The sign test

Packages

library(tidyverse)
 library(smmr)

smmr is new. See later how to install it.

Duality between confidence intervals and hypothesis tests

$>$ Tests and Cls really do the same thing, if you look at them the right way. They are both telling you something about a parameter, and they use same things about data.

- To illustrate, some data (two groups):
my_url <- "http://ritsokiguess.site/datafiles/duality.txt"
twogroups <- read_delim(my_url," ")

The data
twogroups
\# A tibble: 15 x 2
y group
<dbl> <dbl>

1	10	1
2	11	1
3	11	1
4	13	1
5	13	1

6141

7	14	1
8	15	1

9	16	1
10	13	2
11	13	2
12	14	2
13	17	2
11	10	0

95\% CI (default)

for difference in means, group 1 minus group 2:
t.test(y ~ group, data = twogroups)

Welch Two Sample t-test
data: y by group
t $=-2.0937, \mathrm{df}=8.7104, \mathrm{p}$-value $=0.0668$
alternative hypothesis: true difference in means between g
95 percent confidence interval:
-5.5625675 0.2292342
sample estimates:
mean in group 1 mean in group 2
$13.00000 \quad 15.66667$

$90 \% \mathrm{Cl}$

t.test(y ~ group, data = twogroups, conf.level = 0.90)
Welch Two Sample t-test
data: y by group
t $=-2.0937, \mathrm{df}=8.7104, \mathrm{p}$-value $=0.0668$
alternative hypothesis: true difference in means between g 90 percent confidence interval:
-5.010308-0.323025
sample estimates:
mean in group 1 mean in group 2
$13.00000 \quad 15.66667$

Hypothesis test

Null is that difference in means is zero:

```
t.test(y ~ group, mu=0, data = twogroups)
```

Welch Two Sample t-test
data: y by group
t $=-2.0937, \mathrm{df}=8.7104, \mathrm{p}$-value $=0.0668$
alternative hypothesis: true difference in means between g^{\prime}
95 percent confidence interval:
-5.5625675 0.2292342
sample estimates:
mean in group 1 mean in group 2
$13.00000 \quad 15.66667$

Comparing results

Recall null here is $H_{0}: \mu_{1}-\mu_{2}=0$. P-value 0.0668 .
$-95 \% \mathrm{Cl}$ from -5.6 to 0.2 , contains 0 .
$-90 \% \mathrm{Cl}$ from -5.0 to -0.3 , does not contain 0 .

- At $\alpha=0.05$, would not reject H_{0} since P -value >0.05.
$>$ At $\alpha=0.10$, would reject H_{0} since P -value <0.10.

Test and Cl

Not just coincidence. Let $C=100(1-\alpha)$, so C \% gives corresponding Cl to level- α test. Then following always true. (Symbol \Longleftrightarrow means "if and only if".)

Test decision		Confidence interval
Reject H_{0} at level α	\Longleftrightarrow	$C \% \mathrm{Cl}$ does not contain H_{0} value
Do not reject H_{0} at	\Longleftrightarrow	$C \% \mathrm{Cl}$ contains H_{0} value
level α		

Idea: "Plausible" parameter value inside Cl , not rejected; "Implausible" parameter value outside Cl , rejected.

The value of this

- If you have a test procedure but no corresponding Cl :
$>$ you make a Cl by including all the parameter values that would not be rejected by your test.
- Use:
- $\alpha=0.01$ for a $99 \% \mathrm{CI}$,
- $\alpha=0.05$ for a $95 \% \mathrm{Cl}$,
- $\alpha=0.10$ for a $90 \% \mathrm{Cl}$, and so on.

Testing for non-normal data

- The IRS ("Internal Revenue Service") is the US authority that deals with taxes (like Revenue Canada).
$>$ One of their forms is supposed to take no more than 160 minutes to complete. A citizen's organization claims that it takes people longer than that on average.
- Sample of 30 people; time to complete form recorded.
- Read in data, and do t-test of $H_{0}: \mu=160 \mathrm{vs}$. $H_{a}: \mu>160$.
- For reading in, there is only one column, so can pretend it is delimited by anything.

Read in data

```
my_url <- "http://ritsokiguess.site/datafiles/irs.txt"
irs <- read_csv(my_url)
irs
# A tibble: 30 x 1
        Time
        <dbl>
    1 91
    264
    3 243
    4 167
    5 123
    65
    7 71
    8 204
    9 110
10 178
# i 20 more rows
```


Test whether mean is 160 or greater

```
with(irs, t.test(Time, mu = 160,
    alternative = "greater"))
```

One Sample t-test
data: Time
$\mathrm{t}=1.8244, \mathrm{df}=29$, p -value $=0.03921$
alternative hypothesis: true mean is greater than 160
95 percent confidence interval:
162.8305 Inf
sample estimates:
mean of x
201.2333

Reject null; mean (for all people to complete form) greater than 160.

But, look at a graph

```
ggplot(irs, aes(x = Time)) + geom_histogram(bins = 6)
```


Comments

$>$ Skewed to right.

- Should look at median, not mean.

The sign test

But how to test whether the median is greater than 160 ?
$>$ Idea: if the median really is 160 (H_{0} true), the sampled values from the population are equally likely to be above or below 160.
$>$ If the population median is greater than 160 , there will be a lot of sample values greater than 160, not so many less. Idea: test statistic is number of sample values greater than hypothesized median.

Getting a P-value for sign test $1 / 3$

- How to decide whether "unusually many" sample values are greater than 160 ? Need a sampling distribution.
- If H_{0} true, pop. median is 160 , then each sample value independently equally likely to be above or below 160 .
- So number of observed values above 160 has binomial distribution with $n=30$ (number of data values) and $p=0.5$ (160 is hypothesized to be median).

Getting P-value for sign test $2 / 3$

- Count values above/below 160:
irs \% \% \% count(Time > 160)
\# A tibble: 2 x 2
`Time > 160` n
<lgl> <int>
1 FALSE 13
2 TRUE 17
>17 above, 13 below. How unusual is that? Need a binomial table.

Getting P-value for sign test $3 / 3$

\rightarrow R function dbinom gives the probability of eg. exactly 17 successes in a binomial with $n=30$ and $p=0.5$:

```
dbinom(17, 30, 0.5)
```

[1] 0.1115351
b but we want probability of 17 or more, so get all of those, find probability of each, and add them up:

```
tibble(x=17:30) %>%
    mutate(prob=dbinom(x, 30, 0.5)) %>%
    summarize(total=sum(prob))
```

\# A tibble: 1×1
total
<dbl>
10.292
or

Using my package smmr

- I wrote a package smmr to do the sign test (and some other things). Installation is a bit fiddly:
- Install devtools (once) with
install.packages("devtools")
then install smmr using devtools (once):
library (devtools)
install_github("nxskok/smmr")
- Then load it:
library (smmr)

smmr for sign test

- smmr's function sign_test needs three inputs: a data frame, a column and a null median:

```
$above_below
below above
    13 17
```

sign_test(irs, Time, 160)
\$p_values
alternative p_value
1
2 upper 0.2923324
3 two-sided 0.5846647

Comments $(1 / 3)$

- Testing whether population median greater than 160 , so want upper-tail P-value 0.2923. Same as before.
- Also get table of values above and below; this too as we got.

Comments (2/3)

- P -values are:

Test	P -value
t	0.0392
Sign	0.2923

These are very different: we reject a mean of 160 (in favour of the mean being bigger), but clearly fail to reject a median of 160 in favour of a bigger one.
$>$ Why is that? Obtain mean and median:

```
irs %>% summarize(mean_time = mean(Time),
    median_time = median(Time))
```

\# A tibble: 1 x 2
mean_time median_time
<dbl> <dbl>
$1 \quad 201 . \quad 172$.

Comments (3/3)

- The mean is pulled a long way up by the right skew, and is a fair bit bigger than 160 .
- The median is quite close to 160 .
$>$ We ought to be trusting the sign test and not the t-test here (median and not mean), and therefore there is no evidence that the "typical" time to complete the form is longer than 160 minutes.
- Having said that, there are clearly some people who take a lot longer than 160 minutes to complete the form, and the IRS could focus on simplifying its form for these people.
- In this example, looking at any kind of average is not really helpful; a better question might be "do an unacceptably large fraction of people take longer than (say) 300 minutes to complete the form?": that is, thinking about worst-case rather than average-case.

Confidence interval for the median

- The sign test does not naturally come with a confidence interval for the median.
- So we use the "duality" between test and confidence interval to say: the (95%) confidence interval for the median contains exactly those values of the null median that would not be rejected by the two-sided sign test (at $\alpha=0.05$).

For our data

- The procedure is to try some values for the null median and see which ones are inside and which outside our Cl .
$>$ smmr has pval_sign that gets just the 2-sided P-value:
pval_sign(160, irs, Time)
[1] 0.5846647
- Try a couple of null medians:
pval_sign(200, irs, Time)
[1] 0.3615946
pval_sign(300, irs, Time)
[1] 0.001430906
- So 200 inside the $95 \% \mathrm{Cl}$ and 300 outside.

Doing a whole bunch

- Choose our null medians first:
(d <- tibble(null_median=seq $(100,300,20)$)
\# A tibble: 11 x 1
null_median <dbl>
$\begin{array}{ll}1 & 100 \\ 2 & 120\end{array}$
3140
4160
$5 \quad 180$
$6 \quad 200$
$7 \quad 220$
$8 \quad 240$
$9 \quad 260$
10280
11300

... and then

"for each null median, run the function pval_sign for that null median and get the P-value":

```
d %>% rowwise() %>%
mutate(p_value = pval_sign(null_median, irs, Time))
```

\# A tibble: 11 x 2
\# Rowwise:
\(\left.\begin{array}{rl}null_median \& p_value

<dbl> \& <dbl>\end{array}\right\}\)| 100 | 0.000325 |
| ---: | :--- |
| 120 | 0.0987 |
| 140 | 0.200 |
| 160 | 0.585 |
| 180 | 0.856 |
| 200 | 0.362 |
| 220 | 0.0428 |
| 240 | 0.0161 |
| 260 | 0.00522 |

Make it easier for ourselves

d \% \% \% rowwise() \% \% \%
mutate(p_value = pval_sign(null_median, irs, Time)) \%>\%
mutate(in_out = ifelse(p_value > 0.05, "inside", "outside
\# A tibble: 11 x 3
\# Rowwise:
\(\left.\begin{array}{rll}null_median \& p_value \& in_out

<dbl>\end{array} $$
\begin{array}{rll}\text { <dbl> } & \text { <chr> }\end{array}
$$\right]\)| 100 | 0.000325 | outside |
| ---: | :--- | :--- |
| 120 | 0.0987 | inside |
| 140 | 0.200 | inside |
| 160 | 0.585 | inside |
| 180 | 0.856 | inside |
| 200 | 0.362 | inside |
| 220 | 0.0428 | outside |
| 240 | 0.0161 | outside |
| 260 | 0.00522 | outside |
| 280 | 0.00143 | outside |

confidence interval for median?

- $95 \% \mathrm{Cl}$ to this accuracy from 120 to 200.
- Can get it more accurately by looking more closely in intervals from 100 to 120 , and from 200 to 220.

A more efficient way: bisection

- Know that top end of Cl between 200 and 220:
lo <- 200
hi <- 220
- Try the value halfway between: is it inside or outside?
try <- (lo + hi) / 2
try
[1] 210
pval_sign(try,irs,Time)
[1] 0.09873715
- Inside, so upper end is between 210 and 220. Repeat (over):
... bisection continued

```
lo <- try
try <- (lo + hi) / 2
try
```

[1] 215
pval_sign(try, irs, Time)
[1] 0.06142835

- 215 is inside too, so upper end between 215 and 220.
- Continue until have as accurate a result as you want.

Bisection automatically

\rightarrow A loop, but not a for since we don't know how many times we're going around. Keep going while a condition is true:

```
lo = 200
hi = 220
while (hi - lo > 1) {
    try = (hi + lo) / 2
    ptry = pval_sign(try, irs, Time)
    print(c(try, ptry))
    if (ptry <= 0.05)
        hi = try
    else
        lo = try
}
```


The output from this loop

| [1] 210.00000000 | 0.09873715 |
| :--- | :--- | :--- |
| [1] 215.00000000 | 0.06142835 |
| [1] 217.50000000 | 0.04277395 |
| [1] 216.25000000 | 0.04277395 |
| [1] 215.62500000 | 0.04277395 |

> 215 inside, 215.625 outside. Upper end of interval to this accuracy is 215 .

Using smmr

$>$ smmr has function ci_median that does this (by default 95\% CI):
ci_median(irs, Time)
[1] 119.0065214 .9955

- Uses a more accurate bisection than we did.
- Or get, say, $90 \% \mathrm{Cl}$ for median:
ci_median(irs, Time, conf.level=0.90)
[1] 123.0031208 .9960
- $90 \% \mathrm{Cl}$ is shorter, as it should be.

Bootstrap

$>$ but, was the sample size (30) big enough to overcome the skewness?

- Bootstrap, again:

```
tibble(sim = 1:1000) %>%
    rowwise() %>%
    mutate(my_sample = list(sample(irs$Time, replace = TRUE))
    mutate(my_mean = mean(my_sample)) %>%
    ggplot(aes(x=my_mean)) + geom_histogram(bins=10) -> g
```


The sampling distribution

g

Comments

- A little skewed to right, but not nearly as much as I was expecting.
- The t-test for the mean might actually be OK for these data, if the mean is what you want.
- In actual data, mean and median very different; we chose to make inference about the median.
$>$ Thus for us it was right to use the sign test.

