
The sign test

Packages

library(tidyverse)
library(smmr)

smmr is new. See later how to install it.

Duality between confidence intervals and hypothesis tests

▶ Tests and CIs really do the same thing, if you look at them
the right way. They are both telling you something about a
parameter, and they use same things about data.

▶ To illustrate, some data (two groups):
my_url <- "http://ritsokiguess.site/datafiles/duality.txt"
twogroups <- read_delim(my_url," ")

The data
twogroups

A tibble: 15 x 2
y group

<dbl> <dbl>
1 10 1
2 11 1
3 11 1
4 13 1
5 13 1
6 14 1
7 14 1
8 15 1
9 16 1

10 13 2
11 13 2
12 14 2
13 17 2
14 18 2
15 19 2

95% CI (default)

for difference in means, group 1 minus group 2:
t.test(y ~ group, data = twogroups)

Welch Two Sample t-test

data: y by group
t = -2.0937, df = 8.7104, p-value = 0.0668
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:
-5.5625675 0.2292342

sample estimates:
mean in group 1 mean in group 2

13.00000 15.66667

90% CI

t.test(y ~ group, data = twogroups, conf.level = 0.90)

Welch Two Sample t-test

data: y by group
t = -2.0937, df = 8.7104, p-value = 0.0668
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
90 percent confidence interval:
-5.010308 -0.323025

sample estimates:
mean in group 1 mean in group 2

13.00000 15.66667

Hypothesis test

Null is that difference in means is zero:
t.test(y ~ group, mu=0, data = twogroups)

Welch Two Sample t-test

data: y by group
t = -2.0937, df = 8.7104, p-value = 0.0668
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:
-5.5625675 0.2292342

sample estimates:
mean in group 1 mean in group 2

13.00000 15.66667

Comparing results

Recall null here is 𝐻0 ∶ 𝜇1 − 𝜇2 = 0. P-value 0.0668.
▶ 95% CI from −5.6 to 0.2, contains 0.
▶ 90% CI from −5.0 to −0.3, does not contain 0.
▶ At 𝛼 = 0.05, would not reject 𝐻0 since P-value > 0.05.
▶ At 𝛼 = 0.10, would reject 𝐻0 since P-value < 0.10.

Test and CI

Not just coincidence. Let 𝐶 = 100(1 − 𝛼), so C% gives
corresponding CI to level-𝛼 test. Then following always true.
(Symbol ⟺ means “if and only if”.)

Test decision Confidence interval
Reject 𝐻0 at level 𝛼 ⟺ 𝐶% CI does not

contain 𝐻0 value
Do not reject 𝐻0 at
level 𝛼

⟺ 𝐶% CI contains 𝐻0
value

Idea: “Plausible” parameter value inside CI, not rejected;
“Implausible” parameter value outside CI, rejected.

The value of this

▶ If you have a test procedure but no corresponding CI:
▶ you make a CI by including all the parameter values that

would not be rejected by your test.
▶ Use:

▶ 𝛼 = 0.01 for a 99% CI,
▶ 𝛼 = 0.05 for a 95% CI,
▶ 𝛼 = 0.10 for a 90% CI, and so on.

Testing for non-normal data

▶ The IRS (“Internal Revenue Service”) is the US authority that
deals with taxes (like Revenue Canada).

▶ One of their forms is supposed to take no more than 160
minutes to complete. A citizen’s organization claims that it
takes people longer than that on average.

▶ Sample of 30 people; time to complete form recorded.
▶ Read in data, and do 𝑡-test of 𝐻0 ∶ 𝜇 = 160 vs.

𝐻𝑎 ∶ 𝜇 > 160.
▶ For reading in, there is only one column, so can pretend it is

delimited by anything.

Read in data
my_url <- "http://ritsokiguess.site/datafiles/irs.txt"
irs <- read_csv(my_url)
irs

A tibble: 30 x 1
Time

<dbl>
1 91
2 64
3 243
4 167
5 123
6 65
7 71
8 204
9 110

10 178
i 20 more rows

Test whether mean is 160 or greater
with(irs, t.test(Time, mu = 160,

alternative = "greater"))

One Sample t-test

data: Time
t = 1.8244, df = 29, p-value = 0.03921
alternative hypothesis: true mean is greater than 160
95 percent confidence interval:
162.8305 Inf

sample estimates:
mean of x
201.2333

Reject null; mean (for all people to complete form) greater than
160.

But, look at a graph

ggplot(irs, aes(x = Time)) + geom_histogram(bins = 6)

0

3

6

9

200 400 600
Time

co
un

t

Comments

▶ Skewed to right.
▶ Should look at median, not mean.

The sign test

▶ But how to test whether the median is greater than 160?
▶ Idea: if the median really is 160 (𝐻0 true), the sampled values

from the population are equally likely to be above or below
160.

▶ If the population median is greater than 160, there will be a
lot of sample values greater than 160, not so many less. Idea:
test statistic is number of sample values greater than
hypothesized median.

Getting a P-value for sign test 1/3

▶ How to decide whether “unusually many” sample values are
greater than 160? Need a sampling distribution.

▶ If 𝐻0 true, pop. median is 160, then each sample value
independently equally likely to be above or below 160.

▶ So number of observed values above 160 has binomial
distribution with 𝑛 = 30 (number of data values) and 𝑝 = 0.5
(160 is hypothesized to be median).

Getting P-value for sign test 2/3

▶ Count values above/below 160:
irs %>% count(Time > 160)

A tibble: 2 x 2
`Time > 160` n
<lgl> <int>

1 FALSE 13
2 TRUE 17

▶ 17 above, 13 below. How unusual is that? Need a binomial
table.

Getting P-value for sign test 3/3
▶ R function dbinom gives the probability of eg. exactly 17

successes in a binomial with 𝑛 = 30 and 𝑝 = 0.5:
dbinom(17, 30, 0.5)

[1] 0.1115351

▶ but we want probability of 17 or more, so get all of those, find
probability of each, and add them up:

tibble(x=17:30) %>%
mutate(prob=dbinom(x, 30, 0.5)) %>%
summarize(total=sum(prob))

A tibble: 1 x 1
total
<dbl>

1 0.292

or
pbinom(17, 30, 0.5) # prob of <= 17

[1] 0.8192027

and hence (note first input):
pbinom(16, 30, 0.5, lower.tail = FALSE)

[1] 0.2923324

This last is 𝑃(𝑋 ≥ 17) = 𝑃(𝑋 > 16).

Using my package smmr

▶ I wrote a package smmr to do the sign test (and some other
things). Installation is a bit fiddly:

▶ Install devtools (once) with
install.packages("devtools")

▶ then install smmr using devtools (once):
library(devtools)
install_github("nxskok/smmr")

▶ Then load it:
library(smmr)

smmr for sign test

▶ smmr’s function sign_test needs three inputs: a data frame,
a column and a null median:

sign_test(irs, Time, 160)

$above_below
below above

13 17

$p_values
alternative p_value

1 lower 0.8192027
2 upper 0.2923324
3 two-sided 0.5846647

Comments (1/3)

▶ Testing whether population median greater than 160, so want
upper-tail P-value 0.2923. Same as before.

▶ Also get table of values above and below; this too as we got.

Comments (2/3)
▶ P-values are:

Test P-value
𝑡 0.0392
Sign 0.2923

▶ These are very different: we reject a mean of 160 (in favour of
the mean being bigger), but clearly fail to reject a median of
160 in favour of a bigger one.

▶ Why is that? Obtain mean and median:
irs %>% summarize(mean_time = mean(Time),

median_time = median(Time))

A tibble: 1 x 2
mean_time median_time

<dbl> <dbl>
1 201. 172.

Comments (3/3)

▶ The mean is pulled a long way up by the right skew, and is a
fair bit bigger than 160.

▶ The median is quite close to 160.
▶ We ought to be trusting the sign test and not the t-test here

(median and not mean), and therefore there is no evidence
that the “typical” time to complete the form is longer than
160 minutes.

▶ Having said that, there are clearly some people who take a lot
longer than 160 minutes to complete the form, and the IRS
could focus on simplifying its form for these people.

▶ In this example, looking at any kind of average is not really
helpful; a better question might be “do an unacceptably large
fraction of people take longer than (say) 300 minutes to
complete the form?”: that is, thinking about worst-case rather
than average-case.

Confidence interval for the median

▶ The sign test does not naturally come with a confidence
interval for the median.

▶ So we use the “duality” between test and confidence interval
to say: the (95%) confidence interval for the median contains
exactly those values of the null median that would not be
rejected by the two-sided sign test (at 𝛼 = 0.05).

For our data

▶ The procedure is to try some values for the null median and
see which ones are inside and which outside our CI.

▶ smmr has pval_sign that gets just the 2-sided P-value:
pval_sign(160, irs, Time)

[1] 0.5846647

▶ Try a couple of null medians:
pval_sign(200, irs, Time)

[1] 0.3615946
pval_sign(300, irs, Time)

[1] 0.001430906

▶ So 200 inside the 95% CI and 300 outside.

Doing a whole bunch
▶ Choose our null medians first:

(d <- tibble(null_median=seq(100,300,20)))

A tibble: 11 x 1
null_median

<dbl>
1 100
2 120
3 140
4 160
5 180
6 200
7 220
8 240
9 260

10 280
11 300

… and then
“for each null median, run the function pval_sign for that null
median and get the P-value”:
d %>% rowwise() %>%

mutate(p_value = pval_sign(null_median, irs, Time))

A tibble: 11 x 2
Rowwise:

null_median p_value
<dbl> <dbl>

1 100 0.000325
2 120 0.0987
3 140 0.200
4 160 0.585
5 180 0.856
6 200 0.362
7 220 0.0428
8 240 0.0161
9 260 0.00522

10 280 0.00143
11 300 0.00143

Make it easier for ourselves
d %>% rowwise() %>%

mutate(p_value = pval_sign(null_median, irs, Time)) %>%
mutate(in_out = ifelse(p_value > 0.05, "inside", "outside"))

A tibble: 11 x 3
Rowwise:

null_median p_value in_out
<dbl> <dbl> <chr>

1 100 0.000325 outside
2 120 0.0987 inside
3 140 0.200 inside
4 160 0.585 inside
5 180 0.856 inside
6 200 0.362 inside
7 220 0.0428 outside
8 240 0.0161 outside
9 260 0.00522 outside

10 280 0.00143 outside
11 300 0.00143 outside

confidence interval for median?

▶ 95% CI to this accuracy from 120 to 200.
▶ Can get it more accurately by looking more closely in intervals

from 100 to 120, and from 200 to 220.

A more efficient way: bisection

▶ Know that top end of CI between 200 and 220:
lo <- 200
hi <- 220

▶ Try the value halfway between: is it inside or outside?
try <- (lo + hi) / 2
try

[1] 210
pval_sign(try,irs,Time)

[1] 0.09873715

▶ Inside, so upper end is between 210 and 220. Repeat (over):

… bisection continued

lo <- try
try <- (lo + hi) / 2
try

[1] 215
pval_sign(try, irs, Time)

[1] 0.06142835

▶ 215 is inside too, so upper end between 215 and 220.
▶ Continue until have as accurate a result as you want.

Bisection automatically

▶ A loop, but not a for since we don’t know how many times
we’re going around. Keep going while a condition is true:

lo = 200
hi = 220
while (hi - lo > 1) {

try = (hi + lo) / 2
ptry = pval_sign(try, irs, Time)
print(c(try, ptry))
if (ptry <= 0.05)

hi = try
else

lo = try
}

The output from this loop

[1] 210.00000000 0.09873715
[1] 215.00000000 0.06142835
[1] 217.50000000 0.04277395
[1] 216.25000000 0.04277395
[1] 215.62500000 0.04277395

▶ 215 inside, 215.625 outside. Upper end of interval to this
accuracy is 215.

Using smmr

▶ smmr has function ci_median that does this (by default 95%
CI):

ci_median(irs, Time)

[1] 119.0065 214.9955

▶ Uses a more accurate bisection than we did.
▶ Or get, say, 90% CI for median:

ci_median(irs, Time, conf.level=0.90)

[1] 123.0031 208.9960

▶ 90% CI is shorter, as it should be.

Bootstrap

▶ but, was the sample size (30) big enough to overcome the
skewness?

▶ Bootstrap, again:
tibble(sim = 1:1000) %>%

rowwise() %>%
mutate(my_sample = list(sample(irs$Time, replace = TRUE))) %>%
mutate(my_mean = mean(my_sample)) %>%
ggplot(aes(x=my_mean)) + geom_histogram(bins=10) -> g

The sampling distribution
g

0

50

100

150

200

250

160 200 240
my_mean

co
un

t

Comments

▶ A little skewed to right, but not nearly as much as I was
expecting.

▶ The 𝑡-test for the mean might actually be OK for these data,
if the mean is what you want.

▶ In actual data, mean and median very different; we chose to
make inference about the median.

▶ Thus for us it was right to use the sign test.

