
A Framework for
Internet of Things Search Engines Engineering

Nguyen Khoi Tran, M. Ali Babar
The University of Adelaide

Adelaide, SA 5005, Australia

nguyen.tran@adelaide.edu.au

Quan Z. Sheng
Macquarie University

Sydney, NSW 2109, Australia

michael.sheng@mq.edu.au

John Grundy
Monash University

Clayton, VIC 3800, Australia

john.grundy@monash.edu

Abstract—The content of the Internet of Things (IoT), notably
sensor data and virtual representation of physical devices, has
been increasingly delivered via Web protocols and available on
the World Wide Web (WWW). Internet of Things Search Engine
(IoTSE) systems are catalytic to utilize this influx of data. They
enable users to discover and retrieve relevant IoT content. While
a general IoTSE system – the next “Google” – is beyond the
horizon due to the vast diversity of IoT content and types of
queries for them, specific IoTSE systems that target subsets of
query types and IoT infrastructure are feasible and beneficial. A
component-based engineering approach, in which prior IoTSE
systems and research prototypes are reassembled as building
blocks for new IoTSE systems, could be a time- and cost-effective
solution to engineering IoTSE systems. This paper presents
the design, implementation, and evaluation of a framework to
facilitate a component-based approach to engineering IoTSE
systems. As an evaluation, we developed eight IoTSE components
and composed them into eight proof-of-concept IoTSE systems,
using a reference implementation of the proposed framework.
An analysis on Source Line of Code (SLOC) revealed that the
complexity handled transparently by the IoTSE framework could
account for over 90% of the code base of a simple IoTSE system.

Index Terms—Internet of Things, Search Engine, Framework,
Architecture-centric, Microservice Architecture

I. INTRODUCTION

By 2020, investment in Internet of Things (IoT) infrastruc-

tures could reach up to $832 billion1. These IoT infrastructures

generate different types of content, such as sensory data, actu-

ating services, and digital representations of physical entities,

which could improve the efficiency of businesses and quality

of life.

Internet of Things Search Engine (IoTSE) systems would

be catalytic to realize the benefits of IoT infrastructure, as

they enable humans and machines to retrieve the relevant

IoT content, such as sensory data, actuating services and

digital representatives of physical entities [1]. For instance,

let’s assume that a city council has deployed multi-purpose

sensors across the city, which can measure temperature, light

value, air quality, and sound level, among other data. Citizens

could use this infrastructure to answer the queries for places

and things in the city based on their real-time state via an

IoTSE system. A typical query could be “Find a jogging trail

1https://www.pwc.com/gx/en/technology/pdf/industrial-internet-of-things.
pdf

near the city center, which would be fresh and quiet in the next

hour.” To answer this query, an IoTSE system would utilize

historical and real-time sensor data to find sensors whose value

would likely indicate “fresh and quiet” in the hour following

the query. It would also use geological information stored in

digital representations of jogging trails to find the ones near

the city center. Finally, it would join two sets of results based

on the spatial relations between sensors and running trails and

respond to a user.

While existing Web search engines, sensor databases, and

IoT cloud platforms have already offered some search capa-

bilities, none of them could address all the specificities of

IoT content comprehensively as a dedicated IoTSE system.

The exemplary use case has demonstrated that IoTSE systems

require complex inference and prediction capabilities, which

are beyond the responsibility of IoT platforms and their

rudimental look-up-by-ID ability. It has also highlighted that

an IoT query can span multiple content collections and even

cross organizational boundaries, both of which capabilities

are beyond any individual sensor database. Moreover, the

collections with which IoTSE systems work are generally not

as well-controlled as document collections within databases.

Therefore, IoTSE might also be required to crawl for new

devices and content, update old content, and rebuild indexes

regularly, similarly to Web search engines. However, IoTSE

systems are different from Web search engines in two ways.

First, they not only work with hypertext documents but

also various types of IoT content which requires different

techniques and strategies. Second, an IoTSE system might

require a more distributed architecture towards a network’s

edge, depending on the type of query that it resolves. For

instances, IoTSE systems that assess queries on the real-time

state of the physical world can only achieve low latency by

embedding processing capabilities at the edge of a network

[2], [3].

As more IoT infrastructures become available, the demand

for IoTSE also increases. While a general IoTSE system –

the next “Google” – is beyond the horizon due to the vast

diversity of IoT content and types of queries for them, specific

IoTSE systems that target specific types of query and IoT

infrastructure are feasible and beneficial. The exemplary use

case, for instance, can be satisfied by an IoTSE system that

works with sensors’ metadata and readings from a set of

228

2019 26th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/19/$31.00 ©2019 IEEE
DOI 10.1109/APSEC48747.2019.00039

authorized IoT infrastructures. Therefore, there is a need for

a framework to engineering IoTSE systems in a time- and

cost-effective manner.
Component-based engineering is a potential solution to

the problem of engineering IoTSE systems (Fig. 1). In this

approach, IoTSE systems are designed and implemented as

a composition of existing components. These components

could be developed in-house, reassembled from prior IoTSE

systems, or contributed by external developers and researchers.

Participants in a component-based IoTSE engineering ecosys-

tem consists of IoTSE component developers who contribute

their IoTSE-related logics as IoTSE components, IoTSE system
developers who design and compose IoTSE systems from

components, and Architects who develop reference architec-

tures to guide developers. Given the necessary components and

an enabling software infrastructure, IoTSE system developers

could engineer a new IoTSE system only by specifying its

composition structure and deployment structure. The prior

specifies components to use and how they interact with each

other. The latter specifies where each component would be

deployed how many replicas are necessary.
The existing body of research across the entire IoTSE

systems’ workflow could provide components for engineering

these systems. However, two problems need to be resolved to

use these research and engineering efforts as building blocks

of new IoTSE systems. The first problem is architectural: how
to design IoTSE components which allow for interoperability,
portability, and independent scaling?

• Interoperability: How to enable independently devel-

oped IoTSE components to cooperate as per instructions

of IoTSE system developers?

• Portability: How to enable IoTSE components to operate

on a wide range of computing nodes and environment,

ranging from clouds to resource-constrained edge devices

and from X86-X64 architecture to alternatives such as

ARM?

• Independence: How to enable individual provisioning of

IoTSE components to facilitate fine-grained scaling of

IoTSE systems?

The second problem is to limit the complexity, which would

emerge from applying a component-based engineering ap-

proach. This complexity, if not constrained, would eclipse the

benefits brought about by component reuse and composition,

rendering component-based engineering impractical.
To address the architectural problem, we propose to design

and implement IoTSE components as containerized services
and specify a set of RESTful APIs for main types of IoTSE

components (Section II). To address the complexity problem,

we propose a collection of software infrastructure and utilities,

collectively known as an IoTSE Framework, to hide the

complexity of developing and utilizing IoTSE components

from developers (Section III).
To demonstrate the feasibility of engineering IoTSE systems

from components, we built a reference implementation of the

framework and used it to design and develop eight proof-

of-concept IoTSE systems for evaluation (Section IV). An

analysis on Source Line of Code (SLOC) revealed that the

interoperability mechanisms handled by the framework could

incur over 90% of the code base of a simple IoTSE system. A

comparative study on the performance of the proof-of-concept

systems was also conducted to evaluate design decisions of

the built IoTSE systems for demonstrating the feasibility of

the proposed approach.

II. IOTSE AS CONTAINERIZED SERVICES

To enable component-based IoTSE engineering, the compo-

nents contributed by different developers must interoperate to

complete the workflows defined by IoTSE system developers,

which could be unanticipated in the development time of

the components. The components must also be portable to

operate on a wide range of computing nodes and environment,

ranging from clouds to resource-constrained edge devices and

from X86-X64 architecture to alternatives such as ARM.

Finally, the components must be independent from each other

so that the IoTSE systems can provision or remove them

individually for scaling. This independence hinges on not

only on portability of the components but also on the side-

effects of their’ interactions. These requirements constitute an

architectural problem, whose solution is not algorithmic but

design-centric.

To address the stated problem, we propose to design and

develop IoTSE components as containerized services. This

design dictates that components would offer their ability to

carry out the main activities of IoTSE systems via explic-

itly defined service interfaces. Components would be packed

with their dependencies into container images, which enable

lightweight virtualization that works on both X86/X64 and

ARM architecture.

Containerization provides IoTSE components portability.

Enforcing inter-component communication via predefined ser-

vice interfaces offers several advantages which contribute to

interoperability and independence of IoTSE components. First,

because all of the interactions between IoTSE components

must happen explicitly defined service interfaces, they provide

a target for standardization, which can lead to interoperability.

This standard would explain not only services that each IoTSE
component offer but also types and functional scopes of IoTSE
components. Therefore, this standard would also benefit IoTSE

component developers and researchers to align and coordinate

their effort.

The second advantage of enforcing component interactions

to happen via services is minimizing the side-effects of those

interactions. This advantage contributes to the independent

operation of IoTSE components. Finally, developing IoTSE

components as services would create a separation between

interfaces and implementations. Such a separation enables the

composition of IoTSE systems and facilitate their updates in

the future.

While a complete treatment for an IoTSE service interface

standard is beyond the scope of this work, we present a

simplified RESTful API to clarify the introduced concepts

229

Fig. 1. A component-based approach to engineering IoTSE system.

(Table I). These service interfaces would be used in the proof-

of-concept evaluation (Section IV). To support asynchronous

processing of IoTSE components, each POST interface returns

a unique identity for every request. This identity is then used

for tracking and getting the processing results.

The component types presented in this set of service inter-

faces are identified based on an IoTSE’s key activities, which

we have taken from a paper [1]. Detector and Collector com-

ponents are responsible for finding and gathering IoT content

within an IoT infrastructure that an IoTSE system may target.

Storage, Indexer, and Searcher components are responsible

for holding the collected IoT content and resolving queries

on them. Aggregator component combines search results from

multiple Searcher components. Finally, Facade component

provides a single entry point to simplify interactions with an

IoTSE system.

It should be highlighted that we do not mandate RESTful

API over HTTP as the only mean to interact with components.

III. A FRAMEWORK FOR COMPONENT-BASED IOTSE

ENGINEERING

Engineering IoTSE components as containerized services

would inevitably increase the complexity of both development

and utilization. To a certain degree, the incurred complexity

would eclipse the benefits brought about by an architectural so-

lution, rendering it unusable. This paper proposes and designs

a collection of software components, infrastructure, and utili-

ties, collectively defined as a Framework for Component-based
IoTSE Engineering to handle the complexities of component-

based engineering on behalf of software developers (Fig.

2)). This section introduces the design and purposes of the

components that can make up the framework of engineering

IoTSE. A reference instantiation of the framework would be

discussed as a part of a proof-of-concept evaluation in Section

IV.

A. IoTSE Component Kernels

The priority of an IoTSE component developer would be

the component’s logic such as detecting URLs of sensors on

the Web, not learning and developing a service interface for

the component. The challenge, therefore, is to make the task

of developing interoperable containerized services from the

component’s logics effortless and invisible.

The IoTSE Component Kernels of the Framework address

this challenge. They act as black boxes which transform

service requests into inputs of components’ logics and trans-

forms their outputs into service responses. For each component
type specified in Section II, one IoTSE component kernel
exists. Each kernel contains an implementation of the service

interface of its corresponding component type as well as

the necessary infrastructure to host it such as a Web server.

Kernels also contain software clients for interacting with the

service registry and orchestration engine which would be used

by system developers when composing new IoTSE systems.

Given a set of kernels, developing IoTSE components as

containerized services compliant with the interfaces in Table

I incurs only three additional activities:

• Acquiring a suitable kernel: This decision is based on the

correspondence between the developed component’s logic

and the defined component types. The kernel itself could

230

Fig. 2. A Framework for IoTSE Development. Each hardware node hosts an IoTSE middleware instance, which run a number of IoTSE components.

be acquired via a Web portal or a package manager. Both

of which approaches would be familiar to developers.

• Building a connector between the component logic and
the pre-built service interface. It would translate and

route the interface’s inputs to the logic’s inputs, and vice

versa with the outputs. While the connector introduces

complexity, it offers component developers more control,

making it an acceptable trade-off.

• Containerize the component and publish its image. De-

velopers could carry out this task with a wide range

of existing software utilities, such as Docker CLI 2 and

Kitematic3.

B. IoTSE Middleware and Platform

Component-based engineering of IoTSE systems also incur

overheads in terms of providing an infrastructure for operating

component services and of controlling this infrastructure to

provision IoTSE components on computing nodes and start

the whole system. An ideal outcome from the perspective

of IoTSE system developers would be zero-code composition
which denotes the ability to compose IoTSE systems without

reprogramming the existing components, nor developing ad-

ditional software components. In the proposed IoTSE Frame-

work, these challenges are met by the IoTSE Middleware and

IoTSE Platform.

1) Middleware: The IoTSE Middleware provides an in-

frastructure to run IoTSE components on a computing in-

frastructure and control the flow of data and control among

the deployed components to compose an IoTSE system. On

each computing node of an IoTSE system, software developers

would use an instance of the middleware. These instances

cooperate to maintain an overlay network as a backbone of an

2https://github.com/docker/cli
3https://kitematic.com

IoTSE system, allowing its components to exchange data and

requests across different computing nodes. Each middleware

instance contains a container engine which is compatible with

the container image format used by component developers to

run IoTSE components on computing nodes.

A subset of middleware instances also contains a service

orchestration engine and a service registry. The role of the

orchestration engine (e.g., Conductor4) is to control service

invocations and routing of responses according to workflows

specified by software developers. The kernels and the mid-
dleware are paired to ensure interoperability. It means that

service discovery and orchestration clients embedded in the

kernels are matching with the registry and orchestration engine

embedded in the middleware.

2) Platform: While the middleware by itself offers an

adequate capability to run and orchestrate IoTSE components,

the process of provisioning an IoTSE system would be still

repetitive and error-prone due to the decentralization of the

computing nodes. Moreover, responsibilities of the middleware

do not cover the features which simplify the composition

and management of IoTSE systems such as automatic service

selection and profilers.

The IoTSE Platform of the Framework addresses these is-

sues. It interfaces with authorized IoTSE middleware instances

to enable centralized provisioning and control of IoTSE sys-

tems. It also hosts utilities which support system developers in

designing and composing IoTSE systems. The platform can be

hosted on cloud-based infrastructure and shared among IoTSE

system developers. Alternatively, developers can host private

instances of the platform.

The Core Functionality Group monitors computing nodes,

provisions IoTSE components, and control their interactions.

The IoT Infrastructure Manager interacts with IoTSE middle-

4https://github.com/Netflix/conductor

231

TABLE I
COMPONENT TYPES AND THEIR REST INTERFACES.

Component URL Endpoint HTTP
Verb

Functionality

Detector /api/new-res-ids GET Start content detection process
and return URL of detected IoT
content

Collector /api/res-contents POST Invoke content collection on the
given set of URL and return a
req-id for future retrieval
collected data.

/api/res-contents/req-
id

GET Get the set of collected IoT
content identified by req-id

Storage /api/iot-resources POST Store set of IoT content in the
storage for future retrieval

/api/iot-resources/res-
id

GET Retrieve the IoT content
identified by res-id

Indexer /api/index POST Invoke the indexing mechanism

Searcher /api/queries POST Submit a query; invoke the
query processing; creates a
res id

/api/results/res-id GET Retrieve a set of search results
identified by res-id

Aggregator /api/agg-results POST Accept a list of search results
for future aggregation

/api/agg-results/res-id GET Aggregate result sets linked to
the res-id

Facade /queries POST Submit a query; initialise query
processing workflows; creates a
result id for future lookup.

/results/result id GET Retrieve a set of search results
identified by result id

ware instances to manage hardware nodes of an IoTSE sys-

tem. The Deployment Manager uses the IoTSE infrastructure

manager to place IoTSE components on the hardware nodes.

The Composition Manager interacts with orchestration engines

on IoTSE middleware instances to orchestrate the control-

and data-flow among IoTSE components. The Component
Repository maintains addresses or images of the available

IoTSE components.

The Architecture Generation group contains the utilities that

support the design of composition structure and deployment

structure and the binding of components into those structures.

These structures can be specified via graphical diagrams or

structured textual documents such as JSON. The Component
Assessment group contains utilities to conduct automated tests

of the available components.

Given the middleware and access to the IoTSE platform,

engineering an IoTSE system would involve the following

activities:

• Provision middleware instances on the computing nodes

to be used in an IoTSE system.

• Design a composition and a deployment structure of an

IoTSE system.

• Binding specific IoTSE components into a composition

structure.

• Providing the structure and binding specifications to the

IoTSE platform to compose an IoTSE system.

IV. PROOF-OF-CONCEPT EVALUATION

To assess the feasibility of component-based IoTSE en-

gineering with the proposed framework, we have developed

and evaluated eight proof-of-concepts IoTSE systems. All of

the proof-of-concept IoTSE systems were composed of eight

IoTSE components which have been developed based on a

reference implementation of our IoTSE framework. The sensor

sources for these proof-of-concept systems are our in-house

developed IoT gateways which expose both real sensors and

replayed sensory data as Web resources following OGC’s

SensorThing API standard5.

Two of the proof-of-concept systems query only meta-data,

two query only sensor readings, and the remaining four work

with both types of content. These complex systems were

built from the components of simpler ones to resolve queries

for Web-enabled sensors based on both their static meta-data

and real-time readings. For instance, they can find “sensors

which measure temperature in Celsius, whose latest reading

is less than 25 degrees”. The source code of components and

configurations of the proof-of-concept systems are available

on our repository6

The functioning of these proof-of-concept systems demon-

strates the feasibility of a component-based IoTSE with the

architecture and software framework proposed in this paper.

To assess the benefit of the framework on the complexity of

components, we compare the size difference in Source Line of

Code (SLOC) between component logics and interoperability

mechanisms handled by the kernels. We have also conducted a

comparative study on the performance of the proof-of-concept

systems to demonstrate the ability to conduct experiments on

design alternatives of IoTSE systems, which was facilitated by

the zero-code composition ability offered by the framework.

A. A Reference Implementation of the Framework

1) Component Kernels.: We built the RESTful API shown

in Table I using Flask RESTful library 7. We implemented

URL endpoints as Python classes and HTTP verbs as methods

of these classes. These methods process the incoming requests

and pass them to the connectors which would be supplied

by component developers. The kernel includes an instance of

the Gunicorn Web Server8 to host this API. The kernel also

contains a Netflix’s Conductor client for service orchestration

purposes. A set of Python- and Bash-based utilities were

included to support the compilation of classes of a component

to form a single deployment unit and generate a container

image. The total size of the kernel is 1189 Source Lines of
Code (SLOC) (961 SLOC sans the Conductor client).

5http://www.opengeospatial.org/standards/sensorthings
6Removed for double-blind review.
7https://flask-restful.readthedocs.io/
8https://gunicorn.org/

232

2) Middleware and Platform.: The reference middleware

was built upon Docker Engine and Conductor for managing

containers and orchestrating component services, respectively.

All Docker Engine instances were configured to form a swarm.

The reference platform consist of Python- and Bash-based

utilities. They interact with Docker Engine instances and Con-

ductor engines to compose and deploy components. System

developers control these tools with two JSON documents,

which specify a deployment structure and a composition

structure.

B. IoTSE Components and Effort Reduction

The proof-of-concept IoTSE systems discover, index, and

resolve queries on both metadata and real-time sensor read-

ings. Eight IoTSE components handle these activities. The

tasks of detecting Web-based sources of sensory data and

sensors within those sources are controlled by Source Detector
and Sensor Detector components, both of which belong to the

Detector component type. The prior contains a predefined list

of URL of the deployed IoT gateways. The latter leverages

OGC’s SensorThing API standard, with which of the gateways

are compliant, to query and construct a set of URLs directing

to sensors’ representation and readings.

The tasks of collecting, indexing, and resolving queries

on meta-data and sensor readings are handled by two sets

of components: Meta-data Collector and Searcher, and Read-

ing Collector and Searcher. Both Collector components are

customized HTTP clients for extracting meta-data or sensor

readings from raw JSON documents retrieved from the gate-

ways. Both Searcher components combine the functionality

and services of Storage, Indexer, and Searcher component

types. Internally, they maintain and control internal MongoDB

instances. While aggregating component types is not recom-

mended in a production environment, this decision simplified

the proof-of-concept IoTSE systems and helped us to highlight

the key features of the framework more easily. The last two

components are Aggregator and Facade. Their functionality

matches the component type from which they instantiated.

The SLOC of eight components in comparison to their

kernels are shown in Table II. We used the Source Line of

Code (SLOC) as a proxy metric for the amount of development

effort in each component. We utilised pygount9 – a Python-

based utility – to analyse components’ source code and mea-

sure SLOC. Reduced effort was calculated as the ratio between

SLOC of logic and total SLOC of a component comprising

both logic and kernel codes. The gap between SLOC of the

kernel and the components’ logics, reaching at least 92% of

the total size of a component, highlights the amount of effort

that the use of a kernel could potentially reduce for IoTSE

component developers.

It should be noted that this result is not to conclude that

such an outcome could always be achieved in a production

environment where component logic would be substantially

9https://pypi.org/project/pygount/

TABLE II
SOURCE LINES OF CODE (SLOC) BREAKDOWN OF EIGHT COMPONENTS.

Kernel (w/
Utilities) +

Logic

Kernel
(w/o

Utilities) +
Logic

Logic Reduced
Effort

Source Detector 1200 972 11 93.7%

Sensor Detector 1249 1021 60 98.8%

Metadata Collector 1239 1011 50 94.8%

Metadata Searcher 1246 1018 57 94%

Reading Collector 1239 1011 50 94.8%

Reading Searcher 1250 1022 61 93.6%

Aggregator 1265 1037 76 92%

Facade 1215 987 26 97.3%

All Components 9903 8079 391 96%

more complex. Instead, it highlights that when IoTSE com-

ponents are relatively simple, as in the case of the proof-of-

concept systems, the complexity added by the containerized

service design of IoTSE components could eclipse the effort

necessary to develop the components’ logics by multiple folds.

Therefore, component developers would not be likely to adopt

a component-based IoTSE engineering approach without the

support from the proposed kernel.

C. Proof-of-concept Systems and Experiment

From the developed components, we composed and de-

ployed eight IoTSE systems using the reference IoTSE middle-

ware and platform. Two of the proof-of-concept systems query

only meta-data and therefore comprise only Meta-data-related

components. The two following proof-of-concept systems use

Reading-related components to query sensor readings exclu-

sively. The last four systems utilize all eight components.

The variation among these proof-of-concept systems lies in

their composition structures. First, they vary in the timing

between the discovery of IoT content and the assessment

of queries. In the Parallel Discovery (PD) structure, content

discovery runs in parallel to the query assessment. In the

Interlaced Discovery (ID), the content discovery runs only

when a query arrives. Second, they differ in the timing between

the ranking of meta-data and sensor readings when responding

to a query. In Parallel Search (PS), meta-data- and content-

based search run in parallel. In Sequential Search (SS), they

run in a sequence. Putting these notations together, a PD-PS

structure means that an IoTSE crawls IoT content in parallel

to the query assessment, and the evaluation on meta-data and

sensor readings are carried out in parallel.

The zero-code composition ability offered by the proposed

framework provides several benefits, including the ability

to evaluate and compare alternative design decisions exper-

imentally. For instance, let’s assume that an IoTSE system

development team is deciding on the composition structure of

an IoTSE system. Their assumptions include PD would yield

233

Fig. 3. The query response time of IoTSE prototypes, measured in milliseconds.

Fig. 4. The overhead caused by the middleware on IoTSE prototypes,
measured in milliseconds.

better performance than ID, and PS would produce a substan-

tial performance gain over SS. Instead of relying solely on

reasoning, the zero-code composition ability allows the team to

engineer some prototypes that capture their alternative design

decisions and conduct experiment with those prototypes, with

minimal effort required.

To demonstrate this point, we have conducted the stated

experiment on the proof-of-concept systems. We quantified

the performance of an IoTSE system via its response time.

This metric is measured as the delay between the submission

of a query and the response. We used IntelLab10 data set for

this experiment. This dataset records topology information,

humidity, temperature, light, and voltage values. Fifty-four

sensors in the Intel Berkeley Research lab recorded these

values between 28th February 28th and April 5th, 2004. We

replayed the data set to IoTSE prototypes with an in-house

developed IoT gateway. We then queried the prototypes for

sensors that measure temperature in Celsius, whose latest
reading is less than 25. A python script which runs on

the client-side measures the response time. We repeated the

experiment 30 times for each prototype. We conducted the

experiment on an Intel Xeon E3 workstation with 8GB of

memory.

The results of the experiment (Figure 3, 4 and 5) confirm

10http://db.csail.mit.edu/labdata/labdata.html

Fig. 5. The overhead caused by the middleware on IoTSE prototypes,
measured in percentages of the response time.

the assumption that PD offers a better performance than ID,

and so is the case with PS and SS. However, PS did not

yield a substantial performance gain as the prediction in the

hypothetical scenario. Such an experiment-backed insight on

design decisions would be more difficult to achieve without

the zero-code composition ability offered by the proposed

framework.

V. RELATED WORK

Our work approaches IoTSE from a perspective which has

been relatively unexplored in the existing IoTSE literature.

We investigate the architectural support and the tools to

weave branches of IoTSE together. Meanwhile, the majority of

IoTSE literature has focused on technical issues pertaining a

branch of IoTSE, for example, real-time sensor search (Dyser

[2], CSS [3]), context-based sensor search (CASSARAM [4],

ThingSeek [5]), functionality search based on semantics [6],

[7], object localization (Snoogle [8], MAX [9], OCH [10]), and

discovery services based on EPCglobal specifications [11].

As a result, there are only a few pieces of work in the IoTSE

literature that are related and directly comparable to our work

presented in this paper. These associated works model IoTSE

components as shared software libraries and offer templates

to simplify their development. For example, ThingSeek [5]

focuses on detecting URL of sources and sensors, while

Kernel-based IoTSE [12] covers the entire workflow of an

234

IoTSE instance. These efforts share two limitations. First,

developing an IoTSE system using these approaches requires

deep integration of components into its codebase. This inte-

gration impedes the modification and independent scaling of

components. Second, the shared libraries make assumptions

on how an IoTSE component should be implemented (i.e.,

variables to use, functions to implements).

Our solution reported in this paper addresses both of these

limitations. By modeling IoTSE instances as a workflow-

based composition of containerized Web services, our solution

simplifies the modification of an IoTSE system and allows

independent scaling of its components. Moreover, our solution

gives component developers complete control over data mod-

els, algorithms, and technologies utilized for implementing the

components of an IoTSE system.

VI. CONCLUSION

As the investment in IoT infrastructure expands towards

$832 billion in 2020, the demand for IoTSE systems also

increases. A component-based approach could provide a time-

and cost-effective solution to developing reliable and flexible

IoTSE systems. Two problems must be addressed to realize

a component-based IoTSE engineering approach: developing

an architecture for IoTSE systems which can help maximize

the interoperability, portability, and independence of their

components, and isolating the complexity introduced by this

architectural solution to component and system developers.

This paper proposed to design and implement IoTSE com-

ponents as containerized services and introduced a software

framework to simplify the process of developing and utilizing

these components. The evaluation of the proof-of-concept sys-

tems has demonstrated the feasibility of composing functional

IoTSE systems from independently produced components and

of combining the elements of multiple IoTSE systems into

a more capable IoTSE system. The evaluation has also high-

lighted that the complexity handled transparently by the IoTSE

framework could account for over 90% of the code base of

a simple IoTSE component. The evaluation has also demon-

strated the feasibility of the zero-code IoTSE composition to

support IoTSE system developers in making more informed

design decisions via experimentation. However, the decom-

position of monolithic IoTSE systems into independently

developed services has also increased the overhead of the

coordination between components, which slowed down their

responses. A potential future work, therefore, is optimizing

service interactions and orchestrations within IoTSE systems

to retain both performance and modularity.

For future work, a potential direction would be to tighten

the security over IoTSE components to prevent possible data

leakage by introducing additional validation and enforcement

mechanisms into the IoTSE kernel. Another direction can

be to enhance the performance of the IoTSE middleware

by adding caching, load balancing, and alternative service

invocation model such as publish-subscribe. Finally, addi-

tional automation could be introduced to the IoTSE platform

to simplify the composition process further. For instance,

Semantic- and Quality-of-Service-based component selection

mechanisms could be added to automate the component-

binding step, and self-adaptive mechanisms such as MAPE-

K model could give IoTSE systems the ability to reconfig-

ure itself in response to incoming queries and infrastructure

changes.

REFERENCES

[1] N. K. Tran, Q. Z. Sheng, M. A. Babar, and L. Yao, “Searching the web
of things: State of the art, challenges, and solutions,” ACM Computing
Surveys (CSUR), vol. 50, no. 4, p. 55, 2017.

[2] B. Ostermaier, K. Romer, F. Mattern, M. Fahrmair, and W. Kellerer, “a
Real-Time Search Engine for the Web of Things,” in Proceedings of the
1st International Conference on the Internet of Things (IOT). IEEE,
2010, Conference Proceedings, pp. 1–8.

[3] C. Truong and K. Römer, “Content-Based Sensor Search for the Web of
Things,” in Proceedings of the IEEE Global Communications Confer-
ence (GLOBECOM). IEEE, 2013, Conference Proceedings, pp. 2654–
2660.

[4] C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and
D. Georgakopoulos, “Sensor Search Techniques for Sensing as a Service
Architecture for the Internet of Things,” IEEE Sensors Journal, vol. 14,
no. 2, pp. 406–420, 2014.

[5] A. Shemshadi, Q. Z. Sheng, and Y. Qin, “Thingseek: A crawler and
search engine for the internet of things,” in Proceedings of the 39th
International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, 2016, Conference Proceedings, pp.
1149–1152.

[6] B. Christophe, V. Verdot, and V. Toubiana, “Searching The’web of
Things’,” in Proceedings of the 5th IEEE International Conference on
Semantic Computing (ICSC). IEEE, 2011, Conference Proceedings, pp.
308–315.

[7] M. Mrissa, L. Médini, and J.-P. Jamont, “Semantic Discovery and
Invocation of Functionalities for the Web of Things,” in Proceedings
of the 23rd IEEE International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE). IEEE, 2011,
Conference Proceedings, pp. 281–286.

[8] H. Wang, C. C. Tan, and Q. Li, “Snoogle: A Search Engine for Pervasive
Environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 8, pp. 1188 – 1202, 2010.

[9] K.-K. Yap, V. Srinivasan, and M. Motani, “Max: Human-Centric Search
of the Physical World,” in Proceedings of the 3rd International Confer-
ence on Embedded Networked Sensor Systems (SenSys). ACM, 2005,
Conference Proceedings, pp. 166–179.

[10] C. Frank, P. Bolliger, F. Mattern, and W. Kellerer, “the Sensor Internet at
Work: Locating Everyday Items Using Mobile Phones,” Pervasive and
Mobile Computing, vol. 4, no. 3, pp. 421–447, 2008.

[11] S. Evdokimov, B. Fabian, S. Kunz, and N. Schoenemann, “Compar-
ison of discovery service architectures for the internet of things,” in
Proceedings of the 2010 IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC). IEEE,
2010, Conference Proceedings, pp. 237–244.

[12] N. K. Tran, Q. Z. Sheng, M. A. Babar, and L. Yao, “A kernel-based
approach to developing adaptable and reusable sensor retrieval systems
for the web of things,” in Proceedings of the 18th International Confer-
ence on Web Information Systems Engineering. Springer International
Publishing, 2017, Conference Proceedings, pp. 315–329.

235

