Case study: asphalt

The asphalt data

P> 31 asphalt pavements prepared under different conditions.
How does quality of pavement depend on these?
P Variables:
P pct.a.surf Percentage of asphalt in surface layer
pct.a.base Percentage of asphalt in base layer
fines Percentage of fines in surface layer
voids Percentage of voids in surface layer
rut.depth Change in rut depth per million vehicle passes
viscosity Viscosity of asphalt
run 2 data collection periods: 1 for run 1, 0 for run 2.
P rut.depth response. Depends on other variables, how?

VVVVVYY

Packages for this section

library (MASS)
library(tidyverse)
library (broom)
library(leaps)

Make sure to load MASS before tidyverse (for annoying technical
reasons).

Getting set up

my_url <- "http://ritsokiguess.site/datafiles/asphalt.txt"
asphalt <- read_delim(my_url, " ")

P Quantitative variables with one response: multiple regression.
P> Some issues here that don't come up in “simple” regression;
handle as we go. (STAB27/STAC67 ideas.)

The data (some)

asphalt

A tibble: 31 x 7
pct.a.surf pct.a.base fines voids rut.depth viscosity

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 4.68 4.87 8.4 4.92 6.75 2.8
2 5.19 4.5 6.5 4.56 13 1.4
3 4.82 4.73 7.9 5.32 14.8 1.4
4 4.85 4.76 8.3 4.86 12.6 3.3
5 4.86 4.95 8.4 3.78 8.25 1.7
6 5.16 4.45 7.4 4.40 10.7 2.9
7 4.82 5.05 6.8 4.87 7.28 3.7
8 4.86 4.7 8.6 4.83 12.7 1.7
9 4.78 4.84 6.7 4.86 12.6 0.92
10 5.16 4.7 7.7 4.03 20.6 0.68

i 21 more rows

Plotting response “rut depth” against everything else

Same idea as for plotting separate predictions on one plot:

asphalt 7>%
pivot_longer(

-rut.depth,

names_to="xname", values_to="x"
) W>h
ggplot(aes(x = x, y = rut.depth)) + geom_point() +
facet_wrap(~xname, scales = "free") -> g

“collect all the x-variables together into one column called x, with
another column xname saying which x they were, then plot these
x's against rut.depth, a separate facet for each x-variable."

| saved this graph to plot later (on the next page).

The plot
g

20-

rut.depth

20-

0.25

fines

0.50

0.75

1.00

20-
10-
.
0-
4‘4
.
20- ®
.
10- *
.
0-
0

pct.a.base
.
.
n o g0 .
.
.
.
)
.« 3 .
4‘6 4‘8
viscosity
.
e *e o,
W(‘JO ?60 3(‘)0

400

500

0-

40

voids
0 do
L
e 2
45 50

pet.a.surf
.
.o
.
.
D

Interpreting the plots

P> One plot of rut depth against each of the six other variables.

P Get rough idea of what's going on.

P Trends mostly weak.

P viscosity has strong but non-linear trend.

P run has effect but variability bigger when run is 1.

P Weak but downward trend for voids.

P Non-linearity of rut.depth-viscosity relationship should
concern us.

Log of viscosity: more nearly linear?

P> Take this back to asphalt engineer: suggests log of
viscosity:

ggplot(asphalt, aes(y = rut.depth, x = log(viscosity))) +
geom_point() + geom_smooth(se = F) -> g

(plot overleaf)

Rut depth against log-viscosity

Comments and next steps
P Not very linear, but better than before.
P In multiple regression, hard to guess which x’s affect response.
So typically start by predicting from everything else.
P Model formula has response on left, squiggle, explanatories on
right joined by plusses:

rut.1 <- 1m(rut.depth ~ pct.a.surf + pct.a.base + fines +
voids + log(viscosity) + run, data = asphalt)
summary (rut.1)

Call:
Im(formula = rut.depth ~ pct.a.surf + pct.a.base + fines +
log(viscosity) + run, data = asphalt)

Residuals:
Min 1Q Median 3Q Max
-4.1211 -1.9075 -0.7175 1.6382 9.5947

Regression output: summary(rut.1) or:
glance(rut.1)

A tibble: 1 x 12

r.squared adj.r.squared sigma statistic p.value df logLik AI
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl
1 0.806 0.758 3.32 16.6 0.000000174 6 -77.3 171

i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

tidy(rut.1)

A tibble: 7 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -13.0 26.2 -0.496 0.625
2 pct.a.surf 3.97 2.50 1.59 0.125
3 pct.a.base 1.26 3.97 0.318 0.753
4 fines 0.116 1.01 0.115 0.909
5 voids 0.589 1.32 0.445 0.660
6 log(viscosity) -3.15 0.919 -3.43 0.00220
7 run -1.97 3.65 -0.539 0.595

Comments
P R-squared 81%, not so bad.

P> P-value in glance asserts that something helping to predict
rut.depth.

v

Table of coefficients says log(viscosity).

v

But confused by clearly non-significant variables: remove
those to get clearer picture of what is helpful.

Before we do anything, look at residual plots:

(a) of residuals against fitted values (as usual)

P (b) of residuals against each explanatory.

P Problem fixes:

Plot fitted values against residuals
ggplot(rut.1, aes(x = .fitted, y

10-

-resid

fitted

.resid)) + geom_point()

15

Normal quantile plot of residuals
gegplot(rut.1, aes(sample = .resid)) + stat_qq() + stat_qq_!

10-

Plotting residuals against x variables

P> Problem here is that residuals are in the fitted model, and the
observed z-values are in the original data frame asphalt.

P> Package broom contains a function augment that combines
these two together so that they can later be plotted: start
with a model first, and then augment with a data frame:

rut.1l %>}, augment(asphalt) -> rut.la

What does rut.1a contain?

names (rut.1a)

[1] "pct.a.surf" "pct.a.base" "fines" "voids"
[6] "viscosity" "run" " fitted" ".resid"
[11] ".sigma" ".cooksd" ".std.resid"

P all the stuff in original data frame, plus:
P> quantities from regression (starting with a dot)

Plotting residuals against x-variables

rut.la %>%

mutate(log_vis=log(viscosity)) %>%

pivot_longer(
c(pct.a.surf:voids, run, log_vis),
names_to="xname", values_to="x"

) h>%

ggplot(aes(x = x, y = .resid)) +

geom_point() + facet_wrap(~xname, scales = "free")

The plot
g

fines log_vis petabase

. . 51 .
. . .
. L . % . %
. 5 .o
« o . . o
. a 0 . .«
. . o ® o e e
. J0 [. ., .&- L o) c
. .
H . . A L.
. s o ° . .
il é ‘/ ?‘i l‘) } l‘l 6 4‘4 4‘6 48
2
2 petasurf run voids
10- . 10- o 107 .
57 . 57 . 51 .
. .
« * 3 .
.« . ..
. e o . . o ‘e
0- . . 0- . . 0- .
L -~ ' ..
P ., 3 1 q « % e
¢ . .
e e L] P °
4‘0 4‘5 5‘0 0. 60 0. ‘75 0. éU 0. ‘75 1 bU A‘U 4‘5 5‘0

Comments

P> There is serious curve in plot of residuals vs. fitted values.
Suggests a transformation of y.

P The residuals-vs-z's plots don't show any serious trends.
Worst probably that potential curve against log-viscosity.

P Also, large positive residual, 10, that shows up on all plots.
Perhaps transformation of 4 will help with this too.

P If residual-fitted plot OK, but some residual-z plots not, try
transforming those x's, eg. by adding =2 to help with curve.

Which transformation?

P> Best way: consult with person who brought you the data.

P Can't do that here!

P No idea what transformation would be good.

P Let data choose: “Box-Cox transformation”.

P> Scale is that of “ladder of powers”: power transformation, but
0 is log.

Running Box-Cox
From package MASS:

boxcox(rut.depth ~ pct.a.surf + pct.a.base + fines + voids
log(viscosity) + run, data = asphalt)

95%

log-Likelihood
-100 -80 -40 -20
Il Il

-120

-2 -1 0 1 2

Comments on Box-Cox plot

P)\ represents power to transform y with.
P> Best single choice of transformation parameter \ is peak of
curve, close to 0.
P> Vertical dotted lines give Cl for A, about (—0.05, 0.2).
»)\ =0 means “log".
P> Narrowness of confidence interval mean that these not
supported by data:
P No transformation (A = 1)
P Square root (A = 0.5)
P Reciprocal (A = —1).

Relationships with explanatories

P> As before: plot response (now log(rut.depth)) against
other explanatory variables, all in one shot:

asphalt %>
mutate(log_vis=log(viscosity)) %>%
pivot_longer(
c(pct.a.surf:voids, run, log_vis),
names_to="xname", values_to="x"
) h>h
ggplot(aes(y = log(rut.depth), x = x)) + geom_point() +
facet_wrap(~xname, scales = "free") -> g3

The new plots
g3

log(rut.depth)

fines

7

pet.a.surf

log_vis

0 025 050

0.75

1.00

pet.abase
3- .
.
- * o0
.
2- o .
.
1-
.
.
.
0- T *
%
.
.
1- =
.
44 4% 48
voids
.
3- .
®em
.
2- o o
1-
.
L4 .
o-
- .
1 =
.
40 45 50

Modelling with transformed response

P> These trends look pretty straight, especially with
log.viscosity.

P Values of log.rut.depth for each run have same spread.

P Other trends weak, but are straight if they exist.

P> Start modelling from the beginning again.

P Model log.rut.depth in terms of everything else, see what
can be removed:

rut.2 <- 1m(log(rut.depth) ~ pct.a.surf + pct.a.base +
fines + voids + log(viscosity) + run, data = asphalt)

P use tidy from broom to display just the coefficients.

Output
tidy(rut.2)

A tibble: 7 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -1.57 2.44 -0.646 0.525
2 pct.a.surf 0.584 0.232 2.52 0.0190
3 pct.a.base -0.103 0.369 -0.280 0.782
4 fines 0.0978 0.0941 1.04 0.309
5 voids 0.199 0.123 1.62 0.119
6 log(viscosity) -0.558 0.0854 -6.53 0.000000945
7 run 0.340 0.339 1.00 0.326

summary (rut.2)

Call:
lm(formula = log(rut.depth) ~ pct.a.surf + pct.a.base + fi:
voids + log(viscosity) + run, data = asphalt)

Taking out everything non-significant
P Try: remove everything but pct.a.surf and log.viscosity:

rut.3 <- 1Im(log(rut.depth) ~ pct.a.surf + log(viscosity), data = asphal
summary (rut.3)

Call:
Im(formula = log(rut.depth) ~ pct.a.surf + log(viscosity), data = aspha

Residuals:
Min 1Q Median 3Q Max
-0.61938 -0.21361 0.06635 0.14932 0.63012

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.90014 1.08059 0.833 0.4119
pct.a.surf 0.39115 0.21879 1.788 0.0846

log(viscosity) -0.61856 0.02713 -22.797 <2e-16 *xx

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3208 on 28 degrees of freedom
Multiple R-squared: 0.9509, Adjusted R-squared: 0.9474

Find the largest P-value by eye:

tidy(rut.2)

A tibble: 7 x 5

term estimate std.error statistic

<chr> <dbl> <dbl> <dbl>
1 (Intercept) -1.57 2.44 -0.646
2 pct.a.surf 0.584 0.232 2.52
3 pct.a.base -0.103 0.369 -0.280
4 fines 0.0978 0.0941 1.04
5 voids 0.199 0.123 1.62
6 log(viscosity) -0.558 0.0854 -6.53
7 run 0.340 0.339 1.00

O O O O O O o

p-value
<dbl>

.525

.0190

.782

.309

.119
.000000945
.326

P> Largest P-value is 0.78 for pct.a.base, not significant.

P So remove this first, re-fit and re-assess.

P Or, as over.

Get the computer to find the largest P-value for you

» Output from tidy is itself a data frame, thus:
tidy(rut.2) %>% arrange(p.value)

A tibble: 7 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 log(viscosity) -0.558 0.0854 -6.53 0.000000945
2 pct.a.surf 0.584 0.232 2.52 0.0190
3 voids 0.199 0.123 1.62 0.119
4 fines 0.0978 0.0941 1.04 0.309
5 run 0.340 0.339 1.00 0.326
6 (Intercept) -1.57 2.44 -0.646 0.525
7 pct.a.base -0.103 0.369 -0.280 0.782

P Largest P-value at the bottom.

Take out pct.a.base

P Copy and paste the 1m code and remove what you're
removing:

rut.4 <- 1Im(log(rut.depth) ~ pct.a.surf + fines + voids +
log(viscosity) + run, data = asphalt)
tidy(rut.4) 7%>% arrange(p.value) %>} dplyr::select(term, p.value

A tibble: 6 x 2

term p.value
<chr> <dbl>
1 log(viscosity) 0.000000448
2 pct.a.surf 0.0143
3 voids 0.109
4 (Intercept) 0.208
5 run 0.279
6 fines 0.316

P fines is next to go, P-value 0.32.

“Update”

Another way to do the same thing:

rut.4 <- update(rut.2,

tidy(rut.4) %>, arrange(p.value)

A tibble: 6 x 5

. - pct.a.base)

term estimate std.error statistic

<chr> <dbl> <dbl> <dbl>
1 log(viscosity) -0.552 0.0818 -6.75
2 pct.a.surf 0.593 0.225 2.63
3 voids 0.200 0.121 1.66
4 (Intercept) -2.08 1.61 -1.29
5 run 0.360 0.325 1.11
6 fines 0.0889 0.0870 1.02

O O O O O

p.value
<dbl>

.000000448
.0143

.109

.208

.279

.316

P Again, fines is the one to go. (Output identical as it should

be.)

Take out fines:

rut.5 <- update(rut.4, . ~ . - fines)
tidy(rut.5) %>% arrange(p.value) %>, dplyr::select(term, p

A tibble: 5 x 2

term p.value
<chr> <dbl>
1 log(viscosity) 0.0000000559
2 pct.a.surf 0.0200
3 voids 0.0577
4 run 0.365
5 (Intercept) 0.375

Can't take out intercept, so run, with P-value 0.36, goes next.

Take out run:

rut.6 <- update(rut.5, . ~ . - run)
tidy(rut.6) %>% arrange(p.value) %>, dplyr::select(term, p

A tibble: 4 x 2

term p.value
<chr> <dbl>
1 log(viscosity) 5.29e-19
2 pct.a.surf 1.80e- 2
3 voids 4.36e- 2
4 (Intercept) 4.61e- 1

Again, can't take out intercept, so largest P-value is for voids,
0.044. But this is significant, so we shouldn’t remove voids.

Comments
P> Here we stop: pct.a.surf, voids and log.viscosity
would all make fit significantly worse if removed. So they stay.
P Different final result from taking things out one at a time
(top), than by taking out 4 at once (bottom):

summary (rut.6)

Call:
lm(formula = log(rut.depth) ~ pct.a.surf + voids + log(vis
data = asphalt)

Residuals:
Min 1Q Median 3Q Max
-0.53548 -0.20181 -0.01702 0.16748 0.54707

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.02079 1.36430 -0.748 0.4608

Comments on variable selection

P Best way to decide which x's belong: expert knowledge:
which of them should be important.

P Best automatic method: what we did, “backward selection”.

P Do not learn about “stepwise regression”! eg. here

P R has function step that does backward selection, like this:

step(rut.2, direction = "backward", test = "F")

Gets same answer as we did (by removing least significant x).

P Removing non-significant 's may remove interesting ones
whose P-values happened not to reach 0.05. Consider using
less stringent cutoff like 0.20 or even bigger.

P> Can also fit all possible regressions, as over (may need to do
install.packages("leaps") first).

https://towardsdatascience.com/stopping-stepwise-why-stepwise-selection-is-bad-and-what-you-should-use-instead-90818b3f52df

All possible regressions (output over)

Uses package leaps:

leaps <- regsubsets(log(rut.depth) ~ pct.a.surf +
pct.a.base + fines + voids +
log(viscosity) + run,

data = asphalt, nbest = 2)

s <- summary(leaps)

with(s, data.frame(rsq, outmat)) -> d

The output

d %>% rownames_to_column("model") 7>, arrange(desc(rsq))

model rsq pct.a.surf pct.a.base fines voids log.viscosity. run
1 6 (1) 0.9609642 * * * * * *
2 5 (1) 0.9608365 * * * * *
3 5 (2) 0.9593265 * * * * *
4 4 (1) 0.9591996 * * * *
5 4 (2) 0.9589206 * * * *
6 3 (1) 0.9578631 * * *
7 3 (2) 0.9534561 * * *
8 2 (1) 0.9508647 * *
9 2 (2) 0.9479541 * *
101 (1) 0.9452562 *
111 (2) 0.8624107 *

Comments

P Problem: even adding a worthless x increases R-squared. So
try for line where R-squared stops increasing “too much”, eg.
top line (just log.viscosity), first 3-variable line
(backwards-elimination model). Hard to judge.

P> One solution (STAC67): adjusted R-squared, where adding
worthless variable makes it go down.

P data.frame rather than tibble because there are several

columns in outmat.

All possible regressions, adjusted R-squared

with(s, data.frame(adjr2, outmat)) %>%
rownames_to_column("model") %>%
arrange (desc(adjr2))

model
1 3 (1)
2 5 (1)
3 4 (1)
4 4 (2)
5 6 (1)
6 5 (2)
7 3 (2)
8 2 (1)
9 2 (2)
101 (1)
111 (2)

[elelelNeNoNeolNeNeoleNe e}

adjr2 pct.a.surf pct.a.base fines voids

.9531812
.9530038
.9529226
.9526007
.95120562
.9511918
.9482845
.9473550
.9442365
.9433685
.8576662

*

* O X X X X ¥

*

* ¥ ¥ *

* K ¥ X ¥ *

log.viscosity. run

* O XK X X X X X X X
*

Revisiting the best model

P Best model was our rut.6:

tidy(rut.6)

#

S w NN e

A tibble: 4 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
(Intercept) -1.02 1.36 -0.748 4.61e- 1
pct.a.surf 0.555 0.220 2.52 1.80e- 2
voids 0.245 0.116 2.12 4.36e- 2

log(viscosity) -0.646

0.0288 -22.5 5.29e-19

Revisiting (2)

P> Regression slopes say that rut depth increases as log-viscosity
decreases, pct.a.surf increases and voids increases. This
more or less checks out with out scatterplots against
log.viscosity.

P> We should check residual plots again, though previous
scatterplots say it's unlikely that there will be a problem:

g <- ggplot(rut.6, aes(y = .resid, x = .fitted)) +
geom_point ()

Residuals against fitted values
g

06-
03-
.

=
8 oo-

0.3~

1 0 1
fitted

I Y T Y 2 N e m N\

Plotting residuals against x's

P Do our trick again to put them all on one plot:

augment (rut.6, asphalt) %>%
mutate (log_vis=log(viscosity)) %>%
pivot_longer(
c(pct.a.surf:voids, run, log_vis),
names_to="xname", values_to="x",
) h>%
geplot(aes(y = .resid, x = x)) + geom_point() +
facet_wrap(~xname, scales = "free") -> g2

Residuals against the x's
g2

fines log_vis petabase
056~ 06~ 0.6-
.
. o .
. o .
03-» 03- . 03- e
. . .
. o o .
. . . .
. o .
0.0- . . s °* oo- s . LI 0.0-
. . o .« o B |
.
. . L .
. o .
-0.3- * -0.3- * -0.3- *
ol o d . .
. . . . °
. o .
° 6 7 8 0 2 4 6 44 46 48
@
2 petasurf run voids
0.6~ 0.6~ 0.6~
. . . . o .
. .
. . o
0.3- o 03- o 03-e
B .
b . H %
* . 3 . *
.o . H o
0.0- X - 00- 8 : 0.0- e
. .
« °* 3 *
. .
. . . .
. o
-0.3- * -03- % -0.3-
. o
L . . = .
o . .
40 45 50 0.00 0.25 0.50 0.75 1.00 40 45 50

X

Comments

>
>

None of the plots show any sort of pattern. The points all
look random on each plot.

On the plot of fitted values (and on the one of log.viscosity),
the points seem to form a “left half” and a “right half” with a
gap in the middle. This is not a concern.

One of the pct.a.surf values is low outlier (4), shows up top
left of that plot.

P Only two possible values of run; the points in each group look

randomly scattered around 0, with equal spreads.
Residuals seem to go above zero further than below,
suggesting a mild non-normality, but not enough to be a
problem.

Variable-selection strategies

Expert knowledge.

Backward elimination.

All possible regressions.

Taking a variety of models to experts and asking their opinion.
Use a looser cutoff to eliminate variables in backward
elimination (eg. only if P-value greater than 0.20).

If goal is prediction, eliminating worthless variables less
important.

If goal is understanding, want to eliminate worthless variables
where possible.

P> Results of variable selection not always reproducible, so
caution advised.

VvV V VVVvVVvY

	Before we do anything, look at residual plots:

