The sign test

Packages

library(tidyverse)
library(smmr)

smmr is new. See later how to install it.

Duality between confidence intervals and hypothesis tests

- Tests and CIs really do the same thing, if you look at them the right way. They are both telling you something about a parameter, and they use same things about data.
- To illustrate, some data (two groups):

my_url <- "http://ritsokiguess.site/datafiles/duality.txt"
twogroups <- read_delim(my_url," ")</pre>

The data twogroups

#	A	tibbl	Le:	15	x	2
		У	gro	oup		
		<dbl></dbl>	<dł< td=""><td>>1></td><td></td><td></td></dł<>	>1>		
1	1	10		1		
2	2	11		1		
3	3	11		1		
4	1	13		1		
Ę	5	13		1		
6	5	14		1		
7	7	14		1		
ξ	3	15		1		
g	9	16		1		
1()	13		2		
11	1	13		2		
12	2	14		2		
13	3	17		2		
1/	1	10		0		

95% CI (default)

for difference in means, group 1 minus group 2:

```
t.test(y ~ group, data = twogroups)
```

```
Welch Two Sample t-test
```

```
data: y by group
t = -2.0937, df = 8.7104, p-value = 0.0668
alternative hypothesis: true difference in means between gr
95 percent confidence interval:
-5.5625675 0.2292342
sample estimates:
mean in group 1 mean in group 2
13.00000 15.66667
```

t.test(y ~ group, data = twogroups, conf.level = 0.90)

```
Welch Two Sample t-test
```

```
data: y by group
t = -2.0937, df = 8.7104, p-value = 0.0668
alternative hypothesis: true difference in means between g:
90 percent confidence interval:
-5.010308 -0.323025
sample estimates:
mean in group 1 mean in group 2
13.00000 15.66667
```

Hypothesis test

Null is that difference in means is zero:

```
t.test(y ~ group, mu=0, data = twogroups)
```

```
Welch Two Sample t-test
```

```
data: y by group
t = -2.0937, df = 8.7104, p-value = 0.0668
alternative hypothesis: true difference in means between gr
95 percent confidence interval:
-5.5625675 0.2292342
sample estimates:
mean in group 1 mean in group 2
13.00000 15.66667
```

Recall null here is $H_0: \mu_1 - \mu_2 = 0$. P-value 0.0668.

> 95% CI from
$$-5.6$$
 to 0.2 , contains 0.

- > 90% CI from -5.0 to -0.3, does not contain 0.
- At $\alpha = 0.05$, would not reject H_0 since P-value > 0.05.
- At $\alpha = 0.10$, would reject H_0 since P-value < 0.10.

Test and CI

Not just coincidence. Let $C = 100(1 - \alpha)$, so C% gives corresponding CI to level- α test. Then following always true. (Symbol \iff means "if and only if".)

Test decision		Confidence interval
Reject H_0 at level α	\Leftrightarrow	$C\%$ Cl does not contain H_0 value
Do not reject H_0 at level α	\Leftrightarrow	$C\%$ CI contains H_0 value

Idea: "Plausible" parameter value inside CI, not rejected; "Implausible" parameter value outside CI, rejected.

The value of this

- If you have a test procedure but no corresponding CI:
- you make a CI by including all the parameter values that would not be rejected by your test.
- Use:
 - $\triangleright \alpha = 0.01$ for a 99% CI,
 - $\triangleright \alpha = 0.05$ for a 95% CI,
 - $\triangleright \alpha = 0.10$ for a 90% CI, and so on.

Testing for non-normal data

- The IRS ("Internal Revenue Service") is the US authority that deals with taxes (like Revenue Canada).
- One of their forms is supposed to take no more than 160 minutes to complete. A citizen's organization claims that it takes people longer than that on average.
- Sample of 30 people; time to complete form recorded.
- Read in data, and do t-test of $H_0: \mu = 160$ vs.
 - $H_a: \mu > 160.$
- For reading in, there is only one column, so can pretend it is delimited by anything.

Read in data

my_url <- "http://ritsokiguess.site/datafiles/irs.txt"
irs <- read_csv(my_url)
irs</pre>

A tibble: 30 x 1

Time

<dbl>

- 1 91
- 2 64
- 3 243
- 4 167
- 5 123
- 6 65
- 7 71

8 204

9 110

10 178

i 20 more rows

Test whether mean is 160 or greater

```
One Sample t-test
```

```
data: Time
t = 1.8244, df = 29, p-value = 0.03921
alternative hypothesis: true mean is greater than 160
95 percent confidence interval:
162.8305 Inf
sample estimates:
mean of x
201.2333
```

Reject null; mean (for all people to complete form) greater than 160.

But, look at a graph

ggplot(irs, aes(x = Time)) + geom_histogram(bins = 6)

Comments

Should look at *median*, not mean.

The sign test

- But how to test whether the median is greater than 160?
- Idea: if the median really is 160 (H₀ true), the sampled values from the population are equally likely to be above or below 160.
- If the population median is greater than 160, there will be a lot of sample values greater than 160, not so many less. Idea: test statistic is number of sample values greater than hypothesized median.

Getting a P-value for sign test 1/3

- How to decide whether "unusually many" sample values are greater than 160? Need a sampling distribution.
- If H₀ true, pop. median is 160, then each sample value independently equally likely to be above or below 160.
- So number of observed values above 160 has binomial distribution with n = 30 (number of data values) and p = 0.5 (160 is hypothesized to be *median*).

Getting P-value for sign test 2/3

Count values above/below 160:

irs %>% count(Time > 160)

A tibble: 2×2 Time > 160n <lgl> <int> 1 FALSE 13 2 TRUE 17

17 above, 13 below. How unusual is that? Need a binomial table.

Getting P-value for sign test 3/3

R function dbinom gives the probability of eg. exactly 17 successes in a binomial with n = 30 and p = 0.5:

```
dbinom(17, 30, 0.5)
```

[1] 0.1115351

but we want probability of 17 or more, so get all of those, find probability of each, and add them up:

```
tibble(x=17:30) %>%
  mutate(prob=dbinom(x, 30, 0.5)) %>%
  summarize(total=sum(prob))
```

```
# A tibble: 1 x 1
   total
   <dbl>
4 0.000
```

```
1 0.292
```

or

(17, 20, 0, 1) (17, 20, 0, 1)

Using my package smmr

I wrote a package smmr to do the sign test (and some other things). Installation is a bit fiddly:

Install devtools (once) with

install.packages("devtools")

then install smmr using devtools (once):

library(devtools)
install_github("nxskok/smmr")

Then load it:

library(smmr)

smmr for sign test

smmr's function sign_test needs three inputs: a data frame, a column and a null median:

sign_test(irs, Time, 160)

\$above_below
below above

13 17

\$p_values
 alternative p_value
1 lower 0.8192027
2 upper 0.2923324
3 two-sided 0.5846647

Comments (1/3)

- Testing whether population median greater than 160, so want upper-tail P-value 0.2923. Same as before.
- Also get table of values above and below; this too as we got.

Test	P-value
t	0.0392
Sign	0.2923

These are very different: we reject a mean of 160 (in favour of the mean being bigger), but clearly *fail* to reject a median of 160 in favour of a bigger one.

Comments (3/3)

- The mean is pulled a long way up by the right skew, and is a fair bit bigger than 160.
- The median is quite close to 160.
- We ought to be trusting the sign test and not the t-test here (median and not mean), and therefore there is no evidence that the "typical" time to complete the form is longer than 160 minutes.
- Having said that, there are clearly some people who take a lot longer than 160 minutes to complete the form, and the IRS could focus on simplifying its form for these people.
- In this example, looking at any kind of average is not really helpful; a better question might be "do an unacceptably large fraction of people take longer than (say) 300 minutes to complete the form?": that is, thinking about worst-case rather than average-case.

Confidence interval for the median

- The sign test does not naturally come with a confidence interval for the median.
- So we use the "duality" between test and confidence interval to say: the (95%) confidence interval for the median contains exactly those values of the null median that would not be rejected by the two-sided sign test (at α = 0.05).

For our data

The procedure is to try some values for the null median and see which ones are inside and which outside our CI.

```
smmr has pval_sign that gets just the 2-sided P-value:
```

```
pval_sign(160, irs, Time)
```

[1] 0.5846647

Try a couple of null medians:

pval_sign(200, irs, Time)

[1] 0.3615946

pval_sign(300, irs, Time)

[1] 0.001430906

So 200 inside the 95% CI and 300 outside.

Doing a whole bunch

Choose our null medians first:

(d <- tibble(null_median=seq(100,300,20)))</pre>

# A	tibble:	11	х	1
	null_med:	ian		
	<dl< td=""><td>bl></td><td></td><td></td></dl<>	bl>		
1	:	100		
2	:	120		
3	:	140		
4	:	160		
5	:	180		
6		200		
7		220		
8		240		
9		260		
10		280		
11	3	300		

... and then

"for each null median, run the function pval_sign for that null median and get the P-value":

```
d %>% rowwise() %>%
  mutate(p_value = pval_sign(null_median, irs, Time))
# A tibble: 11 \ge 2
# Rowwise:
   null_median p_value
         <dbl>
                  <dbl>
 1
           100 0.000325
 2
           120 0.0987
 3
           140 0.200
4
           160 0.585
 5
           180 0.856
 6
           200 0.362
 7
           220 0.0428
 8
           240 0.0161
```

9 260 0.00522

Make it easier for ourselves

d %>% rowwise() %>%
mutate(p_value = pval_sign(null_median, irs, Time)) %>%
mutate(in_out = ifelse(p_value > 0.05, "inside", "outside")

- # A tibble: 11 x 3
- # Rowwise:

	$null_median$	p_value	in_out
	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1	100	0.000325	outside
2	120	0.0987	inside
3	140	0.200	inside
4	160	0.585	inside
5	180	0.856	inside
6	200	0.362	inside
7	220	0.0428	outside
8	240	0.0161	outside
9	260	0.00522	outside
10	280	0.00143	outside
4.4	200	0 00110	

confidence interval for median?

- 95% CI to this accuracy from 120 to 200.
- Can get it more accurately by looking more closely in intervals from 100 to 120, and from 200 to 220.

A more efficient way: bisection

Know that top end of CI between 200 and 220: lo <- 200 hi <- 220</p>

Try the value halfway between: is it inside or outside? try <- (lo + hi) / 2 try

[1] 210

pval_sign(try,irs,Time)

[1] 0.09873715

Inside, so upper end is between 210 and 220. Repeat (over):

... bisection continued

lo <- try try <- (lo + hi) / 2 try

[1] 215
pval_sign(try, irs, Time)

[1] 0.06142835

215 is inside too, so upper end between 215 and 220.
 Continue until have as accurate a result as you want.

Bisection automatically

A loop, but not a for since we don't know how many times we're going around. Keep going while a condition is true:

```
10 = 200
hi = 220
while (hi - lo > 1) {
  try = (hi + lo) / 2
  ptry = pval_sign(try, irs, Time)
  print(c(try, ptry))
  if (ptry <= 0.05)
    hi = try
  else
    lo = try
```

The output from this loop

- [1] 210.0000000 0.09873715
- [1] 215.0000000 0.06142835
- [1] 217.5000000 0.04277395
- [1] 216.25000000 0.04277395
- [1] 215.62500000 0.04277395
 - 215 inside, 215.625 outside. Upper end of interval to this accuracy is 215.

Using smmr

smmr has function ci_median that does this (by default 95% CI):

ci_median(irs, Time)

```
[1] 119.0065 214.9955
```

Uses a more accurate bisection than we did.
 Or get, say, 90% CI for median:

ci median(irs, Time, conf.level=0.90)

[1] 123.0031 208.9960

▶ 90% CI is shorter, as it should be.

Bootstrap

```
but, was the sample size (30) big enough to overcome the
skewness?
```

Bootstrap, again:

```
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(sample(irs$Time, replace = TRUE))
mutate(my_mean = mean(my_sample)) %>%
ggplot(aes(x=my_mean)) + geom_histogram(bins=10) -> g
```

The sampling distribution

g

Comments

- A little skewed to right, but not nearly as much as I was expecting.
- The *t*-test for the mean might actually be OK for these data, if the mean is what you want.
- In actual data, mean and median very different; we chose to make inference about the median.
- Thus for us it was right to use the sign test.