removed. deleteFlashcard is called from

class flashcardList to remove the flashcard from the original list of flashcards. Finally
printSuccessfulDelete is called from class Ui to indicate a successful removal of the flashcard.

The deletion process is now completed and the program will await another command.

An overview of how the Delete operation works is shown with the following sequence diagram

Reason for Current Implementation

Through using DeleteCommand class, which extends Command class it increases the level of

abstraction as the code can now perform the various commands on a class level.

In order to minimise the time for users to search for the flashcard to delete, they are able to first

search for a sub-list of flashcards with matching questions as the query. This method makes the

deletion process simple even if the user does not remember the index of the flashcard.

Alternative Implementation

Alternative 1: Delete flashcard by index from the start

Pros: Easy to implement and simplifies code

Cons: Cumbersome to delete if user forgets the flashcard s̓ index and has to search

through the whole list of flashcards.

Update Flashcard Feature

Current Implementation

The current update flashcard feature allows users search for a specific flashcard and update the

contents of this flashcard. It is implemented through the following steps:

Step 1: The input of user is collected by getUserCommand() inside class Ui .

Step 2: The input string will be converted into a Command object by being passed through
parseCommand(String userInput) inside Parser .

In this case, an UpdateCommand will be created and returned.

Step 3: The execute() function of UpdateCommand will run queryFlashcards(query) of
FlashcardList , which will query for flashcards in the current deck that matches the query inside
either the question or answer and return an ArrayList of Flashcard called matchingFlashcards .

Step 4: Then, printFlashCards(matchingFlashcards) inside class Ui is called, which prints all

questions and answers of the list of flashcards, that matches the query, to the console

Step 5: Lastly, runUpdateFlashcard(display) is executed. This method prompts the user for input

and updates the specified flashcard based on that input.

At this point, the update flashcard process is completed and the program is read to take another

command.

An overview of how the Update command works is shown with the following sequence diagram

Reason for Current Implementation

Implementing the update flashcard in an UpdateCommand class makes it easier during the

debugging process related to update flashcard feature alone as most of the methods and attributes

are within this UpdateCommand class.

Furthermore, the UpdateCommand has a dedicated function, runUpdateFlashcard(display), which

handles the updating of the flashcard. This helps to ensure that the code remains organized and

easy to read, with the updating process separated from other code.

Alternative Implementation

Alternative 1: Instead of creating a new arrayList matchingFlashcards that store flashcards

containing the query and then printing the list of flashcards, directly print the flashcards when

there is a match with the query

Pros: Easier to implement

Cons: Harder to track the total number of flashcards that has query and will need to have

another way to track the index of the matching flashcards. it will also be more confusing as

the index of the user input is not aligned with the index of the arrayList that contains all the

flashcards

Alternative 2: An alternative implementation could be to have the updating of the flashcard

handled directly in FlashcardList.

Pros: Simple implementation and no need for another function in another program to

differentiate it from other commands

Cons: May lead to increased coupling in the program, as the UpdateCommand will have

access to the inner structure of FlashcardList and this may make the code more difficult

to read and debug, as the updating process will be combined with other code

Review Flashcard Feature

Current Implementation

The current review flashcard allows the user to review all the flashcards that are due today or

before, it is implemented through the following steps:

Step 1: The input of user is collected by getUserCommand() inside class Ui .

Step 2: The input string will be converted into a Command object by being passed through
parseCommand(String userInput) inside Paser .

In this case, an ReviewCommand will be created and returned.

Step 3: The execute() function of ReviewCommand will run, calling getFlashCards() of class
FlashcardList to get the list of the flashcards.

Then it will iterate through the FlashcardList and call the function isDueBeforeToday() of class
Flashcard to check if the flashcard is due by today.

If the flashcard is due by today, reviewCurrentFlashcard(Ui display, Flashcard flashcard) of

class ReviewCommand will be called to review the card.

First, the Ui will display the question of the current card by calling the getQuestion() method of

class Flashcard , and ask user if user is ready to view the answer. After user enters any keyboard

input, the answer of the current card will be shown by calling the getAnswer() method of class
Flashcard , and Ui will ask the user if he/she has got the card correct. If the user inputs “y”, then

the current Flashcard is considered to be cleared and updateDueDateAfterCorrectAnswer() of
Flashcard will be called to update its dueDate . Then Clanki will let user review the next
Flashcard . If the user inputs “n”, then the card is considered to be not cleared and
updateDueDateAfterIncorrectAnswer() will be called to update its dueDate . Then Clanki will let
user review the next Flashcard . This process will repeat until all the Flashcards in the
FlashcardList are iterated.

After the whole FlashcardList has been iterated through, a message congratulating the user that

he/she has completed the reviewing task will be displayed.

At this point, the reviewing process is completed and the program is ready to take another

command.

The following sequence diagram show how the review operation work:

Reason for Current Implementation

Through using ReivewCommand class, which extends Command class it increases the level of

abstraction as the code can now perform the various commands on a class level.

Moreover, ReviewCommand only has access to the public methods of FlashcardList and
Flashcard , this reduces coupling in the program as the ReviewCommand will not have access to the

inner structure of FlashcardList and Flashcard .

Alternative Implementation

Alternative 1: Have the review command function directly in FlashcardList

Pros: Easy to implement

Cons: Will require another function in another program to differentiate it from other

commands

Alternative 2: After entering the ReviewCommand , go back to Clanki.run() and take further

commands for review process

Pros: Simplifies code in ReviewCommand

Cons: Will have to pass around a lot of parameters and variables

Parser

Current Implementation

The parser mostly relies on the ParsedInput class, which can parse any user provided string input

in the format of Windows command prompt commands (command body /opt-key opt-value).

ParsedInput

Initiated with a string input , it splits the input to sections that are of use. From there it splits each

section further to a “title” (denoted with = below) and a “body” (denoted with - below) part.

command blah blah /opt1 hello /opt2 world blah bleh
| Part 1 | | Part 2 | | Part 3 |
|=====| |-------| |==| |---| |==| |-------------|

Then these small subparts are grouped together to a format where the command part of the

command, the body part and the options can be retrieved programmatically.

The command and body can be read with getCommand() and getBody() respectively.
getCommand() is guaranteed to be non-null.

The options can be read with getOptionByName(optionKeyName) . The reason we donʼt have
specific getDate or getQuestion command is because we donʼt know what the user will input and

what options we will require for each command. So depending on the command, we retrieve the

option accordingly with e.g.

"command blah blah /opt1 hello /opt2 world blah bleh"
 getOptionByName("opt2") // -> "world blah bleh"
 getOptionByName("opt3") // -> null

Parser

This is now just a matter of wrapping ParsedInput with suitable error handling and logic such that

each command will be used to initiate a corresponding command class (e.g. AddCommand), while
errors are handled gracefully.

Reason for Current Implementation

We need an intuitive, safe and declarative way to parse the user input. Alternative implementations

that can only parse specific commands with specific options are more imperative, less readable,

less maintainable and overall just a pain to handle. That s̓ why the two classes are here.

Alternative Implementation

No.

Storage Feature

Current Implementation

The current storage feature triggers after every execution of command, updating the

flashcardList.txt file to be the came as what is stored in the FlashcardList object.

The entire feature consist of 3 parts, as shown in the class diagram below:

�. FlashcardListEncoder : takes the list of flashcards from FlashcardList and convert them to

a list of strings, with heading to indicate the start of the question, answer and deadline portion

of a flashcard.

�. FlashcardListDecoder : takes a list of string in specific format (as defined by
FLASHCARD_ARGS_FORMAT) and decodes the string into an arrayList of flashcards, discarding any
string of incorrect format.

�. StorageFile : uses the encoder or decoder to save or load the current state into or from a text

file.

The following sequence diagram show how the add operation works:

Reason for Current Implementation

By separating the decoder and encoder as separate classes, it allows the code for the storage

system to be more readable by others, allowing them to identify and find the chunk of code for each

function more easily, and possibly reuse the functions if they deem necessary in future versions.

Alternative Implementation

Alternative 1: Have all functions in one Storage class

Pros: Exceptions can be handled in the same place

Cons: Will cause the code be less organised and readable

Product Scope

Target User Profile

Students learning subjects that require a lot of memorisation (history, a new language, etc.)

Value Proposition

This application help users to better remember key points in their upcomming tests by providing

them a platform to read through and practice answering those key learning points.

User Stories

Version As a … I want to … So that I can …

v1.0 user
add a card to my flashcard

collection
study it later on

v1.0 user delete any of my cards

prevent getting asked to review

that card later when I am

confident I have truly memorised

the card

v1.0 user
review the cards that are due

today
remember them better

v1.0 user
make changes to the q/a any

cards I want

keep the info there always

updated with what I want myself

to memorise

v1.0
user seeking

efficiency

review the cards at an

appropriate pace that is most

efficient for memorisation

not waste time reviewing when I

still remember the cards well

v2.0 new user see usage instructions
refer to them when I forget how

to use the application

v2.0 busy user store the cards somewhere
revisit them next time I open the

app

v2.0
organised

user

view a list of all currently

stored flashcards

know what are the things I need

to remember

