Matched pairs

Matched pairs
Some data:
$\begin{array}{lrr}\text { subject druga } & \text { drugb } \\ 1 & 2.0 & 3.5 \\ 2 & 3.6 & 5.7 \\ 3 & 2.6 & 2.9 \\ 4 & 2.6 & 2.4 \\ 5 & 7.3 & 9.9 \\ 6 & 3.4 & 3.3 \\ 7 & 14.9 & 16.7 \\ 8 & 6.6 & 6.0 \\ 9 & 2.3 & 3.8 \\ 10 & 2.0 & 4.0\end{array}$

## Matched pairs $1 / 2$

Data are comparison of 2 drugs for effectiveness at reducing pain.

- 12 subjects (cases) were arthritis sufferers
- Response is \#hours of pain relief from each drug.
- In reading example, each child tried only one reading method.
- But here, each subject tried out both drugs, giving us two measurements.
- Possible because, if you wait long enough, one drug has no influence over effect of other.


## Matched pairs 2/2

$>$ Advantage: focused comparison of drugs. Compare one drug with another on same person, removes a lot of variability due to differences between people.

- Matched pairs, requires different analysis.

Design: randomly choose 6 of 12 subjects to get drug A first, other 6 get drug $B$ first.

## Packages

```
library(tidyverse)
library(smmr) # for a sign test later
```


## Reading the data

Values aligned in columns:

```
my_url <-
    "http://ritsokiguess.site/datafiles/analgesic.txt"
pain <- read_table(my_url)
pain
# A tibble: 12 x 3
    subject druga drugb
        <dbl> <dbl> <dbl>
\begin{tabular}{llcc}
1 & 1 & 2 & 3.5 \\
2 & 2 & 3.6 & 5.7 \\
3 & 3 & 2.6 & 2.9 \\
4 & 4 & 2.6 & 2.4 \\
5 & 5 & 7.3 & 9.9 \\
6 & 6 & 3.4 & 3.3 \\
7 & 7 & 14.9 & 16.7 \\
8 & 8 & 6.6 & 6 \\
9 & 9 & 2.3 & 3.8
\end{tabular}
```


## Paired $t$-test

```
with(pain, t.test(druga, drugb, paired = TRUE))
```

Paired t-test
data: druga and drugb
$\mathrm{t}=-2.1677, \mathrm{df}=11, \mathrm{p}$-value $=0.05299$
alternative hypothesis: true mean difference is not equal 95 percent confidence interval:

$$
-4.29941513 \quad 0.03274847
$$

sample estimates:
mean difference
-2. 133333
$\rightarrow$ P-value is 0.053 .

- Not quite evidence of difference between drugs.


## t-testing the differences

- Likewise, you can calculate the differences yourself and then do a 1 -sample t-test on them.

```
pain %>% mutate(diff = druga - drugb) -> pain
pain
```

\# A bible: 12 x 4
subject druga drugb diff
<dbl> <dbl> <dbl> <dbl>
$1 \quad 1 \quad 2 \quad 3.5-1.5$
$\begin{array}{lllll}2 & 2 & 3.6 & 5.7 & -2.1\end{array}$
$\begin{array}{lllll}3 & 3 & 2.6 & 2.9 & -0.300\end{array}$
$\begin{array}{lllll}4 & 4 & 2.6 & 2.4 & 0.200\end{array}$
$\begin{array}{lllll}5 & 5 & 7.3 & 9.9 & -2.6 \\ 6 & 6 & 3.4 & 3.3 & 0.100\end{array}$
$\begin{array}{lllll}7 & 7 & 14.9 & 16.7 & -1.80\end{array}$
$\begin{array}{lllll}8 & 8 & 6.6 & 6 & 0.600\end{array}$
$\begin{array}{lllll}9 & 9 & 2.3 & 3.8 & -1.5\end{array}$
10
$10 \quad 2$
$4 \quad-2$

## t-test on the differences

then throw them into t.test, testing that the mean is zero, with same result as before:

```
with(pain, t.test(diff, mu = 0))
```

One Sample t-test
data: diff
$\mathrm{t}=-2.1677, \mathrm{df}=11, \mathrm{p}$-value $=0.05299$
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-4.29941513 0.03274847
sample estimates:
mean of $x$
-2. 133333

- Same P-value (0.053) and conclusion.


## Assessing normality

- 1-sample and 2-sample t-tests assume (each) group normally distributed.
- Matched pairs analyses assume (theoretically) that differences normally distributed.
How to assess normality? A normal quantile plot.


## The normal quantile plot (of differences)

ggplot(pain,aes(sample=diff))+stat_qq()+stat_qq_line()


- Points should follow the straight line. Bottom left one way off, so normality questionable here: outlier.


## What to do instead?

- Matched pairs $t$-test based on one sample of differences
$>$ the differences not normal (enough)
$>$ so do sign test on differences, null median 0 :

```
sign_test(pain, diff, 0)
```

\$above_below
below above
93
\$p_values
alternative p_value
1 lower 0.07299805
2 upper 0.98071289
3 two-sided 0.14599609

## Did we need to worry about that outlier?

Bootstrap sampling distribution of sample mean differences:

```
tibble(sim = 1:10000) %>%
    rowwise() %>%
    mutate(my_sample = list(sample(pain$diff, replace = TRUE)
    mutate(my_mean = mean(my_sample)) %>%
    ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line
```

    \({ }^{-25}\).
    
## Comments

$>$ no evidence of any difference between drugs ( P -value 0.1460 )
$>$ in $t$-test, the low outlier difference pulled mean difference downward and made it look more negative than it should have been
therefore, there really isn't any difference between the drugs.

