
nvBench 2.0: A Benchmark for Natural Language to Visualization
under Ambiguity [Experiment, Analysis & Benchmark]
Tianqi Luo
HKUST(GZ)

Chuhan Huang
HKUST(GZ)

Leixian Shen
HKUST

Boyan Li
HKUST(GZ)

Shuyu Shen
HKUST(GZ)

Wei Zeng
HKUST(GZ)

Nan Tang
HKUST(GZ)

Yuyu Luo
HKUST(GZ)

ABSTRACT

Natural Language to Visualization (nl2vis) enables users to create
visualizations from natural language queries, making data insights
more accessible. However, nl2vis faces challenges in interpret-
ing ambiguous queries, as users often express their visualization
needs in imprecise language. To address this challenge, we intro-
duce nvBench 2.0, a new benchmark designed to evaluate nl2vis
systems in scenarios involving ambiguous queries. nvBench 2.0
includes 7,878 natural language queries and 24,076 corresponding
visualizations, derived from 780 tables across 153 domains. It is built
using a controlled ambiguity-injection pipeline that generates am-
biguous queries through a reverse-generation workflow. By starting
with unambiguous seed visualizations and selectively injecting am-
biguities, the pipeline yields multiple valid interpretations for each
query, with each ambiguous query traceable to its corresponding vi-
sualization through step-wise reasoning paths. We evaluate various
Large Language Models (LLMs) on their ability to perform ambigu-
ous nl2vis tasks using nvBench 2.0. We also propose Step-nl2vis,
an LLM-based model trained on nvBench 2.0, which enhances
performance in ambiguous scenarios through step-wise preference
optimization. Our results show that Step-nl2vis outperforms all
baselines, setting a new state-of-the-art for ambiguous nl2vis tasks.

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://nvbench2.github.io/.

1 INTRODUCTION

Natural Language to Visualization (nl2vis) solutions democratize
data exploration and analysis by enabling users to generate visu-
alizations (vis) from natural language queries (nl) [26, 35]. While
recent advances in Large Language Models (LLMs) [5, 40, 41] have
significantly enhanced translation accuracy, they struggle with a
fundamental challenge: natural language ambiguity—a single query
often maps to multiple valid visualizations, each representing a
different interpretation of the user’s intent [2, 7, 11, 37].

In nl2vis, ambiguity is particularly complex because it arises at
two levels: the data layer, which governs how a query selects and
filters data (e.g., choosing between columns or applying filters), and
the visualization layer, which determines how the data is visually
represented (e.g., selecting chart types). For example, in Figure 1,
the user query “Show the gross trend of comedy and actionmovies
by year” appears straightforward but contains multiple ambiguities.
At the data layer, the “gross” could refer to either World_Gross
or Local_Gross columns in the movies table, while “comedy and
action” implicitly requires filtering Genre. At the visualization

NoChart
Type

Task
Analysis

"trend"
TASK trend

STEP 5 Visualization Synthesis Reasoning

0

20

40

60

80

0

20

40

60

80

100

120

140

0

100

200

300

400

500

0

200

400

600

800

AVG World Gross AVG Local Gross AVG World Gross AVG Local Gross

20102005 20102005 20102005 20102005

 Comedy ActionGenre:

"Show the gross trend of comedy
and action movies by year."

Title

A

B

World Gross

25.6M

41.2M

Local Gross

12.1M

10.3M

Genre

Comedy

Action

Date

2005-01-12

2009-03-09

User QueryMovies Table

CHART
Bar
Line

Data
Column

Data
Value

"gross"

"comedy and action"
SELECT Genre
WHERE Genre
 IN [Comedy, Action]

"by year"
SELECT Date

Local Gross
SELECT

World Gross

Aggregate

AVG()
Local Gross

World Gross

Y X Color

Binning

STEP 2
Chart Type
Reasoning

STEP 1
Data Selection

Reasoning

STEP 3
Channel Mapping

Reasoning

"by year"
BIN Date BY YEAR

STEP 4
Data Transformation

Reasoning

Figure 1: Example of reasoning appropriate visualizations

from an ambiguous natural language query.

layer, the trend may suggest a bar chart or a line chart, and “by
year” implies temporal binning that is not explicitly defined.

This example highlights how ambiguities at both the data and
visualization layers interact, complicating themapping from natural
language queries to visualizations. Conventional nl2vis solutions
often fail to capture these nuances, frequently yielding incomplete
or overly simplistic outputs. To address this ambiguous nl2vis task,
we resolve ambiguity via a human-like reasoning workflow:

Example 1 (Step-wise Disambiguation Process). Figure 1
demonstrates our approach. Step 1 (Data Selection Reasoning) narrows
“gross” to candidate columns (i.e., Local_Gross or World_Gross)

https://nvbench2.github.io/

Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu Luo

Table 1: Comparison of nl2vis benchmarks.

Datasets #-Tables #-Samples Chart
Types

nl→ vis
Mapping

NL Query
Ambiguity

Reasoning
Paths

NL Query
Generation#-vis #-nl #-nl/ #-vis

Quda [6] 36 - 14035 - - - ✓ ✗ Human-based
NLV Corpus [32] 3 30 814 27.13 4 One/Many-to-One ✓ ✗ Human-based
Dial-NVBench [29] 780 7247 124449 17.17 4 Many-to-One ✗ ✗ Rule-based

VL2NL [13] 1981 1981 3962 2 7 One-to-One ✓ ✗ LLM-based
VisEval [5] 748 2524 1150 0.46 4 One-to-One ✗ ✗ LLM-based
nvBench [18] 780 7247 25750 3.55 4 One-to-One ✗ ✗ Rule-based
nvBench 2.0 780 24076 7878 0.33 6 One-to-Many ✓ ✓ LLM-based

while filtering genres and dates – paralleling how analysts cross-
reference schema context. Next, Step 2 (Chart Type Reasoning) eval-
uates task semantics (“trend”) against visualization effectiveness,
reflecting design best practices (using bar or line charts). Then,
Step 3 (Channel Mapping) maps data fields to visual channels (e.g.,
𝑋 = 𝐷𝑎𝑡𝑒 , 𝑌 = 𝐿𝑜𝑐𝑎𝑙_𝐺𝑟𝑜𝑠𝑠), resolving underspecification through
perceptual principles. In Step 4 (Data Transformation), it applies
temporal binning and aggregation, mimicking how humans simplify
temporal patterns. Finally, Step 5 (Visualization Synthesis) generates
four valid outputs – a critical divergence from conventional single-
output benchmarks, acknowledging real-world ambiguity tolerance.

This multi-step process highlights the complexity of nl2vis
systems and demonstrates how a single ambiguous query can lead
to multiple valid interpretations and visualizations.

Existing Benchmarks and Their Limitations. Although sev-
eral benchmarks for the nl2vis task exist [5, 6, 13, 18, 29, 32], as
shown in Table 1, none explicitly evaluate how the nl2vis systems
handle ambiguity. In fact, existing efforts [5, 18, 29] often overlook
this issue by adhering to the single-correct-answer paradigm, where
each nl query maps to exactly one valid visualization. For example,
nvBench [18] maps an nl query to unique visualization, ignor-
ing more than 60% of real-world ambiguous cases [32]. Similarly,
Dial-NVBench [29] supports multi-turn clarification but assumes
that the final query is well-specified, which sidesteps the inherent
ambiguities in natural language input.

This narrow focus leaves a critical gap in the push to advance
nl2vis systems. How can we evaluate and improve their capacity to
generate valid visualizations from ambiguous queries?

Design Considerations. To address this challenge, a benchmark is
needed that tests nl2vis solutions on handling ambiguous queries,
recognizing multiple valid interpretations, and providing appropri-
ate visualizations. This benchmark should include diverse ambigu-
ous queries, multiple valid outputs, reasoning paths explaining the
ambiguity, and broad domain coverage.

Our Proposal. To fill this gap, we propose nvBench 2.0, the first
benchmark curated for generating visualizations from ambiguous
nl queries (i.e., the ambiguous nl2vis task). nvBench 2.0 includes
7,878 nl queries and 24,076 corresponding visualizations, derived
from 780 tables across 153 domains. This dataset provides a ro-
bust foundation for evaluating nl2vis solutions in scenarios where
ambiguity in nl queries is a key challenge.

nvBench 2.0 meets the design considerations through a con-
trollable ambiguity-injected nl2vis data synthesis pipeline, which
introduces ambiguity via a reverse-generation workflow. Specifi-
cally, our method starts with a seed visualization and strategically

injects ambiguity (e.g., variations in data selection) into its speci-
fications. Each time ambiguity is injected, the result is a modified
version of the original visualization that reflects a unique inter-
pretation of the ambiguous query. These modified visualizations
allow precise control over the types of ambiguity introduced, while
ensuring that the outputs remain valid and interpretable. We then
synthesize an ambiguous nl query for each set of modified visual-
izations, incorporating the newly injected ambiguities into a single
natural language request. This process guarantees that each result-
ing visualization accurately represents one possible interpretation
of the ambiguous query’s intent.

A key benefit of our data synthesis pipeline is its transparency
in handling ambiguity. By actively injecting ambiguities, we can
trace how different interpretations yield distinct visualizations. For
each ambiguous query, we generate reasoning paths that document
the system’s interpretation and the resulting valid visualization(s).
This traceability enables researchers to assess both the effectiveness
and interpretability of the ambiguity resolution, ensuring that the
process is accurate and explainable.

Contributions.Our main contributions are summarized as follows:

• Ambiguity-Injected nl2vis Data Synthesizer.We develop
a data synthesizer that generates ambiguous nl2vis data by
selectively injecting ambiguities into seed visualizations, yielding
multiple valid interpretations for each query while providing
step-wise disambiguation reasoning paths. (Section 2)

• nvBench 2.0 Benchmark. We present nvBench 2.0, the first
benchmark designed for the ambiguous nl2vis task. It contains
7,878 nl queries and 24,076 corresponding visualizations, derived
from 780 tables across 153 domains. Each query-visualization
pair is accompanied by detailed reasoning paths, offering clear
explanations of how different interpretations arise and ensuring
accurate, explainable ambiguity resolution. (Section 3)

• Step-nl2vis for Ambiguousnl2visTasks.We propose Step-
nl2vis, an LLM-based model trained on nvBench 2.0. By lever-
aging step-wise preference optimization and the provided rea-
soning paths, Step-nl2vis achieves the highest F1@3 (81.50%)
and F1@5 (80.88%), outperforming prompting GPT-4 by 22.54%
and 21.85%, respectively. (Section 4)

• Extensive Evaluation.We conduct comprehensive experiments
to validate the effectiveness of nvBench 2.0 for training and
evaluating nl2vis systems under ambiguity. Our findings reveal
the limitations of existing models when faced with ambiguous
queries while demonstrating that the Step-nl2vis outperforms
baseline approaches and achieves state-of-the-art performance
in ambiguous nl2vis tasks. (Section 5)

nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity [Experiment, Analysis & Benchmark]

Input Output

Introduce
Ambiguity

Node

Filter by
Ambiguity

Level

ASP
Solver

Data Table

Seed VIS

NL Query
Verifier

NL Query
Generator

Construct
VIS Tree

Resolved
VIS Tree

Extract
Distinct
Steps

(b) VIS Synthesis

(c) NL Synthesis (d) Reasoning Path Synthesis

Step-wise Reasoning
Generator

(a) Ambiguity-aware
VIS Tree Synthesis

NL2VIS Pair

Reasoning Path

Ambiguity
Metadata
Generator

Reasoning Path

Figure 2: An overview of ambiguity-injected nl2vis data synthesizer.

2 AMBIGUITY-INJECTED NL2VIS DATA

SYNTHESIZER

2.1 Solution Overview

Figure 2 provides a high-level overview of our Ambiguity-Injected
nl2vis Data Synthesizer. Given a data table 𝐷 and an unambiguous
seed visualization 𝑣 , the pipeline systematically introduces ambigu-
ity, generates an ambiguous nl query (𝑞) alongside a corresponding
set of valid visualizations (𝑉), and produces step-wise reasoning
paths (P) for each valid visualization. It consists of four steps:

Step 1: Ambiguity-aware VIS Tree Synthesis. We begin by
constructing an initial visualization (vis) tree 𝑇𝑣 from 𝐷 and 𝑣 .
Next, we introduce ambiguity nodes to get 𝑇𝑉 , capturing uncertain
ambiguity metadata such as data columns, mark types, and data
transformations. This step ensures that each tree can branch into
multiple valid interpretations. Please refer to Section 2.2 for details.

Step 2: Valid VIS Synthesis. The partially ambiguous visual-
ization tree 𝑇𝑉 is processed through an Answer Set Program-
ming (ASP) solver [8], which applies visualization grammar con-
straints to transform the ambiguous tree into a resolved set 𝑇𝑉 ∗ =
{𝑇𝑣1∗,𝑇𝑣2∗, . . . ,𝑇𝑣𝑘 ∗}, representing a set of valid visualizations 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑘 }. The number of resulting visualizations, 𝑘 = |𝑉 |,
indicates the ambiguity level—how many distinct interpretations
the solver deems valid for the given 𝑇𝑉 . We then select candidate
visualizations based on a predefined target ambiguity level 𝑘 , ensur-
ing each retained visualization illustrates a meaningfully different
way of interpreting the partially ambiguous tree. Please refer to
Section 2.3 for details.

Step 3: Ambiguous NL Synthesis. We leverage an LLM-based
NL Query Generator to synthesize an ambiguous nl query for
each set of modified visualizations (i.e., 𝑇𝑉), incorporating the
newly introduced ambiguities into a single natural language request.
This approach ensures that every synthesized valid visualization
faithfully represents the ambiguous query’s intent. Finally, an LLM-
based NL Query Verifier checks consistency, confirming that the
final nl query accurately reflects the intended ambiguities. Please
refer to Section 2.4 for details.

Step 4: Ambiguity-resolved Reasoning Paths Synthesis. Fi-
nally, we produce step-wise disambiguation reasoning paths that
document how each ambiguity is resolved in reaching every valid
visualization 𝑣𝑖 . By extracting the distinct reasoning steps from 𝑇𝑉

Root

Data

Select

A1

Visualize

Filter Mark

X YLocal Gross
World Gross

A2

Date

A2A3A3

? >

2000

IN

["Comedy",
"Action"]

?

COLOR

? ? ?

Task

Trend

③ VIS Tree with
Injected Ambiguities

⑤ Flatten Tree to Visualiazation Query

Bar Local GrossX BIN Year Y AGG meanDate COLOR Genrea. Visualize

④ Resolved Query Tree

Implicit Node Ambiguous NodeExplicit Node

Root

Data

Select

A1

Visualize

Filter Mark

X Y

Local Gross

A2

Date

A2

>

2000

BINA2

Year

A1 AGG

mean

② Seed VIS Tree

Trend

Task

Bar World GrossX BIN Year Y AGG meanDate COLOR Genreb. Visualize

Line Local GrossX BIN Year Y AGG meanDate COLOR Genrec. Visualize

Line WorldGrossX BIN Year Y AGG meanDate COLOR Genred. Visualize

Bar

2000 2005 2010

By Year

0

5

10

15

20

25

G
ro

s
s
 (

M
il
li
o
n
s
)

① Seed Chart

St
ep

 1
 -

A
m

bi
gu

ity
-a

w
ar

e
V

IS
 T

re
e

Sy
nt

he
si

s
St

ep
 2

 -
Va

lid
 V

is
ua

liz
at

io
n

Sy
nt

he
si

s Root

Data

Select

A1

Visualize

Filter Mark

X Y

Local Gross

A2

Date

A3A3

Genre IN

["Comedy",
"Action"]

COLOR

BINA2

Year

A1 AGG

mean

A3

Trend

Task Bar

Figure 3: Injecting ambiguities into a seed visualization.

to 𝑇𝑉 ∗, we offer a clear explanation of how each nl query leads to
its corresponding outcome. Please refer to Section 2.5 for details.

This pipeline ensures that every ambiguous aspect introduced in
the vis tree synthesis phase is clearly reflected in the final mapping
of nl query to valid visualizations (𝑞 → 𝑉), allowing researchers
and practitioners to evaluate how effectively models handle and
explain different interpretations of the same query.

2.2 Step 1: Ambiguity-aware VIS Tree Synthesis

Our ambiguity-aware visualization tree synthesis forms the founda-
tion for synthesizing ambiguous nl2vis data. As shown in Figure 3,
this process injects ambiguities into a seed visualization.

Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu Luo

Transforming the Seed Visualization into a Tree Abstraction.

Given a data table 𝐷 and a seed visualization 𝑣 (e.g., (Figure 3-①),
we first convert the 𝑣—along with its underlying query—into an
Abstract Syntax Tree (AST), which we refer to as the seed visual-
ization tree 𝑇𝑣 (e.g., Figure 3-②). The grammar of AST is based on
the predecessor work, nvBench [18]. This tree explicitly encodes
all design decisions made in creating 𝑣 and is formally defined as:

𝑣 ↦→ 𝑇𝑣 = {A | A = [𝑎1, 𝑎2, . . . , 𝑎𝑡]} (1)
Here, each node 𝑎𝑖 represents a construction action for a visual-

ization component as a tuple (𝜏, op, params), where:
• 𝜏 ∈ {explicit, ambiguous, implicit} denotes the ambiguity

type of the action node;
• op specifies the operation (e.g., data selection, chart type selec-

tion, channel mapping, data transformation selection, etc.);
• params contains the specific parameters for the operations.

Controlled Ambiguity Injection.We then transform 𝑇𝑣 into an
ambiguity-aware tree 𝑇𝑉 through three operations:

• Injecting ambiguous nodes : We add nodes that represent compo-
nents with multiple valid interpretations. For example, replacing
“Local Gross” with an ambiguous choice between “Local Gross”
and “World Gross”.

• Adding implicit nodes : We include nodes for components not
explicitly specified but required for visualization completion. For
example, adding a node for the “color” encoding channel.

• Modifying explicit nodes : We adjust certain explicit nodes to ac-
count for potential ambiguities. For example, changing a “Mark”
node initially set as “Bar” into an ambiguous choice among vari-
ous mark types or requiring inference from analytic tasks.
By applying these steps, the resulting ambiguity-aware tree 𝑇𝑉

captures the full range of possible interpretations for the seed visu-
alization. For example, as shown in Figure 3-③, this tree contains
some new nodes such as:
A1 : (ambiguous, data_column, {field:[Local_Gross,World_Gross] })
A2 : (explicit, task, {value:[Trend] })
A3 : (implicit, data_value, {value:[Comedy,Action] })

Ambiguity Metadata Generation for Ambiguity Injection. To
guide the injection process, we combine structured knowledge bases
with LLMs to systematically identify potential semantic ambigui-
ties in data tables. As shown in Figure 4, this metadata generation
process forms the foundation for constructing ambiguity-aware vi-
sualization trees, ensuring that each node in𝑇𝑉 is correctly marked
as ambiguous, implicit, or explicit.
Stage 1: Schema Standardization: The first step involves standard-
izing the original data schema by refining or expanding column
names. Abbreviated or domain-specific terms are transformed into
more descriptive, conventional labels. For example, a column la-
beled ctry_code is standardized to country code. Such standard-
ization forms a clearer basis for subsequent ambiguity analysis.
Stage 2: Semantic Alias Discovery: After standardizing the schema,
we leverage ConceptNet [31] to identify potential semantic aliases
for each column name. ConceptNet’s multilingual knowledge graph
provides synonyms, hypernyms, and other semantically related

(nation, area); (number)
(urban, area); (number)

S2: Semantic Alias
Discovery

S3: LLM-based
Refinement

{"id": [

 "ctry_code",
 "city_code"]
...}

 (area);
(number)

...

country code
city code

S1: Schema
Standardization

city_code
ctry_code

Data
Schema

Figure 4: Ambiguity metadata generation workflow.

terms, helping detect conceptual overlaps. We flag pairs of columns
with similar meanings or concept overlap as potential sources of am-
biguity. For example, country code and city codemay both have
meanings related to area code, introducing possible confusion in
user queries.
Stage 3: LLM-Based Refinement: We refine the flagged ambiguous
column pairs using GPT-4o-mini with a chain-of-thought (CoT)
prompting strategy. The model analyzes the original column names,
their standardized forms (Stage 1), and the ConceptNet-derived
aliases and ambiguity flags (Stage 2). It then generates a final, vali-
dated set of ambiguous pairs, which is formatted into a JSON meta-
data file. For example, as shown in Figure 4, one of the identified
ambiguous pairs is ctry_code and city_code due to their similar
word aliases. This process supports ambiguity-aware visualization
generation and step-wise reasoning.

By combining these stages, we generate the necessary metadata
to guide the construction of ambiguity-aware visualization trees,
ensuring that each node is accuratelymarked as explicit, ambiguous,
or implicit, thus enabling the synthesis of visualizations that reflect
multiple valid interpretations of the query.

2.3 Step 2: Valid Visualization Synthesis

Once we have an ambiguity-aware visualization tree 𝑇𝑉 , the next
stage is to generate a set of valid visualizations 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 }.
Each visualization 𝑣𝑖 represents one possible resolution of the ambi-
guities present in𝑇𝑉 (see Figure 3-③). In this step, we define a reso-
lution function R to systematically clarifies ambiguous and implicit
nodes, transforming𝑇𝑉 into a set of resolved trees {𝑇 ∗

𝑣1 ,𝑇
∗
𝑣2 , . . . ,𝑇

∗
𝑣𝑘
}

(see Figure 3-④). Each resolved tree 𝑇 ∗
𝑣𝑖
is then “flattened” into a

concrete visualization query 𝑣𝑖 (see Figure 3-⑤).

Task Description. Recap that a partially ambiguous visualization
tree 𝑇𝑉 may contain:
• Ambiguous nodes: Multiple valid interpretations (e.g., which

column to use for “gross”).
• Implicit nodes: Necessary but unspecified details (e.g., binning a

date field by year).
• Explicit nodes: Directly specified components (e.g., “bar” mark).

To produce valid visualizations, these ambiguous and implicit
nodes must be resolved in a manner consistent with established
visualization grammar rules (e.g., requiring temporal fields to be
binned). Formally, we define:

R(𝑇𝑉) → {𝑇 ∗
𝑉1
,𝑇 ∗
𝑉2
, . . . ,𝑇 ∗

𝑉𝑘
} (2)

where each𝑇 ∗
𝑉𝑖

is a resolved tree that has no remaining ambiguity
or unspecified details. The flattening process then converts each
𝑇 ∗
𝑉𝑖

into a finalized visualization specification 𝑣𝑖 . This yields the
complete set of valid visualizations: 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 }.

nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity [Experiment, Analysis & Benchmark]

In the following sections, we describe how an Answer Set Pro-
gramming (ASP) solver [8] is used to implement the resolution
function R while ensuring that each resolved visualization adheres
to the necessary grammar constraints.

ASP Solver Objective. ASP is a declarative constraint program-
ming paradigm well-suited for knowledge representation and rea-
soning [8, 20, 43]. Encoding the ambiguity resolution process and
grammar rules as logical constraints has the following benefits:
• Completeness: The solver can enumerate all stable models (i.e.,

all possible ways to resolve ambiguous or implicit nodes) that
satisfy the visualization grammar.

• Correctness: Only solutions that meet mandatory constraints (e.g.,
“temporal fields must be binned”) are considered valid.

• Diversity: Each output corresponds to a distinct interpretation
of the query, ensuring coverage of all plausible visualizations.
The number of resulting visualizations, 𝑘 = |𝑉 |, represents

the ambiguity level—how many distinct interpretations the solver
deems valid for the given 𝑇𝑉 . After obtaining these solutions, we
can filter or select a subset based on a target ambiguity level 𝑘 ,
ensuring that each retained visualization differs from the others.

ASP Syntax Overview. ASP is built on a logical foundation with
several key syntactic constructs [8]. The fundamental unit in
ASP is a rule of the form: Head :- Body., which states that the
head is true if all literals in the body are satisfied. For example,
the rule: light_on :- power_available, switch_flipped. ex-
presses that the light will be on if both power is available and the
switch is flipped.

Some special cases include:
• Facts: Rules without a body represent unconditional truths. For

example, power_available. asserts that power is available.
• Integrity Constraints: Rules without a head prohibit certain com-

binations of conditions. For example, the constraint: :- not
power_available, light_on. ensures that the light cannot be
on when power is not available.
An ASP program consists of a collection of rules, facts, and

constraints that collectively define a search space. The ASP solver
then computes all stable models (i.e., answer sets) that satisfy these
conditions. Each stable model represents a valid system state or, in
our context, a valid resolution of the ambiguous visualization tree.

For example, consider a simple lighting system modeled with:
• Rule: light_on :- power_available, switch_flipped.
• Fact: power_available., switch_flipped.

Given these statements, the ASP solver determines the unique
answer set containing light_on, as all conditions in the rule body
are satisfied. If we instead had not switch_flipped., the solver
would exclude light_on from the answer set.

By exhaustively computing all stable models that meet the spec-
ified constraints, the ASP solver identifies all valid visualization
configurations implied by our ambiguity-aware visualization tree.
This systematic resolution is key to generating a complete set of
valid visualizations from an ambiguous query.

ASPRules for ResolvingAmbiguity-aware Visualization Tree.

We formalize the visualization design space using ASP by convert-
ing each node in the ambiguity-aware visualization tree 𝑇𝑉 into

ASP rules. As defined in Section 2.2, each node in the visualization
tree is represented as a tuple (𝑡𝑦𝑝𝑒, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), which
is mapped into ASP entities, (e.g., like entity(E, _, _).) and their
associated attributes (e.g., like attribute(A, _, _)..
Rules for Explicit Nodes. Nodes that directly specify a visualization
component are encoded as entities with fully defined attributes. For
example, a node indicating a specific mark selection—such as a bar
chart—is encoded in ASP as:
• entity(mark, parent_id, mark_id).
• attribute((mark, type), mark_id, bar).

These rules explicitly assert that the mark type is“bar”.
Rules for Ambiguous Nodes. Nodes that allow multiple valid inter-
pretations are encoded using ASP choice rules. For example, if an
encoding node can correspond to either “temp_max” or “temp_min”,
we encode this ambiguity as follows:
• 1 { attribute((encoding, field), e_id, temp_max); at

tribute((encoding, field), e_id, temp_min) }. ensures at
least one option should be selected.

• An accompanying integrity constraint ensures that only one
of the two options is selected: :- attribute((encoding,
field), e_id, temp_max), attribute((encoding, field),
e_id, temp_min).

This formulation forces the solver to choose exactly one inter-
pretation for each ambiguous node.
Rules for Implicit Nodes. Implicit nodes represent necessary compo-
nents that are not explicitly specified in the query. These nodes
are encoded using placeholder attributes to indicate that the value
is not determined. For example, a mark node with an unspecified
chart type is represented as:
• entity(mark, parent_id, mark_id).
• attribute((mark, type), mark_id, _).

This indicates the mark exists, but its type is undetermined.
To capture the complete visualization design space, we also en-

code comprehensive design knowledge as ASP rules [20, 28, 43],
which fall into three categories:
Definition Rules for Visualization. Declarative statements that es-
tablish foundational visualization elements, such as available
chart types or encoding channels. For example, domain((mark,
type),(point; bar; pie)). defines that the mark type for a chart
can be point, bar, or pie.
Hard Constraints for Visualization. Mandatory conditions that any
valid visualization must satisfy. For example, the constraint
violation(no_encodings) :- entity(mark,_,M), not en

tity(encoding,M,_). ensures that every mark has at least one
visual encoding channel.
Choice Rules for Visualization. Rules that govern the selection
among multiple options when constructing a visualization.
For example 0 { attribute((encoding, field), E, N): do
main((field, name), N) } 1 :- entity(encoding,_, E). en-
sures that each encoding is associated with at most one field.

Applying ASP Solver to Reason Valid Visualization. By en-
coding the ambiguity-aware visualization tree structure and design
principles as ASP rules, we create a powerful mechanism to resolve

Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu Luo

ambiguities. The ASP solver explores all possible resolutions for
ambiguous nodes, ensuring that only solutions adhering to the
visualization grammar constraints are accepted. This results in a
diverse set of valid visualizations, with variations in chart type,
encoding mappings, and data transformations, while staying true
to the original ambiguous query.

2.4 Step 3: Ambiguous NL Query Synthesis

As shown in Figure 2 (c), this step runs in parallel with the valid
visualization synthesis described in Section 2.3. Building on the
ambiguity-aware visualization tree 𝑇𝑉 , this step aims to synthesize
a corresponding ambiguous natural language query 𝑞.

Task Description. Given the input ambiguous visualization tree
𝑇𝑉 = {A | A = [𝑎1, 𝑎2, . . . , 𝑎ℎ]}, the corresponding natural lan-
guage query 𝑞 is generated using the mapping functionM:

𝑄 = M(𝑇𝑉) = [M(𝑎1),M(𝑎2), . . . ,M(𝑎ℎ)] (3)
where the tuple of each visualization construction action 𝑎𝑖 in𝑇𝑉

is mapped to a corresponding natural language expressionM(𝑎𝑖).
For a given 𝑇𝑉 , its corresponding 𝑞 must satisfy the following

conditions to ensure correctness:
• Completeness: Ensure that all actions in the original 𝑇𝑉 are cov-

ered in the generated 𝑞:

∀𝑎𝑖 ∈ 𝑇𝑉 , ∃M(𝑎𝑖) ∈ 𝑄 (4)

• Type Preservation: 𝑞 must preserve the ambiguity types of the
original action nodes:

𝜏 (M(𝑎𝑖)) = 𝜏 (𝑎𝑖), ∀𝑎𝑖 ∈ 𝑇𝑉 (5)

where 𝜏 (𝑎𝑖) is the ambiguity type of action node 𝑎𝑖 .
• Boundedness: 𝑞 should not introduce any actions outside of 𝑇𝑉 :

∀ expression 𝑒 ∈ 𝑄, ∃𝑎𝑖 ∈ 𝑇𝑉 : 𝑒 = M(𝑎𝑖) (6)

Solution Overview. We leverage an LLM-based NL Query
Generator to integrate the ambiguities introduced in 𝑇𝑉 into a
single and coherent query𝑞, ensuring that the generated query faith-
fully reflects all the intended ambiguous components. Finally, an NL
Query Verifier is employed to validate that 𝑞 accurately captures
the ambiguity without introducing any extraneous semantics. This
two-step process—generation followed by verification—ensures
that the final query remains consistent with the design decisions
encoded in 𝑇𝑉 while meeting the criteria of completeness, type
preservation, and boundedness.

NL Diversity in Generation. NLV Corpus [32] defines several
distinct categories of natural language utterances—question, com-
mand, query, and other. Since “query” somewhat overlaps with
other styles, we focus on three main types: question, command,
and caption, each representing a distinct style of user input:
• Question: Typically begins with a question word (e.g., “What”,
“How much”, “How many”, etc.).

• Command: Usually an imperative sentence (e.g., “Show a bar
chart of sales by region”).

• Caption: Includes non-standard phrases, incomplete sentences,
or informal text conveying user intent, often brief (e.g., “SUM
(Sales) vs Date” or “budget over time”).

To ensure diversity of the generated queries, we provide specific
NL styles and corresponding example queries as input to the lan-
guage model. These examples are randomly sampled from a large
corpus to ensure variability.

NL Generator. To systematically align the structured visualization
tree with diverse natural language expressions, we define explicit
input-output mappings. The input to the LLM (GPT-4o-mini-turbo)
delivers essential context, including data schema, sample data, ac-
tion sequences, and NL style requirements. This aims to ensure
that the output NL query: maintains linguistic grounding for all
actions (4), preserves ambiguity types during translation (5), and
avoids introducing any extraneous semantics (6). The LLM prompts
are as follows:
Prompt Structure for NL Generation

(Descriptive Generation Instructions.)
Input: Data Schema 𝐷 , VIS Tree 𝑇𝑉 ,
Language Style ∈ {𝐶𝑜𝑚𝑚𝑎𝑛𝑑,𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛,𝐶𝑎𝑝𝑡𝑖𝑜𝑛}
Output: NL Query 𝑞

NL Verifier. As indicated by recent studies [12, 39], LLMs outputs
still require verification, particularly concerning boundedness (6).
The verification can be performed by LLMs or human evaluators. In
our preliminary experiments, we found that LLM-based verification
is sufficient to achieve an accuracy of 99%. Thus, we designed the
following prompt for LLM verification:
Prompt Structure for Verification

(Descriptive Verification Instructions.)
Input: NL Query 𝑞, VIS Tree 𝑇𝑣
Output Format:

- 𝐿1: List of correct mappings [(phrase,𝑇𝑣_𝑛𝑜𝑑𝑒), . . .].
- 𝐿2: List of incorrect mappings [(phrase,wrong_node), . . .].

If 𝐿1 fully covers all nodes in𝑇𝑣 while 𝐿2 remains empty, the 𝑞 is
considered valid and added to the dataset. Otherwise, 𝑞 is classified
as invalid, and it would be regenerated by the NL Generator. This
approach checks for completeness (4), type preservation (5), and
boundedness (6). If the verification fails, the system can regenerate
the query or suggest corrections.

2.5 Step 4: Ambiguity-resolved Reasoning Path

Based on the previous discussion, we have reformulated the nl2vis
problem from a direct mapping 𝑞 → 𝑉 to a structured process
𝑞 → 𝑇𝑉 → 𝑇 ∗

𝑉
→ 𝑉 . To mimic human-like reasoning workflow

for ambiguity resolution, we propose decomposing the ambiguity-
aware visualization generation process into a sequential reasoning
path with five distinct steps, as illustrated in Figure 1:

𝑞
𝜙1−−→ 𝑆1

𝜙2−−→ 𝑆2
𝜙3−−→ 𝑆3

𝜙4−−→ 𝑆4
𝜙5−−→ 𝑉 (7)

where each 𝜙𝑖 represents a reasoning function and each 𝑆𝑖 rep-
resents the intermediate state after applying the corresponding
reasoning function.

Step-①: Data Selection Reasoning. The first step parses the nat-
ural language query 𝑞 into data components from the data table:

𝜙1 (𝑞) → 𝑆1 = {𝑎𝑐1, 𝑎
𝑐
2, . . . , 𝑎

𝑐
𝑚} (8)

nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity [Experiment, Analysis & Benchmark]

Table 2: Mappings between chart types, visual encoding chan-

nels, and analytic tasks. The encoding channels show compat-

ible data types: 𝐶=Categorical, 𝑄=Quantitative, 𝑇=Temporal,

∅=Not applicable.

Chart Type Encoding Channel
x|y|color|size|theta Analytic Task

Bar {𝐶,𝑄,𝑇 } |𝑄 |𝐶 | ∅ | ∅ Trend, Distribution

Line {𝐶,𝑄,𝑇 } |𝑄 |𝐶 | ∅ | ∅ Trend, Distribution

Pie ∅ |∅ |𝐶 | ∅ |𝑄 Distribution

Scatter 𝑄 |𝑄 |𝐶 |𝑄 | ∅ Correlation

Heatmap {𝐶,𝑄,𝑇 } | {𝐶,𝑄 } |𝑄 | ∅ | ∅ Correlation

Boxplot {𝐶 } |𝑄 |𝐶 | ∅ | ∅ Distribution

where each 𝑎𝑐
𝑖
represents a data component selection action,

including column selection, value selection, and filter condition
specification. The outcomes of this step correspond to the SELECT
and FILTER nodes in the visualization tree (see Figure 3).

Step-②: Chart Type Reasoning. The second step determines
appropriate visualization mark types based on the analytic task:

𝜙2 (𝑆1, 𝑞) → 𝑆2 = 𝑆1 ∪ {𝑎𝑣1, 𝑎
𝑣
2, . . . , 𝑎

𝑣
𝑛} (9)

where each 𝑎𝑣
𝑖
represents a visualization design action, including

analytic task identification and chart type selection. As shown in
Table 2, existing visualization design principles [21, 27] can establish
a mapping relationship between tasks and chart types [21, 27].
When the NL query 𝑞 does not explicitly specify a chart type, the
identified task can guide inference—though this may introduce
ambiguity as multiple chart types may be suitable for a given task.
Additionally, certain tasks influence encoding channel selection in
the next step.

Step-③: Channel Mapping Reasoning. The third step establishes
the mappings between data components and encoding channels:

𝜙3 (𝑆2) → 𝑆3 = 𝑆2 ∪ {𝑎𝑚1 , 𝑎
𝑚
2 , . . . , 𝑎

𝑚
𝑝 } (10)

where each 𝑎𝑚
𝑖

represents a channel mapping action, such as
assigning data columns to encoding channels like X, Y, color, or
size. This step ensures that data columns are mapped appropriately,
aligning with visualization design principles, where some mapping
relationships are shown in Table 2.

Step-④: Data Transformation Reasoning. The fourth step speci-
fies necessary data transformations based on the channel mappings:

𝜙4 (𝑆3) → 𝑆4 = 𝑆3 ∪ {𝑎𝑡1, 𝑎
𝑡
2, . . . , 𝑎

𝑡
𝑟 } (11)

where each 𝑎𝑡
𝑖
represents a data transformation action, including

aggregation, binning, sorting, and filtering operations. These trans-
formations prepare the data to be properly visualized according to
the selected chart type and channel mappings.

Step-⑤: Visualization Synthesis Reasoning. The final step is to
integrate all reasoning steps to generate a set of valid visualizations:

𝜙5 (𝑆4) → 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } (12)

where each 𝑣𝑖 represents a valid visualization specification. This
process can produce multiple valid visualizations that address dif-
ferent aspects of the ambiguity in the original query (see Figure 1).

This structured reasoning process systematically addresses ambi-
guity at each step while adhering to visualization design principles.
Each step builds upon prior decisions, progressively refining the
visualization specifications to account for multiple valid interpreta-
tions of the original NL query.

Formally, the complete reasoning path can be expressed as the
composition of the step-wise reasoning functions:

F (𝑞, 𝐷) = (𝜙5 ◦ 𝜙4 ◦ 𝜙3 ◦ 𝜙2 ◦ 𝜙1) (𝑞, 𝐷) → 𝑉 (13)

This decomposition simplifies the ambiguity-aware nl2vis pro-
cess, breaking down complex reasoning into steps that better align
with LLMs’ strengths in natural language understanding and gen-
eration. Techniques like chain-of-thought prompting or step-wise
direct preference optimization (step-DPO) [14, 16] can further im-
prove LLM performance.

Finally, as shown in Figure 2 (d), the LLM-based step-wise rea-
soning generator takes the NL query 𝑞, the generated unambiguous
visualization 𝑣 , and the ambiguous visualization tree 𝑇𝑉 as input.
It then performs reverse reasoning for each step (13), generating
text-based reasoning descriptions. For example, when resolving
chart type ambiguity in Figure 1, the LLM reasons, “Since this
query requests a trend analysis over time, either bar charts or line
charts would be appropriate, as both effectively represent temporal
patterns in the data” for Step-②. The LLM prompts are as follows:
Prompt Structure for Step-wise Reasoning

(Specific Reverse Reasoning Instruction for Step 𝑖 .)
Input: NL Query 𝑞, VIS Set 𝑉 , Vis Tree 𝑇𝑉 ,
Previous Step Answers 𝑆1, ..., 𝑆𝑖−1
Output: Step-wise Text-based Answer 𝑆𝑖

3 THE NEW BENCHMARK: NVBENCH 2.0

3.1 Synthesizing nvBench 2.0

To create our new benchmark, we apply the Ambiguity-
Injected nl2vis Data Synthesizer (introduced in Section 2) to
nvBench 1.0 [18], a large-scale, cross-domain, and unambiguous
nl2vis benchmark. Table 1 summarizes the key differences between
nvBench 1.0 and our newly generated dataset, nvBench 2.0.

In constructing nvBench 2.0, we retain the same data tables
and seed charts as in nvBench 1.0 to ensure consistency in domain
coverage and baseline complexity. However, we expand the range
of chart types by additionally incorporating boxplots and heatmaps
to increase the variety of possible visual encodings. This enhance-
ment, combined with our systematic ambiguity injection, allows
nvBench 2.0 to better capture the inherent fuzziness of real-world
nl2vis scenarios, while maintaining the rich, multi-domain nature
of the original nvBench 1.0.

3.2 Statistics of nvBench 2.0

Data Tables. Figure 5 (a.1) shows that most tables in our dataset
have 2–5 columns, with fewer than 50 tables having more than 7
columns. As Figure 5 (a.2) illustrates (log scale), row counts range

Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu Luo

(a.2) Row Number Count(log)

(b.1) Ambiguity Level Count (b.2) Ambiguity Type Count

2 3 4 5 6 7 8 9 10
0

50

100

150

(a.1) Column Number Count
1 2 3 4

0

100

200
C
ou
nt

CM CT DS DT

500

1,500

2,500

3,500

2 3 4 5

500

1,500

2,500

3,500

C
ou
nt

Bar
Line

Pie Scatter

Heatmap

Boxplot

1,000

3,000

5,000

7,000

(c) Chart Type Count

Command

Question

Caption

1,000

2,000

3,000 Ambigity Types
DS: Data Selection
DT: Data Transformation
CT: Chart Type
CM: Channel Mapping

(d) NL Query Type Count

C
ou
nt

Figure 5: Statistics of nvBench 2.0.

13.61 15.07 15.33

6.12 7.08 7.83

6.05 6.37 7.87

3.9 4.94 5.83

4

6

8

10

12

14

%

Command

Question

Caption

2

3

4

5A
m

b
ig

u
it
y
 L

e
v
e
l27.21 6.39 30.46 9.8914.0212.03

11.2 11.81 37.82 7.4218.1113.64

18.7 18.01 21.76 7.7217.6716.14

18.65 20.55 25.77 5.5222.676.84
10

20

30

%

Bar Boxplot
Heatmap

Line Pie Scatter

2

3

4

5A
m

b
ig

u
it
y
 L

e
v
e
l

Figure 6: Left: Chart Types vs. Ambiguity Levels 𝑘 . Right: nl

Style vs. Ambiguity Levels 𝑘 .

widely, from 20–200 rows for many tables to outliers exceeding
10,000 rows. This variety ensures that nvBench 2.0 tests system
performance across both small and large datasets.

Ambiguity Types and Levels. An important contribution of
nvBench 2.0 is the systematic introduction of controlled ambiguity
levels. As shown in Figure 5 (b.1), the majority of samples (approxi-
mately 3,500) have an ambiguity level of 2, indicating that two valid
visualizations exist. The dataset also contains a substantial number
of samples with ambiguity levels of 3, 4, and 5, enabling a thor-
ough evaluation of systems under increasingly complex ambiguous
scenarios. Figure 6 further illustrates the relationship between ambi-
guity levels and two factors: chart types (left) and NL styles (right),
showing comprehensive data coverage. Figure 5 (b.2) categorizes
ambiguity by type: Data Transformation (DT) ambiguities are most
prevalent (∼ 3,500 examples), followed by Channel Mapping (CM)
ambiguities (∼ 1,500 examples), with Data Selection (DS) and Chart
Type Selection (CT) ambiguities represented by approximately 900
and 400 examples, respectively.

Visualizations. Figure 5 (c.1) shows the distribution of chart types
in nvBench 2.0. Pie charts are the most common, with around 6,000
examples, followed by bar charts (∼4,000) and heatmaps (∼3,500).
Additionally, line charts (∼2,800), boxplots (∼2,000), and scatter
plots (∼1,500) are also well-represented, ensuring that the bench-
mark covers all major visualization types. This distribution reflects
common visualization practices, where pie and bar charts are widely
used for categorical comparisons, while the other types serve spe-
cialized analytical needs.

Table 3: Distribution of natural language styles across chart

types and word count statistics

NL Style

Count by Chart Type

Total

Word Count

Bar Line Pie Scatter Boxplot Heatmap Avg. Max Min

Command 1368 922 1922 608 1319 894 2338 14.20 60 6
Question 1570 1084 2299 679 1403 966 2636 14.04 39 5
Caption 1779 1363 2651 581 1589 1079 2904 14.00 65 5

Total 4717 3369 6872 1868 4311 2939 7878 14.07 65 5

Table 4: Ambiguity count at each reasoning step

Ambiguity Type Count Probability

STEP 1. Data Selection (DS) 911 11.56%
STEP 2. Chart Type (CT) 428 5.43%
STEP 3. Channel Encoding (CE) 6937 88.06%
STEP 4. Data Transformation (DT) 3624 46.00%

Table 5: Statistics of ambiguity patterns.

Ambiguity
Pattern Count Ambiguity

Pattern Count

CE 3544 CT+DT 34
DT 829 DS+DT 24
CT 41 CE+DS+DT 364
DS 13 CE+CT+DT 171

CE+DT 2190 CE+CT+DS 12
CE+DS 486 CE+CT+DS+DT 12
CE+CT 158 Total 7878

nl Queries. Figure 5 (d) presents the natural language query dis-
tribution. Command-based queries (e.g., “Show me the sales by
region”) are most frequent (∼4,000). Question-based queries (e.g.,
“What are the sales trends?”) and caption-like statements (e.g., “SUM
(Sales) vs Date”) appear in about 2,000 and 1,800 instances, respec-
tively. Table 3 provides a detailed breakdown of NL styles across
different chart types, along with word count statistics. The aver-
age word count remains consistent (∼14 words), with captions
exhibiting the longest maximum length (65 words). This distribu-
tion highlights the dataset’s diversity in both linguistic structure
and visualization needs, ensuring that nvBench 2.0 can effectively
evaluate systems’ capabilities to handle diverse user interactions.

Statistics of Step-wise Reasoning Paths. A distinctive feature
of nvBench 2.0 is the inclusion of structured reasoning paths that
document the decision-making process for resolving ambiguities.
These step-wise reasoning paths, aligned with the framework out-
lined in Section 2.5, provide clear explanations for the different
valid interpretations associated with each ambiguous query. Ta-
ble 4 presents the distribution of ambiguities across the different
reasoning steps. Channel Encoding (Step 3) contains the highest
concentration of ambiguities, affecting 88.06% of all samples. Data
Transformation (Step 4) follows with 46.00% of samples containing
ambiguities, showing that operations like aggregation and binning
are also frequently underspecified in natural language queries. Data
Selection (Step 1) and Chart Type (Step 2) exhibit lower ambiguity
rates at 11.56% and 5.43% respectively, suggesting they are typically

nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity [Experiment, Analysis & Benchmark]

more explicitly stated or easily inferred from the query context.
Table 5 presents the frequency of different ambiguity patterns. The
most common ambiguity type is CE (3,544 instances), followed by
CE+DT (2,190), while more complex multi-category ambiguities are
less frequent. Data transformation ambiguities often co-occur with
other ambiguity types. This distribution underscores the prevalence
of encoding-related ambiguities and the challenge of resolving over-
lapping ambiguity types in visualization generation tasks. These
statistics highlight the complex, multi-dimensional nature of ambi-
guity in nl2vis tasks and underscore the importance of step-wise
reasoning for systematically resolving these ambiguities.

4 STEP-NL2VIS FOR AMBIGUOUS NL2VIS

In this section, we present Step-nl2vis, a new model for the am-
biguous nl2vis task. Step-nl2vis addresses ambiguity by incor-
porating a step-wise reasoning process, as detailed in Section 2.5,
and leveraging the rich step-wise data provided by nvBench 2.0.
Built on base LLMs, Step-nl2vis is fine-tuned on nvBench 2.0
using a pipeline that aligns its outputs with the dataset’s reasoning
paths via supervised fine-tuning (SFT) and step-wise preference
optimization (Step-DPO [14]).

4.1 Preference Optimization with Step-DPO

Previous nl2vis methods have typically employed either prompt-
ing LLMs [36] or fine-tuning LLMs [29], where the LLM is di-
rectly tasked with generating the final vis definition based on
user-provided natural language and table schema information.

Recently, process supervision paradigms [17] and preference op-
timization techniques [14] have demonstrated significant advance-
ments across various domain tasks. A pivotal aspect in validating
the effectiveness of nvBench 2.0 is determining how to leverage the
step-wise disambiguation reasoning paths within the nvBench 2.0
dataset to provide process supervision and enhance model perfor-
mance. Consequently, we adopt the Step-DPO [14], which utilizes
step-wise paired correct and incorrect samples for preference opti-
mization, thereby delivering rich process supervision signals to the
model and fostering improved accuracy at each step.

Formally, we define an input prompt 𝑥 and an vis answer 𝑦,
where 𝑥 includes the user natural language and table schema infor-
mation, and𝑦 can be represented as 𝑠1⊕· · ·⊕𝑠𝑛 , where 𝑠𝑖 denotes the
𝑖-th reasoning step defined in Section 2.5. Given the input 𝑥 and a se-
quence of correct preceding reasoning steps 𝑠1∼𝑘−1 = 𝑠1⊕· · ·⊕𝑠𝑘−1,
Step-DPO aims to maximize the probability of the correct next rea-
soning step 𝑠𝑤𝑖𝑛 and minimize the probability of the incorrect one
𝑠𝑙𝑜𝑠𝑒 . This objective can be formulated as:

L(𝜃) = −E(𝑥,𝑠1∼𝑘−1,𝑠𝑤𝑖𝑛 ,𝑠𝑙𝑜𝑠𝑒)∼𝐷𝑝[
log𝜎

(
𝛽 log

𝜋𝜃 (𝑠𝑤𝑖𝑛 |𝑥, 𝑠1∼𝑘−1)
𝜋𝑟𝑒𝑓 (𝑠𝑤𝑖𝑛 |𝑥, 𝑠1∼𝑘−1)

− 𝛽 log
𝜋𝜃 (𝑠𝑙𝑜𝑠𝑒 |𝑥, 𝑠1∼𝑘−1)
𝜋𝑟𝑒𝑓 (𝑠𝑙𝑜𝑠𝑒 |𝑥, 𝑠1∼𝑘−1)

)]
where𝐷𝑝 represents a step-wise preference dataset. 𝜋𝜃 (·|𝑥, 𝑠1∼𝑘−1)
denotes the policy model to be optimized, while 𝜋𝑟𝑒 𝑓 (·|𝑥, 𝑠1∼𝑘−1)
refers to the reference model, which remains unchanged during the
training process. The hyperparameter 𝛽 controls the divergence
between the optimized policy and the reference model.

4.2 Cold-start with Supervised Fine-tuning

Prior studies, such as those employing Chain-of-Thought (CoT) [38]
prompting, have demonstrated the capability of LLMs to engage
in step-wise reasoning through the utilization of simple “think
step-by-step" instructions. However, under this paradigm, the
planning of steps and the format of output are indiscriminate. This
poses challenges in the precise extraction of answers corresponding
to each individual step, and consequently, impedes the accurate
alignment with the step-wise data provided within the nvBench 2.0
dataset for the purpose of validating step-level correctness. To
address this limitation, we use nvBench 2.0 training set and employ
Supervised Fine-Tuning (SFT) as a cold-start mechanism to facilitate
the LLM’s learning of our predefined step-wise output format. The
specific prompt template is shown below:
Prompt Structure for Step-nl2vis SFT

Task Description: You are a good data visualization expert. Your
task is to recommend visualization charts corresponding to the
ambiguous/incomplete NL Query. You need to think step by step.
Input: Table Schema, User Query
Output: <step_1><thinking>...</thinking><answer>...</answer>
</step_1> <step_2>...

4.3 Step-wise Preference Data Construction

A crucial aspect of Step-DPO is the acquisition of a step-wise prefer-
ence dataset. As described in Section 4.1, our nvBench 2.0 dataset
contains step-wise ground-truth. Therefore, we adopt an online data
collection strategy. Initially, we utilize a model that has undergone
Supervised Fine-Tuning (SFT) cold-start to perform inference on
the nvBench 2.0 development set, yielding 𝐷0 = {(𝑥,𝑦)}, where 𝑦
represents the model’s step-wise output, expressible as 𝑠1 ⊕ · · · ⊕ 𝑠𝑛 .
Subsequently, we conduct a step-wise evaluation comparing 𝑦 with
the ground-truth 𝑦, verifying the correctness of each step until the
identification of the first error, and recording its corresponding
step number 𝑘 . We designate the erroneous step 𝑠𝑘 as the incorrect
reasoning step 𝑠𝑙𝑜𝑠𝑒 , and the ground-truth step 𝑠𝑘 as the correct
reasoning step 𝑠𝑤𝑖𝑛 . The construction of the preference dataset
𝐷𝑝 = {(𝑥, 𝑠1∼𝑘−1, 𝑠𝑤𝑖𝑛, 𝑠𝑙𝑜𝑠𝑒 } is then readily achieved through the
integration of input 𝑥 and previous reasoning steps 𝑠1∼𝑘−1.

5 EXPERIMENTS

In our experiments, we aim to answer two fundamental questions
about ambiguous nl2vis tasks. First, how effectively do different ap-
proaches—including state-of-the-art LLMs and our proposed Step-
nl2vis—handle visualization generation from queries with varying
levels of ambiguity? Second, what impact does step-wise reasoning
have on performance across different chart types and ambiguity
scenarios compared to direct generation approaches?

To address these questions, we designed a comprehensive evalu-
ation framework comparing prompting-based methods (with and
without step-wise reasoning) against fine-tuning approaches. We
assess performance using standard information retrieval metrics
across multiple ambiguity levels (ranging from 2 to 5 interpreta-
tions) and analyze how performance varies across different visual-
ization types and query formulations.

Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu Luo

Table 6: Overall performance comparison between different models on nvBench 2.0.

Model R@K(%) P@K(%) F1@K(%)

K=1 K=3 K=5 K=1 K=3 K=5 K=1 K=3 K=5
GPT-4o-mini 34.72 51.92 54.65 91.88 86.86 81.76 49.31 59.73 57.60

GPT-4o 36.56 46.35 46.79 97.07 95.83 95.52 51.96 58.96 59.03
Qwen2.5-7B 34.65 46.20 47.17 92.68 90.68 89.33 49.34 57.09 56.67

GPT-4o-mini-Step 35.13 47.68 47.91 93.48 92.54 92.08 49.96 59.29 59.10
GPT-4o-Step 36.30 48.92 49.21 96.94 95.47 95.08 51.72 60.78 60.66

Qwen2.5-7B-Step 35.20 61.86 64.08 93.61 89.26 86.23 50.05 68.56 67.76
Qwen2.5-7B-SFT 33.23 73.44 76.32 88.42 83.36 80.18 47.26 75.79 75.30

Step-nl2vis (ours) 37.30 77.09 79.74 99.20 94.27 91.17 53.04 81.50 80.88

5.1 Experimental Setup

Datasets. We use nvBench 2.0 as our experimental dataset, which
contains a total of 7878 nl queries. We randomly split the dataset
into training, development, and testing sets at a ratio of 80%, 10%,
and 10%, containing 6377, 750, and 751 queries, respectively.

Methods. We conduct prompting-based methods and fine-tuning-
based methods to assess the performance on ambiguous nl2vis
tasks using our nvBench 2.0. The primary objective of this evalu-
ation is to examine the model’s capacity to generate diverse and
semantically meaningful visualizations when confronted with am-
biguous or incomplete NL queries.
Prompting-based Methods. We evaluate two prompting strategies
with GPT-4o-mini, GPT-4o and Qwen2.5-7B-Instruct model:
• Direct Prompting:Models receive structured Data Informa-

tion and anNLQuery, then generate 1-5 distinct charts covering
possible interpretations of ambiguous queries.

• Step Prompting:Models are guided to “think step-by-step”,
explicitly articulating their reasoning process before generating
visualizations. Models using this approach are denoted with a
“-Step” suffix in Table 6.

Supervised Fine-tuning Method.

• Qwen2.5-7B-SFT: We performed supervised fine-tuning on
the Qwen2.5-7B-Instruct model using the training set, enabling
direct generation of multiple Vega-Lite definitions without step-
wise reasoning. Training involved three epochs with a global
batch size of 16, a learning rate of 2e-5, the AdamW optimizer,
and a cosine learning rate scheduler with 0.1 warmup ratio.

Preference Learning Method.

• STEP-NL2VIS: We designed Step-nl2vis to handle the ambigu-
ity in nl2vis through step-wise reasoning as detailed in Section 4.
After initial supervised fine-tuning of Qwen-2.5-7B-Instruct, we
constructed a preference dataset from the nvBench 2.0 devel-
opment set for Step-DPO training. This process used one epoch
with a global batch size of 4, a linearly decaying learning rate
from 2e-6, and the AdamW optimizer.

Evaluation Metrics. We evaluate visualization recommendations
using the following standard information retrieval metrics:
• Precision@K (P@K): Assesses recommendation accuracy by

calculating the proportion of valid visualizations among the
top-K outputs. Higher P@K indicates more trustworthy recom-
mendations, with fewer incorrect visualizations shown to users.

• Recall@K (R@K): Quantifies how completely the model covers
the golden visualization space by measuring the proportion of
valid visualizations successfully identified. This captures the
model’s ability to represent multiple valid interpretations for
ambiguous queries.

• F1@K: Provides a balancedmeasure that combines precision and
recall through their harmonic mean. This comprehensive metric
rewards systems that achieve both high coverage of the golden
answer space and high accuracy in their recommendations.
For all experiments, we report these metrics at K ∈ {1, 3, 5} to

evaluate performance across different recommendation set sizes.

5.2 Experimental Results

Overall Results. Table 6 presents the comprehensive performance
evaluation of different models on nvBench 2.0. Our proposed Step-
nl2vis achieves state-of-the-art performance across most metrics,
significantly outperforming both prompting-based and fine-tuning-
based baselines. Specifically, Step-nl2vis obtains the highest F1@3
(81.50%) and F1@5 (80.88%), demonstrating its superior ability to
handle ambiguity in nl2vis tasks. Step-wise reasoning consistently
improves performance across all models. For both GPT-4o and
Qwen2.5-7B, the “-Step” variants show notable improvements in
F1 scores compared to their direct prompting counterparts. This
validates our hypothesis that decomposing complex visualization
reasoning into explicit steps helps resolve ambiguity more effec-
tively. Fine-tuning on nvBench 2.0 substantially enhances recall
at higher 𝐾 values. Qwen2.5-7B-SFT achieves 73.44% R@3 and
76.32% R@5, significantly higher than prompt-based methods, in-
dicating better coverage of the valid visualization space. However,
it sacrifices some precision compared to prompting approaches.
Our preference-optimized Step-nl2vis achieves the best balance
between precision and recall. At 𝐾=1, it maintains exceptional pre-
cision (99.20%) while improving recall over all baselines, and at𝐾=3
and 𝐾=5, it achieves substantial gains in recall without significant
precision degradation.

Performance Analysis Across Chart Types. Figure 7 presents a
comprehensive heatmap of F1 scores for different methods across
various chart types and ambiguity levels. Several important pat-
terns emerge from this visualization. Step-nl2vis (bottom right)
consistently outperforms other models across most chart types and
ambiguity levels, as indicated by the darker blue cells. These results
demonstrate that the step-wise reasoning approach significantly
enhances performance on ambiguous nl2vis tasks. Moreover, mod-
els incorporating step-wise reasoning (those with “-Step” suffix)

nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity [Experiment, Analysis & Benchmark]

Qwen2.5-7B-SFTGPT-4o

GPT-4o-Step STEP-NL2VIS
0

20

40

60

80
%

F1@5

Bar Boxplot
Heatmap

Line Pie Scatter

58.28

45

53.46

35.03

75.36

58.25

38.02

51.66

67.6

54.17

46.85

41.41

45.28

55.42

58.61

39.29

70.63

51.44

38.46

36.61

69.55

56.15

45.57

38.43

58.62

63

58.57

38.44

76.02

60.18

49.31

56.6

69.89

53.75

48.5

46.09

43.39

50.42

49

42.71

69.88

54.56

47.14

33.75

73.06

64.29

44.1

48.21

Bar Boxplot
Heatmap

Line Pie Scatter

65.83

66.57

61.11

59.95

68.92

79.79

71.96

86.15

80.25

75.3

75.08

82.88

49.88

72.71

80.52

54.11

78.93

75.62

67.77

62.26

82.57

78.96

79.37

68.39

52.24

52.5

60

46.94

64.18

62.6

49.59

65.66

57.68

44.79

52.66

46.43

40.98

56.25

47.59

48.17

64.16

53.48

53.13

46.25

57.31

55.77

52.82

48.41

2

3

4

5A
m

b
ig

u
it

y
Le

ve
l

GPT-4o-mini

62.6

49.57

52.89

36.05

76.96

58.89

48.32

54.44

67.32

58.33

44.5

37.33

45.72

50.83

46.06

42.89

64.27

52.13

42.27

35.71

72.83

48.85

44.1

42.66

GPT-4o-mini-Step

2

3

4

5A
m

b
ig

u
it

y
Le

ve
l 70.89

83.07

78.57

69.42

83.87

89.63

77.39

77.56

88.32

80.77

75.84

75.68

51.08

88.36

84.42

69.65

84.58

78.71

71.17

61.69

87.05

79.78

71.75

70.7

Bar Boxplot
Heatmap

Line Pie Scatter

57.43

53

70.73

39.8

69.09

55.81

47.75

46.97

69.77

51.25

43.13

33.93

42.28

64.38

51.43

39.95

60.56

54

44.1

33.27

61.64

33.08

45.81

34.72

62.09

59

71.94

58.79

79.09

74.47

59.92

74.89

74.45

72.59

62.25

58.08

44.13

57.92

58.1

64.97

67.04

60.48

56.52

41.55

80.98

62.03

73.02

73.88

Bar Boxplot
Heatmap

Line Pie Scatter

Qwen2.5-7B-Step

Qwen2.5-7B

Figure 7: F1 across different models and ambiguity levels.

Recall@5

0

20

40

60

80

100
%

56.6 54.6 52.3 49.4
64.1

53.9 45.6 40.8

64.2 54

44.7 39.8

64.6
56.4

48.8
42.6

59.8
53.7 47.4

38

66.5 65 62.1 59.5

71.2 75.7 72.8
66.2

77.4 83.3 75.8
69.8

GPT-4o-mini

GPT-4o-mini-Step

GPT-4o

GPT-4o-Step

Qwen2.5-7B

Qwen2.5-7B-Step

Qwen2.5-7B-SFT

STEP-NL2VIS

AL=2 AL=3 AL=4 AL=5
AL=Ambiguity Level

Figure 8: Recall across different models and ambiguity levels.

generally show better performance than their direct prompting
counterparts, confirming the effectiveness of decomposing com-
plex visualization reasoning into explicit steps.

• Impact of Visualization Types. The experimental results re-
veal that different chart types exhibit varying levels of difficulty
for models to generate accurately. Boxplot and Scatter charts
generally achieve higher F1 scores, indicating they are easier for
models to handle. In contrast, Pie charts perform worse at high
ambiguity levels (AL=5), while Line charts consistently show
lower accuracy across all ambiguity levels, with F1 scores only
around 40% to 51%, even at low ambiguity (AL=2). These findings
suggest that certain visualization types pose greater challenges
for model interpretation and generation.

• Ambiguity Level Effects. The data shows a clear degradation
in performance as ambiguity level increases (from level 2 to level
5): At ambiguity level 2, most models maintain relatively high
F1 scores (60-80%). By ambiguity level 5, even the best perform-
ing models struggle to maintain the same level of performance,
with Qwen2.5-7B-Step achieving 41.55% and Step-nl2vis achiev-
ing 61% F1 score for pie charts at this highest ambiguity level.
This pattern confirms the inherent challenge of handling highly
ambiguous natural language queries.

• Step-wise reasoning enhances performance but alters

strengths for certain models. Models such as GPT-4o-mini,
GPT-4o, and Qwen2.5-7B exhibit improvements in performance
when utilizing step-wise reasoning, while still maintaining their
original strengths across visualization types and ambiguity lev-
els. However, for Qwen2.5-7B, the introduction of step-wise
reasoning leads to notable shifts in its area of expertise. Specifi-
cally, Qwen2.5-7B-Step demonstrates significant improvements

in Boxplot (74.47%) and Heatmap (72.59%) generation at Ambigu-
ity Level 3—an enhancement that was not prominently observed
in the base Qwen2.5-7B model. This suggests that step-wise
reasoning not only improves overall performance but can also
reshape a model’s proficiency across different visualization tasks.

Performance Analysis on Ambiguity Resolution Capacity.

Figure 8 illustrates the Recall@5 metric, which quantifies each
model’s capability to generate valid visualizations from NL queries
with varying ambiguity levels. Our proposed model, Step-nl2vis,
demonstrates superior recall performance across all ambiguity lev-
els examined. At ambiguity level 3 (AL=3), it achieves 83.3% recall,
representing a statistically significant improvement over compara-
tive approaches. Additionally, Recall@k analysis across ambiguity
levels (AL=2 to AL=5) reveals some noteworthy findings:

• Step-wise reasoning significantly enhances performance.

Models implementing step-by-step reasoning methodologies (de-
noted with the "-Step" suffix) consistently demonstrate superior
performance compared to their non-step-wise counterparts. For
instance, Qwen2.5-7B-Step exhibits markedly improved perfor-
mance metrics relative to the base Qwen2.5-7B implementation.

• Inverse correlation between performance and ambiguity.

The experimental results indicate a consistent negative corre-
lation between recall performance and ambiguity level for the
majority of models evaluated. This trend confirms the inher-
ently increasing complexity of visualization generation as query
ambiguity intensifies.

• Maximum performance differentiation occurs at interme-

diate ambiguity levels. The performance delta between evalu-
ated models reaches its maximum at AL=3 and AL=4, suggesting
these intermediate ambiguity levels provide optimal conditions
for discriminating between different model capabilities.

• Fine-tuning methods yield robust performance under in-

creasing ambiguity. While performance degradation is ob-
served across all models as ambiguity increases, models employ-
ing Supervised Fine-Tuning (Qwen2.5-7B-SFT) and Preference
Learning (Step-nl2vis) methodologies maintain superior perfor-
mance characteristics at elevated ambiguity levels. Notably, the
performance differential between Step-nl2vis and alternative
approaches expands proportionally with increasing ambiguity.

Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu Luo

Key Implications for Ambiguous NL2VIS Systems. Our ex-
perimental results reveal several important implications for the
design of nl2vis systems that can effectively handle ambiguity.
First, the significant performance improvements achieved through
step-wise reasoning underscore the importance of breaking down
complex visualization tasks into explicit interpretable steps rather
than attempting direct translation. Second, the observed perfor-
mance variations across different chart types and ambiguity levels
suggest that future nl2vis systems should adaptively select rea-
soning strategies based on both the query characteristics and the
target visualization type. Third, the superior performance of Step-
nl2vis, particularly at higher ambiguity levels, demonstrates that
preference-optimized models can learn to effectively balance preci-
sion and recall—maintaining high accuracy while capturing the full
range of valid interpretations. These findings point toward a para-
digm shift in Step-nl2vis development: from single-output systems
toward multi-interpretation frameworks that explicitly model and
resolve ambiguity through structured reasoning processes.

6 RELATEDWORK

6.1 NL2VIS benchmarks

nl2vis benchmarks play a crucial role in evaluating the perfor-
mance of nl2vis systems. As the predecessor of nvBench 2.0,
nvBench [18] is a commonly used nl2vis benchmark, constructs
datasets by leveraging the semantic alignment between sql and
vql (Visualization Query Language), which is a sql-like specifi-
cation that defines the visualization structure and details the data
transformation processes. It employs template-based structures to
systematically translate vql into NL. This structured approach fa-
cilitates end-to-end model training by enhancing the clarity of both
inputs and outputs [15, 19, 30, 33, 40, 42]. Building on nvBench [18],
Dial-NVBench [29] introduces multi-turn dialogues, allowing mod-
els to capture user intent through iterative interactions. VisEval [4]
further refines nvBench by filtering out ambiguous, irrational, du-
plicated, and incorrect queries using a three-step selection process
(rule-based, LLM-based, and human-based), and offers an automated
evaluation framework covering validity, legality, and readability.
However, all three benchmarks [4, 18, 29] remain focused on well-
specified queries that map directly to a single correct visualization,
without explicitly addressing ambiguity in user intent.

To explore ambiguous and under-specified query formulations,
ChartGPT [34] extends nvBench by prompting GPT-3 to generate
more abstract and natural utterances compared to the original ones.
Similarly, while some other nl2vis datasets include ambiguous
queries [6, 10, 32], they do not explicitly define ambiguity types
and provide a complete set of valid chart results. Beyond the realm
of nl2vis, ambiguity has also been explored in nl2sql benchmarks,
where studies have considered data selection and computation ambi-
guity [2, 23], but they do not address ambiguity in the visualization
space. While some nl2vis systems have attempted to address ambi-
guity by detecting it [7, 24] or inferring underspecified queries [25],
they lack a benchmark for systematic evaluation.

To fill this gap, we propose nvBench 2.0, the first ambiguity-
aware nl2vis benchmark, which provides ambiguous user queries

and supports one-to-many mappings with multiple valid visualiza-
tions. By doing so, it enables a more comprehensive evaluation of
nl2vis systems in real-world scenarios.

6.2 LLMs for Data Synthesis

Recently, the use of LLMs for data synthesis or data augmentation
has become increasingly prevalent. Many studies leverage LLM-
generated data for training models [9, 45], as well as for evaluating
the performance of other trained models [22]. In the NLP domain,
researchers have utilized LLMs to generate synthetic data for tasks
like text classification [1, 3, 44]). These works showcase that LLM-
generated data can enhance data diversity, thereby improvingmodel
generalization and robustness. Building on this, VL2NL [13] extends
LLMs to nl2vis domain, generating NL descriptions (e.g., L1 and
L2 captions, and user commands) from Vega-Lite specifications.

Similarly, the application of LLMs for tabular data or database-
related tasks has gained traction. Common approaches for gener-
ating nl2sql or table question answering datasets often involve
generating NL queries first, followed by sql generation [2, 23]. Sci-
enceBenchmark [46] takes a reverse approach by starting with seed
sql queries, then generating new queries from the domain schema,
and translating them into NL using fine-tuned LLMs. We follow
this reverse construction philosophy in developing nvBench 2.0.
Specifically, we begin by extracting vql from seed charts and then
use LLMs to reverse engineer the corresponding NL descriptions.
The advantage of this approach is that vql clearly defines each step
and the ambiguity types involved, allowing us to better capture
one-to-many (nl, vis) pairs.

By leveraging LLMs to generate multi-step reasoning data, the
performance of models on long-chain and complex reasoning tasks
can be further improved. As demonstrated by Hunter et al. [16],
process supervision via multi-step reasoning significantly enhances
model reliability on tasks such as mathematical problem-solving.
Similarly, Step-DPO [14] shows that generating step-wise reasoning
data enables models to better capture intermediate steps, resulting
in improved accuracy. Following this approach, we also generate
multi-step reasoning data for tasks in the nl2vis domain, where
each step of the reasoning process is explicitly defined, contributing
to more accurate and interpretable model predictions.

7 CONCLUSION

In this work, we introduced nvBench 2.0, the first benchmark
specifically designed for evaluating nl2vis systems in scenarios
involving ambiguous queries. nvBench 2.0 consists of 7,878 NL
queries and 24,076 corresponding visualizations. These were gen-
erated through a controlled ambiguity-injection pipeline, guaran-
teeing valid and interpretable results while offering transparent
reasoning pathways. By using nvBench 2.0, we offer a robust frame-
work to assess nl2vis systems’ ability to handle ambiguities that
arise in real-world applications.

We also proposed Step-nl2vis, an LLM-based nl2vis model
trained on nvBench 2.0, which significantly improves nl2vis per-
formance in ambiguous scenarios by applying step-wise prefer-
ence optimization. Our experimental results demonstrate that Step-
nl2vis outperforms all existing baselines, establishing a new state-
of-the-art for handling ambiguity in nl2vis tasks.

nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity [Experiment, Analysis & Benchmark]

REFERENCES

[1] Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George
Kour, Segev Shlomov, Naama Tepper, and Naama Zwerdling. 2019. Not Enough
Data? Deep Learning to the Rescue! arXiv e-prints, Article arXiv:1911.03118
(Nov. 2019), arXiv:1911.03118 pages. https://doi.org/10.48550/arXiv.1911.03118
arXiv:1911.03118 [cs.CL]

[2] Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and Sunita Sarawagi. 2023.
Benchmarking and Improving Text-to-SQL Generation under Ambiguity. In
EMNLP. Association for Computational Linguistics, 7053–7074.

[3] Maximillian Chen, Alexandros Papangelis, Chenyang Tao, Andrew Rosenbaum,
Seokhwan Kim, Yang Liu, Zhou Yu, and Dilek Z. Hakkani-Tür. 2022. Weakly
Supervised Data Augmentation Through Prompting for Dialogue Understand-
ing. ArXiv abs/2210.14169 (2022). https://api.semanticscholar.org/CorpusID:
253107809

[4] Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. 2024. VisEval:
A Benchmark for Data Visualization in the Era of Large Language Models. IEEE
Transactions on Visualization and Computer Graphics 31 (2024), 1301–1311. https:
//api.semanticscholar.org/CorpusID:270869570

[5] Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. 2025. VisEval:
A Benchmark for Data Visualization in the Era of Large Language Models. IEEE
Transactions on Visualization and Computer Graphics 31, 1 (2025), 1301–1311.
https://doi.org/10.1109/TVCG.2024.3456320

[6] Siwei Fu, Kai Xiong, Xiaodong Ge, Siliang Tang, Wei Chen, and Yingcai Wu.
2020. Quda: Natural Language Queries for Visual Data Analytics. arXiv e-
prints, Article arXiv:2005.03257 (May 2020), arXiv:2005.03257 pages. https:
//doi.org/10.48550/arXiv.2005.03257 arXiv:2005.03257 [cs.CL]

[7] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Kara-
halios. 2015. DataTone: Managing Ambiguity in Natural Language Interfaces
for Data Visualization. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). As-
sociation for Computing Machinery, New York, NY, USA, 489–500. https:
//doi.org/10.1145/2807442.2807478

[8] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2019.
Multi-shot ASP solving with clingo. Theory and Practice of Logic Programming
19, 1 (2019), 27–82.

[9] Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray,
and Ece Kamar. 2022. ToxiGen: A Large-Scale Machine-Generated Dataset for
Adversarial and Implicit Hate Speech Detection. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association
for Computational Linguistics, Dublin, Ireland, 3309–3326. https://doi.org/10.
18653/v1/2022.acl-long.234

[10] Xinyi He, Mengyu Zhou, Xinrun Xu, XiaojunMa, Rui Ding, Lun Du, Yan Gao, Ran
Jia, Xu Chen, Shi Han, Zejian Yuan, and Dongmei Zhang. 2023. Text2Analysis:
A Benchmark of Table Question Answering with Advanced Data Analysis and
Unclear Queries. arXiv:2312.13671 [cs.CL] https://arxiv.org/abs/2312.13671

[11] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac Dykeman. 2018. Applying
Pragmatics Principles for Interaction with Visual Analytics. IEEE Transactions
on Visualization and Computer Graphics 24, 1 (2018), 309–318. https://doi.org/10.
1109/TVCG.2017.2744684

[12] Che Jiang, Biqing Qi, Xiangyu Hong, Dayuan Fu, Yang Cheng, Fandong Meng,
Mo Yu, Bowen Zhou, and Jie Zhou. 2024. On Large Language Models’ Hal-
lucination with Regard to Known Facts. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), Kevin Duh, He-
lena Gomez, and Steven Bethard (Eds.). ACL, Mexico City, Mexico, 1041–1053.
https://doi.org/10.18653/v1/2024.naacl-long.60

[13] Hyung-Kwon Ko, Hyeon Jeon, Gwanmo Park, Dae Hyun Kim, Nam Wook Kim,
Juho Kim, and Jinwook Seo. 2024. Natural Language Dataset Generation Frame-
work for Visualizations Powered by Large Language Models. In Proceedings of
the CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’24). Association for Computing Machinery, New York, NY, USA, Article
843, 22 pages. https://doi.org/10.1145/3613904.3642943

[14] Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and
Jiaya Jia. 2024. Step-DPO: Step-wise Preference Optimization for Long-
chain Reasoning of LLMs. arXiv e-prints, Article arXiv:2406.18629 (June
2024), arXiv:2406.18629 pages. https://doi.org/10.48550/arXiv.2406.18629
arXiv:2406.18629 [cs.LG]

[15] Shuaimin Li, Xuanang Chen, Yuanfeng Song, Yunze Song, and Chen Zhang.
2024. Prompt4Vis: Prompting Large Language Models with Example Mining and
Schema Filtering for Tabular Data Visualization. Vol. 1. Association for Computing
Machinery. arXiv:2402.07909 http://arxiv.org/abs/2402.07909

[16] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s
Verify Step by Step. ArXiv abs/2305.20050 (2023). https://api.semanticscholar.
org/CorpusID:258987659

[17] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker,
Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2024.

Let’s Verify Step by Step. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.
https://openreview.net/forum?id=v8L0pN6EOi

[18] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing Natural Language to Visualization (NL2VIS) Benchmarks
from NL2SQL Benchmarks. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for
Computing Machinery, New York, NY, USA, 1235–1247. https://doi.org/10.1145/
3448016.3457261

[19] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi Qin.
2022. Natural Language to Visualization by Neural Machine Translation. IEEE
Transactions on Visualization and Computer Graphics 28, 1 (jan 2022), 217–226.
https://doi.org/10.1109/TVCG.2021.3114848

[20] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,
Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in draco. IEEE transactions on
visualization and computer graphics 25, 1 (2018), 438–448.

[21] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2021. NL4DV: A Toolkit for
Generating Analytic Specifications for Data Visualization fromNatural Language
Queries. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2021),
369–379. https://doi.org/10.1109/TVCG.2020.3030378

[22] Marco Tulio Ribeiro and Scott Lundberg. 2022. Adaptive Testing and Debugging
of NLP Models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
Dublin, Ireland, 3253–3267. https://doi.org/10.18653/v1/2022.acl-long.230

[23] Irina Saparina and Mirella Lapata. 2024. AMBROSIA: A Benchmark for Parsing
Ambiguous Questions into Database Queries. ArXiv abs/2406.19073 (2024).
https://api.semanticscholar.org/CorpusID:270764916

[24] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A Natural Language Interface for Visual Analysis. In Pro-
ceedings of the 29th Annual Symposium on User Interface Software and Technology
(Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY,
USA, 365–377. https://doi.org/10.1145/2984511.2984588

[25] Vidya Setlur, Melanie Tory, and Alex Djalali. 2019. Inferencing underspecified
natural language utterances in visual analysis. In Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces (Marina del Ray, California)
(IUI ’19). Association for Computing Machinery, New York, NY, USA, 40–51.
https://doi.org/10.1145/3301275.3302270

[26] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2023. Towards Natural Language Inter-
faces for Data Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics 29, 6 (2023), 3121–3144. https://doi.org/10.1109/TVCG.2022.
3148007

[27] Leixian Shen, Enya Shen, Zhiwei Tai, Yiran Song, and Jianmin Wang. 2021.
TaskVis: Task-oriented Visualization Recommendation. In Proceedings of the
23th Eurographics Conference on Visualization, EuroVis’21. Eurographics, 91–95.
https://doi.org/10.2312/evs.20211061

[28] Leixian Shen, Enya Shen, Zhiwei Tai, Yihao Xu, Jiaxiang Dong, and JianminWang.
2022. Visual Data Analysis with Task-Based Recommendations. Data Science and
Engineering 7, 4 (2022), 354–369. https://doi.org/10.1007/s41019-022-00195-3

[29] Yuanfeng Song, Xuefang Zhao, and Raymond Chi-Wing Wong. 2023. Marry-
ing Dialogue Systems with Data Visualization: Interactive Data Visualization
Generation from Natural Language Conversations. arXiv:2307.16013 [cs.AI]
https://arxiv.org/abs/2307.16013

[30] Yuanfeng Song, Xuefang Zhao, Raymond Chi-wing Wong, and Di Jiang. 2022.
RGVisNet: A Hybrid Retrieval-Generation Neural Framework Towards Auto-
matic Data Visualization Generation. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA,
1646–1655. https://doi.org/10.1145/3534678.3539330

[31] Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: an open
multilingual graph of general knowledge. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (San Francisco, California, USA) (AAAI’17).
AAAI Press, 4444–4451.

[32] Arjun Srinivasan, Nikhila Nyapathy, Bongshin Lee, Steven M. Drucker, and John
Stasko. 2021. Collecting and Characterizing Natural Language Utterances for
Specifying Data Visualizations. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 464, 10 pages. https:
//doi.org/10.1145/3411764.3445400

[33] Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yurun Yang, Haidong Zhang,
and Yingcai Wu. 2024. ChartGPT: Leveraging LLMs to Generate Charts from
Abstract Natural Language. IEEE Transactions on Visualization and Com-
puter Graphics 14, 8 (2024), 1–15. https://doi.org/10.1109/TVCG.2024.3368621
arXiv:2311.01920

[34] Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yurun Yang, Haidong Zhang,
and Yingcai Wu. 2025. ChartGPT: Leveraging LLMs to Generate Charts From
Abstract Natural Language. IEEE Transactions on Visualization and Computer

https://doi.org/10.48550/arXiv.1911.03118
https://arxiv.org/abs/1911.03118
https://api.semanticscholar.org/CorpusID:253107809
https://api.semanticscholar.org/CorpusID:253107809
https://api.semanticscholar.org/CorpusID:270869570
https://api.semanticscholar.org/CorpusID:270869570
https://doi.org/10.1109/TVCG.2024.3456320
https://doi.org/10.48550/arXiv.2005.03257
https://doi.org/10.48550/arXiv.2005.03257
https://arxiv.org/abs/2005.03257
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://doi.org/10.1109/TVCG.2017.2744684
https://doi.org/10.1109/TVCG.2017.2744684
https://doi.org/10.18653/v1/2024.naacl-long.60
https://doi.org/10.1145/3613904.3642943
https://doi.org/10.48550/arXiv.2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2402.07909
http://arxiv.org/abs/2402.07909
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:258987659
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.18653/v1/2022.acl-long.230
https://api.semanticscholar.org/CorpusID:270764916
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1145/3301275.3302270
https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.2312/evs.20211061
https://doi.org/10.1007/s41019-022-00195-3
https://arxiv.org/abs/2307.16013
https://arxiv.org/abs/2307.16013
https://doi.org/10.1145/3534678.3539330
https://doi.org/10.1145/3411764.3445400
https://doi.org/10.1145/3411764.3445400
https://doi.org/10.1109/TVCG.2024.3368621
https://arxiv.org/abs/2311.01920

Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu Luo

Graphics 31, 3 (2025), 1731–1745. https://doi.org/10.1109/TVCG.2024.3368621
[35] Henrik Voigt, Ozge Alacam, Monique Meuschke, Kai Lawonn, and Sina Zarrieß.

2022. The Why and The How: A Survey on Natural Language Interaction in
Visualization. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
ACL, Stroudsburg, PA, USA, 348–374. https://doi.org/10.18653/v1/2022.naacl-
main.27

[36] Lei Wang, Songheng Zhang, Yun Wang, Ee-Peng Lim, and Yong Wang. 2023.
LLM4Vis: Explainable Visualization Recommendation using ChatGPT. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing:
Industry Track. ACL, Stroudsburg, PA, USA, 675–692. https://doi.org/10.18653/
v1/2023.emnlp-industry.64

[37] Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu, Jiaqi Wang, He Huang,
Haidong Zhang, and Dongmei Zhang. 2023. Towards Natural Language-Based Vi-
sualization Authoring. IEEE Transactions on Visualization and Computer Graphics
29, 1 (2023), 1222 – 1232. https://doi.org/10.1109/TVCG.2022.3209357

[38] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. In Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

[39] Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun,
Kang Liu, and Jun Zhao. 2023. Large Language Models are Better Reasoners
with Self-Verification. In Findings of the Association for Computational Linguistics:
EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). ACL, Singapore,
2550–2575. https://doi.org/10.18653/v1/2023.findings-emnlp.167

[40] Yang Wu, Yao Wan, Hongyu Zhang, Yulei Sui, Wucai Wei, Wei Zhao, Guandong
Xu, and Hai Jin. 2024. Automated Data Visualization from Natural Language via

Large Language Models: An Exploratory Study. In Proceedings of the ACM on
Management of Data. ACM, 1–28. https://doi.org/10.1145/3654992

[41] Yifan Wu, Lutao Yan, Leixian Shen, Yunhai Wang, Nan Tang, and Yuyu Luo. 2024.
ChartInsights: Evaluating Multimodal Large Language Models for Low-Level
Chart Question Answering. In Findings of the Association for Computational
Linguistics: EMNLP 2024. ACL, Stroudsburg, PA, USA, 12174–12200. https:
//doi.org/10.18653/v1/2024.findings-emnlp.710

[42] Zhengkai Wu, Vu Le, Ashish Tiwari, Sumit Gulwani, Arjun Radhakrishna, Ivan
Radiček, Gustavo Soares, Xinyu Wang, Zhenwen Li, and Tao Xie. 2022. NL2Viz:
natural language to visualization via constrained syntax-guided synthesis. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, New York, NY,
USA, 972–983. https://doi.org/10.1145/3540250.3549140

[43] Junran Yang, Péter Ferenc Gyarmati, Zehua Zeng, and Dominik Moritz. 2023.
Draco 2: An extensible platform to model visualization design. In 2023 IEEE
Visualization and Visual Analytics (VIS). IEEE, 166–170.

[44] Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Woomyoung
Park. 2021. GPT3Mix: Leveraging Large-scale Language Models for Text Aug-
mentation. In Findings of the Association for Computational Linguistics: EMNLP
2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (Eds.). Association for Computational Linguistics, Punta Cana, Dominican
Republic, 2225–2239. https://doi.org/10.18653/v1/2021.findings-emnlp.192

[45] Ann Yuan, Daphne Ippolito, Vitaly Nikolaev, Chris Callison-Burch, Andy Co-
enen, and Sebastian Gehrmann. 2021. SynthBio: A Case Study in Human-AI
Collaborative Curation of Text Datasets. arXiv e-prints, Article arXiv:2111.06467
(Nov. 2021), arXiv:2111.06467 pages. https://doi.org/10.48550/arXiv.2111.06467
arXiv:2111.06467 [cs.CL]

[46] Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Geor-
gia Koutrika, and Kurt Stockinger. 2023. ScienceBenchmark: A Complex Real-
World Benchmark for Evaluating Natural Language to SQL Systems. Proc. VLDB
Endow. 17, 4 (Dec. 2023), 685–698. https://doi.org/10.14778/3636218.3636225

https://doi.org/10.1109/TVCG.2024.3368621
https://doi.org/10.18653/v1/2022.naacl-main.27
https://doi.org/10.18653/v1/2022.naacl-main.27
https://doi.org/10.18653/v1/2023.emnlp-industry.64
https://doi.org/10.18653/v1/2023.emnlp-industry.64
https://doi.org/10.1109/TVCG.2022.3209357
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.1145/3654992
https://doi.org/10.18653/v1/2024.findings-emnlp.710
https://doi.org/10.18653/v1/2024.findings-emnlp.710
https://doi.org/10.1145/3540250.3549140
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.48550/arXiv.2111.06467
https://arxiv.org/abs/2111.06467
https://doi.org/10.14778/3636218.3636225

	Abstract
	1 Introduction
	2 Ambiguity-Injected NL2VIS Data Synthesizer
	2.1 Solution Overview
	2.2 Step 1: Ambiguity-aware VIS Tree Synthesis
	2.3 Step 2: Valid Visualization Synthesis
	2.4 Step 3: Ambiguous NL Query Synthesis
	2.5 Step 4: Ambiguity-resolved Reasoning Path

	3 The New Benchmark: nvBench 2.0
	3.1 Synthesizing nvBench 2.0
	3.2 Statistics of nvBench 2.0

	4 Step-nl2vis for Ambiguous nl2vis
	4.1 Preference Optimization with Step-DPO
	4.2 Cold-start with Supervised Fine-tuning
	4.3 Step-wise Preference Data Construction

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	6.1 NL2VIS benchmarks
	6.2 LLMs for Data Synthesis

	7 Conclusion
	References

