Statistical inference: one and two-sample t-tests



Statistical Inference and Science

P> Previously: descriptive statistics. “Here are data; what do
they say?".

P May need to take some action based on information in data.

P Or want to generalize beyond data (sample) to larger world
(population).

P> Science: first guess about how world works.

P Then collect data, by sampling.

P> Is guess correct (based on data) for whole world, or not?



Sample data are imperfect

P Sample data never entirely represent what you're observing.

P There is always random error present.

P Thus you can never be entirely certain about your conclusions.

P The Toronto Blue Jays' average home attendance in part of
2015 season was 25,070 (up to May 27 2015, from
baseball-reference.com).

P Does that mean the attendance at every game was exactly
25,0707 Certainly not. Actual attendance depends on many
things, eg.:

P how well the Jays are playing
P the opposition

P day of week

P weather

P random chance



Packages for this section

library(tidyverse)



Reading the attendances
..as a .csv file:
my_url <- "http://ritsokiguess.site/datafiles/jaysl5-home.
jays <- read_csv(my_url)
jays

# A tibble: 25 x 21
row game date box team venue opp result runs
<dbl> <dbl> <chr> <chr> <chr> <lgl> <chr> <chr> <dbl>

1 82 7 Monda~ boxs~ TOR NA TBR L 1
2 83 8 Tuesd~ boxs~ TOR NA TBR L 2
3 84 9 Wedne~ boxs~ TOR NA TBR W 12
4 85 10 Thurs~ boxs~ TOR NA TBR L 2
5 86 11 Frida~ boxs~ TOR NA ATL L 7
6 87 12 Satur~ boxs~ TOR NA ATL W-wo 6
7 88 13 Sunda~ boxs~ TOR NA ATL L 2
8 89 14 Tuesd~ boxs~ TOR NA BAL W 13
9 90 15 Wedne~ boxs~ TOR NA BAL W 4
10 91 16 Thurs~ boxs~ TOR NA BAL W 7



Another way
P This is a big data set: only 25 observations, but a lot of

glimpse (jays)

variables.

P To see the first few values in all the variables, can also use

glimpse:
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Attendance histogram

ggplot(jays, aes(x = attendance)) + geom_histogram(bins = ¢
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Comments

P> Attendances have substantial variability, ranging from just
over 10,000 to around 50,000.

P Distribution somewhat skewed to right (but no outliers).

P> These are a sample of “all possible games” (or maybe “all
possible games played in April and May”). What can we say
about mean attendance in all possible games based on this
evidence?

P Think about:

P Confidence interval
P Hypothesis test.



Getting Cl for mean attendance

P t.test function does Cl and test. Look at Cl first:

t.test(jays$attendance)

One Sample t-test

data: jays$attendance
t = 11.389, df = 24, p-value = 3.661e-11
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

20526.82 29613.50

sample estimates:
mean of x

25070.16

» From 20,500 to 29,600.



Or, 90% ClI

P by including a value for conf.level:

t.test(jays$attendance, conf.level = 0.90)

One Sample t-test

data: jays$attendance

t = 11.389, df = 24, p-value = 3.661e-11
alternative hypothesis: true mean is not equal to O
90 percent confidence interval:

21303.93 28836.39

sample estimates:
mean of x

25070.16

P From 21,300 to 28,800. (Shorter, as it should be.)



Comments

vvyvy Vv

Need to say “column attendance within data frame jays"
using $.
95% ClI from about 20,000 to about 30,000.
Not estimating mean attendance well at all!
Generally want confidence interval to be shorter, which
happens if:

P SD smaller

P sample size bigger

P confidence level smaller
Last one is a cheat, really, since reducing confidence level
increases chance that interval won't contain pop. mean at all!



Another way to access data frame columns

with(jays, t.test(attendance))

One Sample t-test

data: attendance

t = 11.389, df = 24, p-value = 3.661e-11
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

20526.82 29613.50

sample estimates:
mean of x

25070.16



Hypothesis test

P Cl answers question “what is the mean?”

P Might have a value x4 in mind for the mean, and question “Is
the mean equal to p, or not?”

P For example, 2014 average attendance was 29,327.

P “Is the mean this?” answered by hypothesis test.

P Value being assessed goes in null hypothesis: here,

Hy: = 29327.

P Alternative hypothesis says how null might be wrong, eg.
H, :u+#+ 29327.

P> Assess evidence against null. If that evidence strong enough,
reject null hypothesis; if not, fail to reject null hypothesis
(sometimes retain null).

P Note asymmetry between null and alternative, and utter
absence of word “accept”.



« and errors
P Hypothesis test ends with decision:

P reject null hypothesis
P do not reject null hypothesis.

P but decision may be wrong:

Decision
Truth Do not reject reject null
Null true Correct Type | error
Null false Type Il error Correct

P> Either type of error is bad, but for now focus on controlling
Type | error: write « = P(type | error), and devise test so
that a small, typically 0.05.

P That is, if null hypothesis true, have only small chance to
reject it (which would be a mistake).

P Worry about type Il errors later (when we consider power of
test).



Why 0.057 This man.

analysis of variance

Fisher information

Linear discriminant analysis
Fisher's z-transformation
Fisher-Yates shuffle
Behrens-Fisher problem

Sir Ronald A. Fisher, 1890-1962.
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Why 0.057 (2)
P From The Arrangement of Field Experiments (1926):

the line at about the level at wl
there is something in the treatm
oceurred such as does not oceur
trials.” This level, which we may
would be indicated, though very
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If one in twenty does not seem
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Three steps:

P from data to test statistic
P how far are data from null hypothesis
P> from test statistic to P-value
P how likely are you to see “data like this” if the null
hypothesis is true
P from P-value to decision
P reject null hypothesis if P-value small enough, fail to reject it
otherwise



Using t.test:

t.test(jays$attendance, mu=29327)

One Sample t-test

data: jays$attendance
t = -1.9338, df = 24, p-value = 0.06502
alternative hypothesis: true mean is not equal to 29327
95 percent confidence interval:
20526.82 29613.50
sample estimates:
mean of x
25070.16

P> See test statistic —1.93, P-value 0.065.
P Do not reject null at & = 0.05: no evidence that mean
attendance has changed.



Assumptions

P> Theory for t-test: assumes normally-distributed data.

P What actually matters is sampling distribution of sample
mean: if this is approximately normal, t-test is OK, even if
data distribution is not normal.

P Central limit theorem: if sample size large, sampling
distribution approx. normal even if data distribution
somewhat non-normal.

P> So look at shape of data distribution, and make a call about
whether it is normal enough, given the sample size.



Blue Jays attendances again:

P You might say that this is not normal enough for a sample
size of n = 25, in which case you don't trust the t-test result:

ggplot(jays, aes(x = attendance)) + geom_histogram(bins = ¢
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Another example: learning to read

P You devised new method for teaching children to read.

P Guess it will be more effective than current methods.

P To support this guess, collect data.

P Want to generalize to “all children in Canada”.

P So take random sample of all children in Canada.

P Or, argue that sample you actually have is “typical” of all
children in Canada.

P Randomization (1): whether or not a child in sample or not
has nothing to do with anything else about that child.

P Randomization (2): randomly choose whether each child gets
new reading method (t) or standard one (c).



Reading in data

P File at http://ritsokiguess.site/datafiles/drp.txt.
P Proper reading-in function is read_delim (check file to see)
P Read in thus:

my_url <- "http://ritsokiguess.site/datafiles/drp.txt"
kids <- read_delim(my_url," ")


http://ritsokiguess.site/datafiles/drp.txt

The data
kids

# A tibble: 44 x 2
group score
<chr> <dbl>

t 24
61
59
46
43
44
52
43
58
67

# i 34 more rows

© 0 N O O W N -
ct ct c o o o o
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o

In group, t is “treatment” (the new reading method) and c is
“control” (the old one).



Boxplots

ggplot(kids, aes(x = group, y = score)) + geom_boxplot()
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Two kinds of two-sample t-test

P pooled (derived in B57): t = Ty —Ty

(ny—1)s2+(n 71)55)\/(1/”1)4_(1/”2),
P where 57 = o ne o0
NiTNg— B _
P Welch-Satterthwaite: t = L1 %o

\/81/na+s3/n,
P> this ¢ does not have exact t-distribution, but is approx ¢ with
non-integer df.



Two kinds of two-sample t-test

P Do the two groups have same spread (SD, variance)?
P If yes (shaky assumption here), can use pooled t-test.
P If not, use Welch-Satterthwaite t-test (safe).

P Pooled test derived in STAB57 (easier to derive).

P> Welch-Satterthwaite is test used in STAB22 and is generally
safe.

P> Assess (approx) equality of spreads using boxplot.



The (Welch-Satterthwaite) t-test

P c (control) before t (treatment) alphabetically, so proper
alternative is “less”.

P R does Welch-Satterthwaite test by default

P> Answer to “does the new reading program really help?”

P (in a moment) how to get R to do pooled test?



Welch-Satterthwaite

t.test(score ~ group, data = kids, alternative = "less")

Welch Two Sample t-test

data: score by group
t = -2.3109, df = 37.855, p-value = 0.01319
alternative hypothesis: true difference in means between g:
95 percent confidence interval:
-Inf -2.691293
sample estimates:
mean in group ¢ mean in group t
41.52174 51.47619



The pooled t-test

t.test(score ~ group, data = kids,
alternative = "less", var.equal = TRUE)

Two Sample t-test

data: score by group
t = -2.2666, df = 42, p-value = 0.01431
alternative hypothesis: true difference in means between g
95 percent confidence interval:
-Inf -2.567497
sample estimates:
mean in group ¢ mean in group t
41.52174 51.47619



Two-sided test: Cl

P To do 2-sided test, leave out alternative:

t.test(score ~ group, data = kids)

Welch Two Sample t-test

data: score by group
t = -2.3109, df = 37.855, p-value = 0.02638
alternative hypothesis: true difference in means between g
95 percent confidence interval:
-18.67588 -1.23302
sample estimates:
mean in group ¢ mean in group t
41.52174 51.47619



Comments:

P> P-values for pooled and Welch-Satterthwaite tests very similar
(even though the pooled test seemed inferior): 0.013
vs. 0.014.

P Two-sided test also gives Cl: new reading program increases
average scores by somewhere between about 1 and 19 points.

P Confidence intervals inherently two-sided, so do 2-sided test
to get them.



Jargon for testing

>
>
>
>
>
>
>

Alternative hypothesis: what we are trying to prove (new
reading program is effective).

Null hypothesis: “there is no difference” (new reading program
no better than current program). Must contain “equals”.
One-sided alternative: trying to prove better (as with reading
program).

Two-sided alternative: trying to prove different.

Test statistic: something expressing difference between data
and null (eg. difference in sample means, t statistic).
P-value: probability of observing test statistic value as
extreme or more extreme, if null is true.

Decision: either reject null hypothesis or do not reject null
hypothesis. Never “accept”.



Logic of testing

P Work out what would happen if null hypothesis were true.
P Compare to what actually did happen.
P> If these are too far apart, conclude that null hypothesis is not
true after all. (Be guided by P-value.)
P> As applied to our reading programs:
P> If reading programs equally good, expect to see a difference in
means close to 0.
P Mean reading score was 10 higher for new program.
P Difference of 10 was unusually big (P-value small from t-test).
So conclude that new reading program is effective.
P Nothing here about what happens if null hypothesis is false.
This is power and type Il error probability.



