Bootstrap for sampling distribution of sample
mean



Assessing assumptions
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Our t-tests assume normality of variable being tested

but, Central Limit Theorem says that normality matters less if
sample is “large”

in practice “approximate normality” is enough, but how do we
assess whether what we have is normal enough?

so far, use histogram /boxplot and make a call, allowing for
sample size.



What actually has to be normal
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is: sampling distribution of sample mean

the distribution of sample mean over all possible samples

but we only have one sample!

Idea: assume our sample is representative of the population,
and draw samples from our sample (!), with replacement.
This gives an idea of what different samples from the
population might look like.

Called bootstrap, after expression “to pull yourself up by your
own bootstraps”.



Packages

library(tidyverse)



Blue Jays attendances
jays$attendance

[1] 48414 17264 15086 14433 21397 34743 44794 14184 15606
[13] 21312 30430 42917 42419 29306 15062 16402 19014 21195
[25] 17276

P A bootstrap sample:
s <- sample(jays$attendance, replace = TRUE)

S

[1] 21195 34743 21312 44794 16402 19014 34743 21195 17264
[13] 34743 19217 14433 15062 16402 15062 34743 15062 15086
[25] 30430

P> It is easier to see what is happening if we sort both the actual
attendances and the bootstrap sample:

sort (jays$attendance)

[1] 14184 14433 15062 15086 15168 15606 16402 17264 17276



Getting mean of bootstrap sample

P> A bootstrap sample is same size as original, but contains
repeated values (eg. 15062) and missing ones (42917).
P We need the mean of our bootstrap sample:

mean (s)

[1] 23055.28

P This is a little different from the mean of our actual sample:

mean(jays$attendance)

[1] 25070.16

P Want a sense of how the sample mean might vary, if we were
able to take repeated samples from our population.

P> Idea: take lots of bootstrap samples, and see how their sample
means vary.



Setting up bootstrap sampling

P> Begin by setting up a dataframe that contains a row for each
bootstrap sample. | usually call this column sim. Do just 4 to
get the idea:

tibble(sim = 1:4)

# A tibble: 4 x 1
sim

<int>
1
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2
3
4



Drawing the bootstrap samples

P Then set up to work one row at a time, and draw a bootstrap
sample of the attendances in each row:

tibble(sim = 1:4) %>%
rowwise () %>%
mutate (sample = list(sample(jays$attendance, replace = TI

# A tibble: 4 x 2
# Rowwise:
sim sample
<int> <list>
1 <dpbl [25]>
2 <dbl [25]>
3 <dbl [25]>
4 <dbl [25]>
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P> Each row of our dataframe contains all of a bootstrap sample
of 25 observations drawn with replacement from the
attendances.



Sample means

P Find the mean of each sample:

tibble(sim = 1:4) %>%
rowwise () %>%
mutate (sample = list(sample(jays$attendance, replace = TI
mutate (my_mean = mean(sample))

# A tibble: 4 x 3
# Rowwise:
sim sample my_mean
<int> <list> <dbl>
1 <dbl [25]> 28472.
2 <dbl [25]> 28648.
3 <dbl [25]> 23329.
4 <dbl [25]> 24808.
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P These are (four simulated values of) the bootstrapped
sampling distribution of the sample mean.



Make a histogram of them

P> rather pointless here, but to get the idea:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate (sample = list(sample(jays$attendance, replace = TI
mutate (my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 3) -> |



The (pointless) histogram
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Now do again with a decent number of bootstrap samples

P say 1000, and put a decent number of bins on the histogram
also:

tibble(sim = 1:1000) %>%
rowwise () %>%
mutate (sample = list(sample(jays$attendance, replace = TI
mutate (my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 10) -> |



The (better) histogram
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Comments

P This is very close to normal

P> The bootstrap says that the sampling distribution of the
sample mean is close to normal, even though the distribution
of the data is not

P A sample size of 25 is big enough to overcome the skewness
that we saw

P This is the Central Limit Theorem in practice

P It is surprisingly powerful.

P Thus, the t-test is actually perfectly good here.



Comments on the code 1/2

P You might have been wondering about this:

tibble(sim = 1:4) %>%
rowwise () %>%

mutate (sample = list(sample(jays$attendance, replace

# A tibble: 4 x 2
# Rowwise:
sim sample
<int> <list>
1 <dbl [25]>
2 <dbl [25]>
3 <dbl [25]>
4 <dbl [25]>
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Comments on the code 2/2

P how did we squeeze all 25 sample values into one cell?
P sample is a so-called “list-column” that can contain anything.
P why did we have to put 1ist () around the sample()?
P because sample produces a collection of numbers, not just a
single one
P the 1ist () signals this: “make a list-column of samples”.



Two samples

P Assumption: both samples are from a normal distribution.

P In this case, each sample should be “normal enough” given its
sample size, since Central Limit Theorem will help.

P> Use bootstrap on each group independently, as above.



Kids learning to read

# A tibble: 44 x 2
group score
<chr> <dbl>

t 24
61
59
46
43
44
52
43
58
10 67

# i 34 more rows
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ggplot(kids, aes(x=group, y=score)) + geom_boxplot()
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Getting just the control group
P Use filter to select rows where something is true:

kids %> filter(group=="c") -> controls
controls

# A tibble: 23 x 2
group score
<chr> <dbl>

42

33

46

37

43

41

10

42

55

10 19

# i 13 more rows
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Bootstrap these
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate (sample = list(sample(controls$score, replace = TR
mutate (my_mean = mean(sample)) %>%
ggplot (aes(x = my_mean)) + geom_histogram(bins = 10)
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. and the treatment group:
kids %>% filter(group=="t") -> treats
tibble(sim = 1:1000) %>%
rowwise () %>%
mutate(sample = list(sample(treats$score, replace = TRUE.
mutate(my_mean = mean(sample)) %>%
ggplot(aes(x = my_mean)) + geom_histogram(bins = 15)
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Comments

P sampling distributions of sample means both look pretty
normal, though treatment group is a tiny bit left-skewed
P as we thought, no problems with our two-sample ¢ at all.



