Numerical Summaries

Summarizing data in $\mathrm{R} 1 / 2$

- Have seen summary (5-number summary of each column). But what if we want:
- a summary or two of just one column
- a count of observations in each category of a categorical variable
- summaries by group
a different summary of all columns (eg. SD)
$>$ To do this, meet pipe operator $\%>\%$. This takes input data frame, does something to it, and outputs result. (Learn: Ctrl-Shift-M.)

Summarizing data in R 2/2

$>$ Output from a pipe can be used as input to something else, so can have a sequence of pipes.

- Summaries include: mean, median, min, max, sd, IQR, quantile (for obtaining quartiles or any percentile), n (for counting observations).
- Use our Australian athletes data again.

Packages for this section

library (tidyverse)

summary (athletes)

Summarizing one column

- Mean height:

```
athletes %>% summarize(m=mean(Ht))
# A tibble: 1 x 1
    m
    <dbl>
180.
or to get mean and SD of BMI:
athletes %>% summarize(m = mean(BMI), s = sd(BMI)) -> d
d
# A tibble: 1 x 2
    m s
    <dbl> <dbl>
1 23.0 2.86
```

This doesn't work:

```
mean(RMT)
```


Quartiles

- quantile calculates percentiles ("fractiles"), so we want the 25th and 75th percentiles:

$$
\begin{aligned}
\text { athletes } \%>\% \text { summarize }(\text { Q1 } & =q u a n t i l e(W t, 0.25), \\
\text { Q3 } & =\text { quantile }(W t, 0.75))
\end{aligned}
$$

\# A tibble: 1×2
Q1 Q3
<dbl> <dbl>
$1 \quad 66.5 \quad 84.1$

Creating new columns

These weights are in kilograms. Maybe we want to summarize the weights in pounds.

- Convert kg to lb by multiplying by 2.2.
- Create new column and summarize that:

```
athletes %>% mutate(wt_lb=Wt*2.2) %>%
    summarize(Q1_lb=quantile(wt_lb, 0.25),
    Q3_lb=quantile(wt_lb, 0.75))
```

\# A tibble: 1×2
Q1_lb Q3_lb
<dbl> <dbl>
1 146. 185.

Counting how many

for example, number of athletes in each sport:
athletes \%>\% count (Sport)
\# A tibble: 10 x 2
Sport n
<chr> <int>
1 BBall 25
2 Field 19
3 Gym 4
4 Netball 23
5 Row 37
6 Swim 22
7 T400m 29
8 TSprnt 15
9 Tennis 11
10 WPolo 17

Counting how many, variation 2:

Another way (which will make sense in a moment):

```
athletes %>% group_by(Sport) %>%
    summarize(count=n())
```

\# A tibble: 10 x 2
Sport count
<chr> <int>
1 BBall 25
2 Field 19
3 Gym 4
4 Netball 23
5 Row 37
6 Swim 22
7 T400m 29
8 TSprnt 15
9 Tennis 11
10 WPolo 17

Summaries by group

- Might want separate summaries for each "group", eg. mean and SD of height for males and females. Strategy is group_by (to define the groups) and then summarize:

```
athletes %>% group_by(Sex) %>%
    summarize(mean_Ht = mean(Ht), sd_Ht = sd(Ht))
```

\# A tibble: 2×3
Sex mean_Ht sd_Ht
<chr> <dbl> <dbl>
1 female 175. 8.24
2 male 186. 7.90

Count plus stats

- If you want number of observations per group plus some stats, you need to go the n () way:

```
athletes %>% group_by(Sex) %>%
summarize(n = n(), mean_Ht = mean(Ht), sd_Ht = sd(Ht))
# A tibble: 2 x 4
    Sex n mean_Ht sd_Ht
    <chr> <int> <dbl> <dbl>
1 female 100 175. 8.24
2 male 102 186. 7.90
```

- This explains second variation on counting within group: "within each sport/Sex, how many athletes were there?"

Summarizing several columns

- Standard deviation of each (numeric) column:
athletes \%>\% summarize(across(where(is.numeric),
(x) sd(x)
\# A tibble: 1×11
RCC WCC Hc Hg Ferr BMI SSF "\%Bfat` LBM
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1	0.458	1.80	3.66	1.36	47.5	2.86	32.6	6.19	13.1

- Median and IQR of all columns whose name starts with H:
athletes \% \% \% summarize(across(starts_with("H"),

$$
\begin{aligned}
\text { list }(\operatorname{med} & =\backslash(x) \operatorname{median}(x), \\
\text { iqr } & =\backslash(x) \operatorname{IQR}(x))))
\end{aligned}
$$

\# A tibble: 1×6
Hc_med Hc_iqr Hg_med Hg_iqr Ht_med Ht_iqr

<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>
43.5	4.98	14.7	2.07	180.	12.2

Same thing by group

```
athletes %>%
    group_by(Sex) %>%
summarize(across(starts_with("H"),
list(med }=\\(h)\operatorname{median(h),
```

\# A tibble: 2 x 7
Sex Hc_med Hc_iqr Hg_med Hg_iqr Ht_med Ht_iqr
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 female $40.6 \quad 4.03 \quad 13.5 \quad 1.60 \quad 175 \quad 8.68$
2 male $45.5 \quad 2.57 \quad 15.5 \quad 0.975 \quad 186.11 .3$
athletes \%>\%
group_by (Sex) \%>\%
summarize(across (ends_with("C"),
list (med $=\backslash(h) \operatorname{median}(h)$,
iqr $=$ (h) $\operatorname{IQR(h))))~}$
\# A tibble: 2 x 7

