
Functions

Packages for this section

library(tidyverse)
library(broom) # some regression stuff later

Don’t repeat yourself
▶ See this:

a <- 50
b <- 11
d <- 3
as <- sqrt(a - 1)
as

[1] 7
bs <- sqrt(b - 1)
bs

[1] 3.162278
ds <- sqrt(d - 1)
ds

[1] 1.414214

What’s the problem?

▶ Same calculation done three different times, by copying,
pasting and editing.

▶ Dangerous: what if you forget to change something after you
pasted?

▶ Programming principle: “don’t repeat yourself”.
▶ Hadley Wickham: don’t copy-paste more than twice.
▶ Instead: write a function.

Anatomy of function

▶ Header line with function name and input value(s).
▶ Body with calculation of values to output/return.
▶ Return value: the output from function. In our case:

sqrt_minus_1 <- function(x) {
ans <- sqrt(x - 1)
return(ans)

}

or more simply (“the R way”, better style)
sqrt_minus_1 <- function(x) {
sqrt(x - 1)

}

If last line of function calculates value without saving it, that value
is returned.

About the input; testing
▶ The input to a function can be called anything. Here we

called it x. This is the name used inside the function.
▶ The function is a “machine” for calculating

square-root-minus-1. It doesn’t do anything until you call it:
sqrt_minus_1(50)

[1] 7
sqrt_minus_1(11)

[1] 3.162278
sqrt_minus_1(3)

[1] 1.414214
q <- 17
sqrt_minus_1(q)

[1] 4
sqrt_minus_1("text")

Error in x - 1: non-numeric argument to binary operator

▶ It works!

Vectorization 1/2

▶ We conceived our function to work on numbers:
sqrt_minus_1(3.25)

[1] 1.5

▶ but it actually works on vectors too, as a free bonus of R:
sqrt_minus_1(c(50, 11, 3))

[1] 7.000000 3.162278 1.414214

▶ or… (over)

Vectorization 2/2

▶ or even data frames:
d <- data.frame(x = 1:2, y = 3:4)
d

x y
1 1 3
2 2 4
sqrt_minus_1(d)

x y
1 0 1.414214
2 1 1.732051

More than one input
▶ Allow the value to be subtracted, before taking square root, to

be input to function as well, thus:
sqrt_minus_value <- function(x, d) {
sqrt(x - d)

}

▶ Call the function with the x and d inputs in the right order:
sqrt_minus_value(51, 2)

[1] 7

▶ or give the inputs names, in which case they can be in any
order:

sqrt_minus_value(d = 2, x = 51)

[1] 7
lm(y ~ x, data = d)

Call:
lm(formula = y ~ x, data = d)

Coefficients:
(Intercept) x

2 1

Defaults 1/2

▶ Many R functions have values that you can change if you
want to, but usually you don’t want to, for example:

x <- c(3, 4, 5, NA, 6, 7)
mean(x)

[1] NA
mean(x, na.rm = TRUE)

[1] 5

▶ By default, the mean of data with a missing value is missing,
but if you specify na.rm=TRUE, the missing values are
removed before the mean is calculated.

▶ That is, na.rm has a default value of FALSE: that’s what it
will be unless you change it.

Defaults 2/2

▶ In our function, set a default value for d like this:
sqrt_minus_value <- function(x, d = 1) {
sqrt(x - d)

}

▶ If you specify a value for d, it will be used. If you don’t, 1 will
be used instead:

sqrt_minus_value(51, 2)

[1] 7
sqrt_minus_value(51)

[1] 7.071068

Catching errors before they happen

▶ What happened here?
sqrt_minus_value(6, 8)

Warning in sqrt(x - d): NaNs produced

[1] NaN

▶ Message not helpful. Actually, function tried to take square
root of negative number.

▶ In fact, not even error, just warning.
▶ Check that the square root will be OK first. Here’s how:

sqrt_minus_value <- function(x, d = 1) {
stopifnot(x - d >= 0)
sqrt(x - d)

}

What happens with stopifnot

▶ This should be good, and is:
sqrt_minus_value(8, 6)

[1] 1.414214

▶ This should fail, and see how it does:
sqrt_minus_value(6, 8)

Error in sqrt_minus_value(6, 8): x - d >= 0 is not TRUE

▶ Where the function fails, we get informative error, but if
everything good, the stopifnot does nothing.

▶ stopifnot contains one or more logical conditions, and all of
them have to be true for function to work. So put in
everything that you want to be true.

Using R’s built-ins
▶ When you write a function, you can use anything built-in to R,

or even any functions that you defined before.
▶ For example, if you will be calculating a lot of regression-line

slopes, you don’t have to do this from scratch: you can use
R’s regression calculations, like this:

my_df <- data.frame(x = 1:4, y = c(10, 11, 10, 14))
my_df

x y
1 1 10
2 2 11
3 3 10
4 4 14
my_df.1 <- lm(y ~ x, data = my_df)
summary(my_df.1)

Call:
lm(formula = y ~ x, data = my_df)

Residuals:
1 2 3 4

0.4 0.3 -1.8 1.1

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.5000 1.8775 4.527 0.0455 *
x 1.1000 0.6856 1.605 0.2498

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.533 on 2 degrees of freedom
Multiple R-squared: 0.5628, Adjusted R-squared: 0.3442
F-statistic: 2.574 on 1 and 2 DF, p-value: 0.2498
tidy(my_df.1)

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 8.5 1.88 4.53 0.0455
2 x 1.1 0.686 1.60 0.250

Pulling out just the slope

Use pluck:
tidy(my_df.1) %>% pluck("estimate", 2)

[1] 1.1

Making this into a function

▶ First step: make sure you have it working without a function
(we do)

▶ Inputs: two, an x and a y.
▶ Output: just the slope, a number. Thus:

slope <- function(xx, yy) {
y.1 <- lm(yy ~ xx)
tidy(y.1) %>% pluck("estimate", 2)

}

▶ Check using our data from before: correct:
with(my_df, slope(x, y))

[1] 1.1

Passing things on

▶ lm has a lot of options, with defaults, that we might want to
change. Instead of intercepting all the possibilities and passing
them on, we can do this:

slope <- function(xx, yy, ...) {
y.1 <- lm(yy ~ xx, ...)
tidy(y.1) %>% pluck("estimate", 2)

}

▶ The ... in the header line means “accept any other input”,
and the ... in the lm line means “pass anything other than x
and y straight on to lm”.

Using ...

▶ One of the things lm will accept is a vector called subset
containing the list of observations to include in the regression.

▶ So we should be able to do this:
with(my_df, slope(x, y, subset = 3:4))

[1] 4

▶ Just uses the last two observations in x and y:
my_df %>% slice(3:4)

x y
1 3 10
2 4 14

▶ so the slope should be (14 − 10)/(4 − 3) = 4 and is.

Running a function for each of several inputs
▶ Suppose we have a data frame containing several different x’s

to use in regressions, along with the y we had before:
(d <- tibble(x1 = 1:4, x2 = c(8, 7, 6, 5), x3 = c(2, 4, 6, 9)))

A tibble: 4 x 3
x1 x2 x3

<int> <dbl> <dbl>
1 1 8 2
2 2 7 4
3 3 6 6
4 4 5 9

▶ Want to use these as different x’s for a regression with y from
my_df as the response, and collect together the three different
slopes.

▶ Python-like way: a for loop.
▶ R-like way: map_dbl: less coding, but more thinking.

The loop way

▶ “Pull out” column i of data frame d as d %>% pull(i).
▶ Create empty vector slopes to store the slopes.
▶ Looping variable i goes from 1 to 3 (3 columns, thus 3

slopes):
slopes <- numeric(3)
for (i in 1:3) {
d %>% pull(i) -> xx
slopes[i] <- slope(xx, my_df$y)

}
slopes

[1] 1.1000000 -1.1000000 0.5140187

▶ Check this by doing the three lms, one at a time.

The map_dbl way

▶ In words: for each of these (columns of d), run function
(slope) with inputs “it” and y), and collect together the
answers.

▶ Since slope returns a decimal number (a dbl), appropriate
function-running function is map_dbl:

map_dbl(d, \(d) slope(d, my_df$y))

x1 x2 x3
1.1000000 -1.1000000 0.5140187

▶ Same as loop, with a lot less coding.

Square roots

▶ “Find the square roots of each of the numbers 1 through 10”:
x <- 1:10
map_dbl(x, \(x) sqrt(x))

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
[9] 3.000000 3.162278

Summarizing all columns of a data frame, two ways

▶ use my d from above:
map_dbl(d, \(d) mean(d))

x1 x2 x3
2.50 6.50 5.25
d %>% summarize(across(everything(), \(x) mean(x)))

A tibble: 1 x 3
x1 x2 x3

<dbl> <dbl> <dbl>
1 2.5 6.5 5.25

The mean of each column, with the columns labelled.

What if summary returns more than one thing?

▶ For example, finding quartiles:
quartiles <- function(x) {
quantile(x, c(0.25, 0.75))

}
quartiles(1:5)

25% 75%
2 4

▶ When function returns more than one thing, map (or map_df)
instead of map_dbl.

map results

▶ Try:
map(d, \(d) quartiles(d))

$x1
25% 75%

1.75 3.25

$x2
25% 75%

5.75 7.25

$x3
25% 75%

3.50 6.75

▶ A list.

Or

▶ Better: pretend output from quartiles is one-column data
frame:

map_df(d, \(d) quartiles(d))

A tibble: 3 x 2
`25%` `75%`
<dbl> <dbl>

1 1.75 3.25
2 5.75 7.25
3 3.5 6.75

Or even

d %>% map_df(\(d) quartiles(d))

A tibble: 3 x 2
`25%` `75%`
<dbl> <dbl>

1 1.75 3.25
2 5.75 7.25
3 3.5 6.75

Comments

▶ This works because the implicit first thing in map is (the
columns of) the data frame that came out of the previous
step.

▶ These are 1st and 3rd quartiles of each column of d, according
to R’s default definition (see help for quantile).

Map in data frames with mutate
▶ map can also be used within data frames to calculate new

columns. Let’s do the square roots of 1 through 10 again:
d <- tibble(x = 1:10)
d %>% mutate(root = map_dbl(x, \(x) sqrt(x)))

A tibble: 10 x 2
x root

<int> <dbl>
1 1 1
2 2 1.41
3 3 1.73
4 4 2
5 5 2.24
6 6 2.45
7 7 2.65
8 8 2.83
9 9 3

10 10 3.16

Write a function first and then map it

▶ If the “for each” part is simple, go ahead and use
map_-whatever.

▶ If not, write a function to do the complicated thing first.
▶ Example: “half or triple plus one”: if the input is an even

number, halve it; if it is an odd number, multiply it by three
and add one.

▶ This is hard to do as a one-liner: first we have to figure out
whether the input is odd or even, and then we have to do the
right thing with it.

Odd or even?

▶ Odd or even? Work out the remainder when dividing by 2:
6 %% 2

[1] 0
5 %% 2

[1] 1

▶ 5 has remainder 1 so it is odd.

Write the function
▶ First test for integerness, then test for odd or even, and then

do the appropriate calculation:
hotpo <- function(x) {
stopifnot(round(x) == x) # passes if input an integer
remainder <- x %% 2
if (remainder == 1) { # odd number

ans <- 3 * x + 1
}
else { # even number

ans <- x %/% 2 # integer division
}
ans

}

x <- 4
ifelse((x %% 2) == 1, 3 * x + 1, x %/% 2)

[1] 2

Test it

hotpo(3)

[1] 10
hotpo(12)

[1] 6
hotpo(4.5)

Error in hotpo(4.5): round(x) == x is not TRUE

One through ten
▶ Use a data frame of numbers 1 through 10 again:

tibble(x = 1:10) %>% mutate(y = map_int(x, \(x) hotpo(x)))

A tibble: 10 x 2
x y

<int> <int>
1 1 4
2 2 1
3 3 10
4 4 2
5 5 16
6 6 3
7 7 22
8 8 4
9 9 28

10 10 5

Until I get to 1 (if I ever do)
▶ If I start from a number, find hotpo of it, then find hotpo of

that, and keep going, what happens?
▶ If I get to 4, 2, 1, 4, 2, 1 I’ll repeat for ever, so let’s stop when

we get to 1:
hotpo_seq <- function(x) {
ans <- x
while (x != 1) {

x <- hotpo(x)
ans <- c(ans, x)

}
ans

}

▶ Strategy: keep looping “while x is not 1”.
▶ Each new x: add to the end of ans. When I hit 1, I break out

of the while and return the whole ans.

Trying it 1/2

▶ Start at 6:
hotpo_seq(6)

[1] 6 3 10 5 16 8 4 2 1

Trying it 2/2

▶ Start at 27:
hotpo_seq(27)

[1] 27 82 41 124 62 31 94 47 142 71 214
[12] 107 322 161 484 242 121 364 182 91 274 137
[23] 412 206 103 310 155 466 233 700 350 175 526
[34] 263 790 395 1186 593 1780 890 445 1336 668 334
[45] 167 502 251 754 377 1132 566 283 850 425 1276
[56] 638 319 958 479 1438 719 2158 1079 3238 1619 4858
[67] 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077
[78] 9232 4616 2308 1154 577 1732 866 433 1300 650 325
[89] 976 488 244 122 61 184 92 46 23 70 35

[100] 106 53 160 80 40 20 10 5 16 8 4
[111] 2 1

Which starting points have the longest sequences?

▶ The length of the vector returned from hotpo_seq says how
long it took to get to 1.

▶ Out of the starting points 1 to 100, which one has the longest
sequence?

Top 10 longest sequences
tibble(start = 1:100) %>%
mutate(seq_length = map_int(

start, \(start) length(hotpo_seq(start)))) %>%
slice_max(seq_length, n = 10)

A tibble: 10 x 2
start seq_length
<int> <int>

1 97 119
2 73 116
3 54 113
4 55 113
5 27 112
6 82 111
7 83 111
8 41 110
9 62 108

10 63 108

▶ 27 is an unusually low starting point to have such a long
sequence.

What happens if we save the entire sequence?

tibble(start = 1:7) %>%
mutate(sequence = map(start, \(start) hotpo_seq(start)))

A tibble: 7 x 2
start sequence
<int> <list>

1 1 <int [1]>
2 2 <dbl [2]>
3 3 <dbl [8]>
4 4 <dbl [3]>
5 5 <dbl [6]>
6 6 <dbl [9]>
7 7 <dbl [17]>

▶ Each entry in sequence is itself a vector. sequence is a
“list-column”.

Using the whole sequence to find its length and its max
tibble(start = 1:7) %>%
mutate(sequence = map(start, \(start) hotpo_seq(start))) %>%
mutate(

seq_length = map_int(sequence, \(sequence) length(sequence)),
seq_max = map_int(sequence, \(sequence) max(sequence))

)

A tibble: 7 x 4
start sequence seq_length seq_max
<int> <list> <int> <int>

1 1 <int [1]> 1 1
2 2 <dbl [2]> 2 2
3 3 <dbl [8]> 8 16
4 4 <dbl [3]> 3 4
5 5 <dbl [6]> 6 16
6 6 <dbl [9]> 9 16
7 7 <dbl [17]> 17 52

Does it work with rowwise?
tibble(start=1:7) %>%
rowwise() %>%
mutate(sequence = list(hotpo_seq(start))) %>%
mutate(seq_length = length(sequence)) %>%
mutate(seq_max = max(sequence))

A tibble: 7 x 4
Rowwise:

start sequence seq_length seq_max
<int> <list> <int> <dbl>

1 1 <int [1]> 1 1
2 2 <dbl [2]> 2 2
3 3 <dbl [8]> 8 16
4 4 <dbl [3]> 3 4
5 5 <dbl [6]> 6 16
6 6 <dbl [9]> 9 16
7 7 <dbl [17]> 17 52

It does.

Final thoughts on this

▶ Called the Collatz conjecture.
▶ Nobody knows whether the sequence always gets to 1.
▶ Nobody has found an 𝑛 for which it doesn’t.
▶ A tree.

https://www.jasondavies.com/collatz-graph/

