Numerical Summaries

Summarizing data in R 1/2

Summarizing data in R 2/2

- Output from a pipe can be used as input to something else, so can have a sequence of pipes.
- Summaries include: mean, median, min, max, sd, IQR, quantile (for obtaining quartiles or any percentile), n (for counting observations).
- Use our Australian athletes data again.

Packages for this section library(tidyverse)

summary(athletes)

Sex		Sport			RCC			
Length	n:202	Lengt	Length:202			:3.8	00 Mir	ı
Class	:characte	r Class	:chara	cter	1st Qu	.:4.3	72 1st	t
Mode	Mode :character		Mode :character		Median	:4.7	55 Mea	1:
					Mean	:4.7	19 Mea	31
					3rd Qu	.:5.0	30 3ra	f
					Max.	:6.7	20 Max	x
	Hc	Hg		Η	Ferr		BMI	Γ
Min.	:35.90	Min. :	11.60	Min.	: 8.	00	Min.	::
1st Qu	1.:40.60	1st Qu.:	13.50	1st Qu	ı.: 41.	25	1st Qu.:	::
Mediar	ı :43.50	Median :	14.70	Mediar	ı : 65.	50	Median	::
Mean	:43.09	Mean :	14.57	Mean	: 76.	88	Mean	:2
3rd Qu	1.:45.58	3rd Qu.:	15.57	3rd Qu	1.: 97.	00	3rd Qu.:	::
Max.	:59.70	Max. :	19.20	Max.	:234.	00	Max.	::
ç	SSF	%Bf	at		I.RM			1

Summarizing one column

Mean height:

athletes %>% summarize(m=mean(Ht))

```
# A tibble: 1 x 1
```

m

<dbl>

1 180.

or to get mean and SD of BMI:

```
athletes %>% summarize(m = mean(BMI), s = sd(BMI)) -> d
d
```

A tibble: 1 x 2
 m s
 <dbl> <dbl>
1 23.0 2.86

This doesn't work:

mean(RMT)

Quartiles


```
athletes %>% summarize( Q1=quantile(Wt, 0.25),
Q3=quantile(Wt, 0.75))
```

```
# A tibble: 1 x 2
    Q1 Q3
    <dbl> <dbl>
1 66.5 84.1
```

Creating new columns

These weights are in kilograms. Maybe we want to summarize the weights in pounds.

- Convert kg to lb by multiplying by 2.2.
- Create new column and summarize that:

```
athletes %>% mutate(wt_lb=Wt*2.2) %>%
summarize(Q1_lb=quantile(wt_lb, 0.25),
        Q3_lb=quantile(wt_lb, 0.75))
```

A tibble: 1 x 2
Q1_lb Q3_lb
<dbl> <dbl>
1 146, 185.

Counting how many

for example, number of athletes in each sport:

athletes %>% count(Sport)

#	А	tibble:	10	х	2		
	S	Sport		n			
	<	<chr></chr>	<int></int>				
1	. I	Ball	25				
2	2 I	Field	19				
З	3 (Gym		4			
4	1	Vetball	2	23			
5	5 F	Row	3	37			
6	5 5	Swim	2				
7	1	[400m	4	29			
8	3]	ſSprnt	1	15			
g)]	ſennis	1				
10	0 WPolo		1	١7			

Counting how many, variation 2:

Another way (which will make sense in a moment):

```
athletes %>% group_by(Sport) %>%
  summarize(count=n())
```

#	A	tibble:	10	x	2
		Sport	cour		
		<chr></chr>	<int< td=""><td>;></td><td></td></int<>	;>	
1	_	BBall	2	25	
2	2	Field	-	19	
Э	3	Gym		4	
4	F	Netball	2	23	
5	5	Row	3	37	
6	3	Swim	2	22	
7	7	T400m	2	29	
8	3	TSprnt	1	15	
g)	Tennis	-	11	
10)	WPolo	-	17	

Summaries by group

Might want separate summaries for each "group", eg. mean and SD of height for males and females. Strategy is group_by (to define the groups) and then summarize:

athletes %>% group_by(Sex) %>%
 summarize(mean_Ht = mean(Ht), sd_Ht = sd(Ht))

A tibble: 2 x 3
 Sex mean_Ht sd_Ht
 <chr> <dbl> <dbl>
1 female 175. 8.24
2 male 186. 7.90

Count plus stats

If you want number of observations per group plus some stats, you need to go the n() way:

athletes %>% group_by(Sex) %>%
summarize(n = n(), mean_Ht = mean(Ht), sd_Ht = sd(Ht))

#	A tibble: 2 x 4							
	Sex	n	mean_Ht	sd_Ht				
	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>				
1	female	100	175.	8.24				
2	male	102	186.	7.90				

This explains second variation on counting within group: "within each sport/Sex, how many athletes were there?"

Summarizing several columns

Standard deviation of each (numeric) column:

athletes %>% summarize(across(where(is.numeric), \(x) sd(x)

#	A tibl	ole: 1	x 11							
	RCC	WCC	Hc	Hg	Ferr	BMI	SSF	`%Bfat`	LBM	
	<dbl></dbl>	•								
1	0.458	1.80	3.66	1.36	47.5	2.86	32.6	6.19	13.1	

Median and IQR of all columns whose name starts with H:

A tibble: 1 x 6
 Hc_med Hc_iqr Hg_med Hg_iqr Ht_med Ht_iqr
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1
 43.5
 4.98
 14.7
 2.07
 180.
 12.2

```
# A tibble: 2 \times 7
 Sex Hc_med Hc_iqr Hg_med Hg_iqr Ht_med Ht_iqr
 1 female 40.6 4.03 13.5 1.60 175 8.68
2 male 45.5 2.57 15.5 0.975 186. 11.3
athletes %>%
 group_by(Sex) %>%
 summarize(across(ends with("C"),
               list(med = (h) median(h),
                    iqr = \langle (h) IQR(h) \rangle
```

A tibble: 2 x 7