
Dates and Times

Packages for this section

library(tidyverse)
library(lubridate)

lubridate is the package that handles dates and times, but is
now part of the tidyverse, so no need to load separately.

Dates
▶ Dates represented on computers as “days since an origin”,

typically Jan 1, 1970, with a negative date being before the
origin:

mydates <- c("1970-01-01", "2007-09-04", "1931-08-05")
(somedates <- tibble(text = mydates) %>%

mutate(
d = as.Date(text),
numbers = as.numeric(d)

))

A tibble: 3 x 3
text d numbers
<chr> <date> <dbl>

1 1970-01-01 1970-01-01 0
2 2007-09-04 2007-09-04 13760
3 1931-08-05 1931-08-05 -14029

Doing arithmetic with dates

▶ Dates are “actually” numbers, so can add and subtract
(difference is 2007 date in d minus others):

somedates %>% mutate(plus30 = d + 30, diffs = d[2] - d)

A tibble: 3 x 5
text d numbers plus30 diffs
<chr> <date> <dbl> <date> <drtn>

1 1970-01-01 1970-01-01 0 1970-01-31 13760 days
2 2007-09-04 2007-09-04 13760 2007-10-04 0 days
3 1931-08-05 1931-08-05 -14029 1931-09-04 27789 days

Reading in dates from a file

▶ read_csv and the others can guess that you have dates, if you
format them as year-month-day, like column 1 of this .csv:

date,status,dunno
2011-08-03,hello,August 3 2011
2011-11-15,still here,November 15 2011
2012-02-01,goodbye,February 1 2012

▶ Then read them in:
my_url <- "http://ritsokiguess.site/datafiles/mydates.csv"
ddd <- read_csv(my_url)

▶ read_csv guessed that the 1st column is dates, but not 3rd.

The data as read in

ddd

A tibble: 3 x 3
date status dunno
<date> <chr> <chr>

1 2011-08-03 hello August 3 2011
2 2011-11-15 still here November 15 2011
3 2012-02-01 goodbye February 1 2012

Dates in other formats

▶ Preceding shows that dates should be stored as text in format
yyyy-mm-dd (ISO standard).

▶ To deal with dates in other formats, use package lubridate
and convert. For example, dates in US format with month
first:

tibble(usdates = c("05/27/2012", "01/03/2016", "12/31/2015")) %>%
mutate(iso = mdy(usdates))

A tibble: 3 x 2
usdates iso
<chr> <date>

1 05/27/2012 2012-05-27
2 01/03/2016 2016-01-03
3 12/31/2015 2015-12-31

Trying to read these as UK dates

tibble(usdates = c("05/27/2012", "01/03/2016", "12/31/2015")) %>%
mutate(uk = dmy(usdates))

A tibble: 3 x 2
usdates uk
<chr> <date>

1 05/27/2012 NA
2 01/03/2016 2016-03-01
3 12/31/2015 NA

▶ For UK-format dates with month second, one of these dates is
legit, but the other two make no sense.

Our data frame’s last column:

▶ Back to this:
ddd

A tibble: 3 x 3
date status dunno
<date> <chr> <chr>

1 2011-08-03 hello August 3 2011
2 2011-11-15 still here November 15 2011
3 2012-02-01 goodbye February 1 2012

▶ Month, day, year in that order.

so interpret as such

(ddd %>% mutate(date2 = mdy(dunno)) -> d4)

A tibble: 3 x 4
date status dunno date2
<date> <chr> <chr> <date>

1 2011-08-03 hello August 3 2011 2011-08-03
2 2011-11-15 still here November 15 2011 2011-11-15
3 2012-02-01 goodbye February 1 2012 2012-02-01

Are they really the same?

▶ Column date2 was correctly converted from column dunno:
d4 %>% mutate(equal = identical(date, date2))

A tibble: 3 x 5
date status dunno date2 equal
<date> <chr> <chr> <date> <lgl>

1 2011-08-03 hello August 3 2011 2011-08-03 TRUE
2 2011-11-15 still here November 15 2011 2011-11-15 TRUE
3 2012-02-01 goodbye February 1 2012 2012-02-01 TRUE

▶ The two columns of dates are all the same.

Making dates from pieces

Starting from this file:

year month day
1970 1 1
2007 9 4
1940 4 15
my_url <- "http://ritsokiguess.site/datafiles/pieces.txt"
dates0 <- read_delim(my_url, " ")

Making some dates

dates0

A tibble: 3 x 3
year month day

<dbl> <dbl> <dbl>
1 1970 1 1
2 2007 9 4
3 1940 4 15
dates0 %>%

unite(dates, day, month, year)%>%
mutate(d = dmy(dates)) -> newdates

The results

newdates

A tibble: 3 x 2
dates d
<chr> <date>

1 1_1_1970 1970-01-01
2 4_9_2007 2007-09-04
3 15_4_1940 1940-04-15

▶ unite glues things together with an underscore between them
(if you don’t specify anything else). Syntax: first thing is new
column to be created, other columns are what to make it out
of.

▶ unite makes the original variable columns year, month, day
disappear.

▶ The column dates is text, while d is a real date.

Extracting information from dates

newdates %>%
mutate(

mon = month(d),
day = day(d),
weekday = wday(d, label = TRUE)

)

A tibble: 3 x 5
dates d mon day weekday
<chr> <date> <dbl> <int> <ord>

1 1_1_1970 1970-01-01 1 1 Thu
2 4_9_2007 2007-09-04 9 4 Tue
3 15_4_1940 1940-04-15 4 15 Mon

Dates and times

▶ Standard format for times is to put the time after the date,
hours, minutes, seconds:

(dd <- tibble(text = c(
"1970-01-01 07:50:01", "2007-09-04 15:30:00",
"1940-04-15 06:45:10", "2016-02-10 12:26:40"

)))

A tibble: 4 x 1
text
<chr>

1 1970-01-01 07:50:01
2 2007-09-04 15:30:00
3 1940-04-15 06:45:10
4 2016-02-10 12:26:40

Converting text to date-times:

▶ Then get from this text using ymd_hms:
dd %>% mutate(dt = ymd_hms(text))

A tibble: 4 x 2
text dt
<chr> <dttm>

1 1970-01-01 07:50:01 1970-01-01 07:50:01
2 2007-09-04 15:30:00 2007-09-04 15:30:00
3 1940-04-15 06:45:10 1940-04-15 06:45:10
4 2016-02-10 12:26:40 2016-02-10 12:26:40

Timezones

▶ Default timezone is “Universal Coordinated Time”. Change it
via tz= and the name of a timezone:

dd %>%
mutate(dt = ymd_hms(text, tz = "America/Toronto")) -> dd

dd %>% mutate(zone = tz(dt))

A tibble: 4 x 3
text dt zone
<chr> <dttm> <chr>

1 1970-01-01 07:50:01 1970-01-01 07:50:01 America/Toronto
2 2007-09-04 15:30:00 2007-09-04 15:30:00 America/Toronto
3 1940-04-15 06:45:10 1940-04-15 06:45:10 America/Toronto
4 2016-02-10 12:26:40 2016-02-10 12:26:40 America/Toronto

Extracting time parts
▶ As you would expect:

dd %>%
select(-text) %>%
mutate(

h = hour(dt),
sec = second(dt),
min = minute(dt),
zone = tz(dt)

)

A tibble: 4 x 5
dt h sec min zone
<dttm> <int> <dbl> <int> <chr>

1 1970-01-01 07:50:01 7 1 50 America/Toronto
2 2007-09-04 15:30:00 15 0 30 America/Toronto
3 1940-04-15 06:45:10 6 10 45 America/Toronto
4 2016-02-10 12:26:40 12 40 26 America/Toronto

Same times, but different time zone:
dd %>%

select(dt) %>%
mutate(oz = with_tz(dt, "Australia/Sydney"))

A tibble: 4 x 2
dt oz
<dttm> <dttm>

1 1970-01-01 07:50:01 1970-01-01 22:50:01
2 2007-09-04 15:30:00 2007-09-05 05:30:00
3 1940-04-15 06:45:10 1940-04-15 21:45:10
4 2016-02-10 12:26:40 2016-02-11 04:26:40

In more detail:
dd %>%

mutate(oz = with_tz(dt, "Australia/Sydney")) %>%
pull(oz)

[1] "1970-01-01 22:50:01 AEST" "2007-09-05 05:30:00 AEST"
[3] "1940-04-15 21:45:10 AEST" "2016-02-11 04:26:40 AEDT"

How long between date-times?

▶ We may need to calculate the time between two events. For
example, these are the dates and times that some patients
were admitted to and discharged from a hospital:

admit,discharge
1981-12-10 22:00:00,1982-01-03 14:00:00
2014-03-07 14:00:00,2014-03-08 09:30:00
2016-08-31 21:00:00,2016-09-02 17:00:00

Do they get read in as date-times?

▶ These ought to get read in and converted to date-times:
my_url <- "http://ritsokiguess.site/datafiles/hospital.csv"
stays <- read_csv(my_url)
stays

A tibble: 3 x 2
admit discharge
<dttm> <dttm>

1 1981-12-10 22:00:00 1982-01-03 14:00:00
2 2014-03-07 14:00:00 2014-03-08 09:30:00
3 2016-08-31 21:00:00 2016-09-02 17:00:00

▶ and so it proves.

Subtracting the date-times

▶ In the obvious way, this gets us an answer:
stays %>% mutate(stay = discharge - admit)

A tibble: 3 x 3
admit discharge stay
<dttm> <dttm> <drtn>

1 1981-12-10 22:00:00 1982-01-03 14:00:00 568.0 hours
2 2014-03-07 14:00:00 2014-03-08 09:30:00 19.5 hours
3 2016-08-31 21:00:00 2016-09-02 17:00:00 44.0 hours

▶ Number of hours; hard to interpret.

Days

▶ Fractional number of days would be better:
stays %>%

mutate(
stay_days = as.period(admit %--% discharge) / days(1))

A tibble: 3 x 3
admit discharge stay_days
<dttm> <dttm> <dbl>

1 1981-12-10 22:00:00 1982-01-03 14:00:00 23.7
2 2014-03-07 14:00:00 2014-03-08 09:30:00 0.812
3 2016-08-31 21:00:00 2016-09-02 17:00:00 1.83

Completed days

▶ Pull out with day() etc, as for a date-time:
stays %>%

mutate(
stay = as.period(admit %--% discharge),
stay_days = day(stay),
stay_hours = hour(stay)
) %>%

select(starts_with("stay"))

A tibble: 3 x 3
stay stay_days stay_hours
<Period> <dbl> <dbl>

1 23d 16H 0M 0S 23 16
2 19H 30M 0S 0 19
3 1d 20H 0M 0S 1 20

Comments

▶ Date-times are stored internally as seconds-since-something,
so that subtracting two of them will give, internally, a number
of seconds.

▶ Just subtracting the date-times is displayed as a time (in units
that R chooses for us).

▶ Convert to fractional times via a “period”, then divide by
days(1), months(1) etc.

▶ These ideas useful for calculating time from a start point until
an event happens (in this case, a patient being discharged
from hospital).

