
1

A Survey on Deep Learning for Software Engineering

YANMING YANG, School of Computer Science and Technology, Zhejiang University, China
XIN XIA, Software Engineering Application Technology Lab, Huawei, China
DAVID LO, School of Information Systems, Singapore Management University, Singapore
JOHN GRUNDY, Faculty of Information Technology, Monash University, Australia

In 2006, Geoffrey Hinton proposed the concept of training “Deep Neural Networks (DNNs)” and an improved
model training method to break the bottleneck of neural network development. More recently, the introduction of
AlphaGo in 2016 demonstrated the powerful learning ability of deep learning and its enormous potential. Deep
learning has been increasingly used to develop state-of-the-art software engineering (SE) research tools due to
its ability to boost performance for various SE tasks. There are many factors, e.g., deep learning model selection,
internal structure differences, and model optimization techniques, that may have an impact on the performance
of DNNs applied in SE. Few works to date focus on summarizing, classifying, and analyzing the application of
deep learning techniques in SE. To fill this gap, we performed a survey to analyze the relevant studies published
since 2006. We first provide an example to illustrate how deep learning techniques are used in SE. We then
conduct a background analysis (BA) of primary studies and present four research questions to describe the
trend of DNNs used in SE (BA), summarize and classify different deep learning techniques (RQ1), analyze
the data processing including data collection, data classification, data pre-processing, and data representation
(RQ2). In RQ3, we depicted a range of key research topics using DNNs and investigated the relationships
between DL-based model adoption and multiple factors (i.e., DL architectures, task types, problem types, and
data types). We also summarized commonly used datasets for different SE tasks. In RQ4, we summarized the
widely used optimization algorithms and provided important evaluation metrics for different problem types,
including regression, classification, recommendation, and generation. Based on our findings, we present a set
of current challenges remaining to be investigated and outline a proposed research road map highlighting key
opportunities for future work.

Additional Key Words and Phrases: Deep learning, neural network, machine learning, software engineering,
survey

ACM Reference Format:
Yanming Yang, Xin Xia, David Lo, and John Grundy. 2022. A Survey on Deep Learning for Software Engineer-
ing. ACM Comput. Surv. 1, 1, Article 1 (January 2022), 72 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In 1943, Warren Mcculloch and Walter Pitts first introduced the concept of the Artificial Neural
Network (ANN) and proposed a mathematical model of an artificial neuron [12]. This pioneered a
new era of research on artificial intelligence (AI). In 2006, Hinton et al. [6] proposed the concept
of “Deep Learning (DL)”. They believed that an ANN with multiple layers possessed extraordinary

Authors’ addresses: Yanming Yang, yym_1022@163.com, School of Computer Science and Technology, Zhejiang University,
Hangzhou, China; Xin Xia, Software Engineering Application Technology Lab, Huawei, Hangzhou, China, xin.xia@acm.org;
David Lo, School of Information Systems, Singapore Management University, Singapore, davidlo@smu.edu.sg; John Grundy,
Faculty of Information Technology, Monash University, Melbourne, Australia, John.Grundy@monash.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0360-0300/2022/1-ART1 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

1:2 Yanming Yang, Xin Xia, David Lo, and John Grundy

feature learning ability, which allows the feature data learned to represent the essence of the original
data. In 2009, they proposed Deep Belief Networks(DBN) and an unsupervised greedy layer-wise
pre-training algorithm [13], showing great ability to solve complex problems. DL has since attracted
attention of academics and industry practioners for many tasks. Development of Nvidia’s graphics
processing units (GPUs) significantly reduced the computation time of DL-based algorithms. DL
has now entered a period of great development. In 2012 Hinton’s research group participated in an
image recognition competition for the first time and won the championship in a landslide victory by
training a CNN model called AlexNet on the ImageNet dataset. AlexNet outperformed the second
best classifier (SVM) by a substantial margin. In March 2016, AlphaGo was developed by DeepMind,
a subsidiary of Google, which defeated the world champion of Go by a big score. With continuous
improvements in DL’s network structures, training methods and hardware devices, DL has been
widely used to solve a wide variety of research problems in various fields.

Driven by the success of DL techniques in image recognition and data mining, industrial prac-
titioners and academic researchers have shown great enthusiasm for exploring and applying DL
algorithms in diverse software engineering (SE) tasks, including requirements, software design
and modeling, software implementation, testing and debugging, and maintenance. In requirements
engineering, various DL algorithms have been employed to extract key features for requirement
analysis, and automatically identify actors and actions (i.e., user cases) in natural language-based
requirement descriptions [EL09, IEEE94]. In software design and modeling, DL has been leveraged
for design pattern detection [IEEE109], UI design search [ACM33], and software design mining
[IEEE97]. During software implementation, researchers and developers have used DL for source code
generation [IEEE112], source code modeling [EL16], software effort/cost estimation [IET01], etc. In
software testing and debugging, various DL algorithms have been designed for detecting and fixing
defects and bugs existed in software products, e.g., defect prediction [IEEE43], bug localization
[IEEE102], vulnerability prediction [IEEE57]. It has been used for a variety of software testing
applications, such as test case generation [ACM22], and automatic testing [IEEE07]. Researchers
have applied DL to SE tasks to facilitate software maintenance and evolution, such as code clone
detection [IEEE09], feature envy detection [IEEE10], code change recommendation [IEEE99], user
review classification [IEEE111], etc.

However, there is a lack of a comprehensive survey of deep learning usage to date in SE. This
study performs a detailed survey to review, summarize, classify, and analyze relevant papers in the
field of SE that apply DL models. We collected, reviewed, and analyzed 250 papers published in 32
major SE conferences and journals since “deep learning” was introduced in 2006. We then analyzed
the development trends of DL in SE, classified various DL techniques used in diverse SE tasks,
analyzed DL’s construction process, and summarized the research topics tackled by relevant papers.
This study makes the following contributions:

(1) We conducted a detailed analysis of 250 relevant studies that used DL techniques in terms of
publication trend, distribution of publication venues, and types of contributions. We analyzed
an example in detail to describe the basic framework and the usage of DL techniques in SE.

(2) We provided a classification of DL models used in SE based on their architectures and an
analysis of DL technique selection strategy.

(3) We performed a comprehensive analysis on data processing including data collection, data
classification, data pre-processing, data representation. we also present the common ways to
get the ground truth.

(4) We provided a description of each primary study according to six different SE activities and
conducted an analysis on these studies based on their task types. These include regression,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:3

classification, recommendation, and generation tasks. We summarized commonly used datasets
for different SE tasks.

(5) We investigated the key factors that impact the performance of DL models in SE, including
model optimization and model evaluation.

(6) We discuss distinct technical challenges of using DL in software engineering and outline key
future avenues for research on using DL in software engineering.

Section 2 presents researcher questions (RQs) and our Systematic Literature Review methodology.
Section 3 investigates the distribution and evolution of DL studies for SE tasks. Section 4 conducted a
comprehensive analysis on data processing from four perspectives – data collection, data classification,
data pre-processing, and data representation. Section 5 classifies research topics involved in primary
studies, lists benchmark datasets for different SE tasks, and analyzes the relationships of DNNs with
respect to multiple factors. Section 6 analyzes the commonly used optimization algorithms in DNNs
and provides a set of evaluation metrics for different problem types. Section 7 presents the limitations
of this study and its main threats to validity. Section 8 discusses the challenges that still need to be
solved in future work and outlines a clear research road-map of research opportunities. Section 9
concludes this paper.

2 METHODOLOGY
We performed a systematic literature review (SLR) following Kitchenham and Charters [10] and
Petersen et al. [15]. In this section, we present five research questions (RQs) and details of our SLR
methodology.

We want to analyse the history of using DL models in SE by summarizing and analyzing the
relevant studies, and providing the guidelines on how to select and apply the DL techniques. To
achieve this, we first conducted a background analysis (BA) on primary studies and wanted to answer
the following four research questions:

(1) BA: What are the trends in the primary studies on the use of DL in SE? (See appendix
B)

(2) RQ1: What DL techniques have been applied to support SE tasks?
(3) RQ2: How are datasets collected, pre-processed, and used?
(4) RQ3: What types of SE tasks and which SE phases have been facilitated by DL-based

approaches?
(5) RQ4: What techniques are used to optimize and evaluate DL-based models in SE?

The background analysis presents the distribution of relevant publications that used DL in their
studies since 2006 to give an overview of the trend of DL in SE (See Appendix B). RQ1 provides a
classification of different DL techniques supporting SE tasks and analyze their popularity based on
their frequency of use in SE. RQ2 conducts a comprehensive analysis on the datasets in terms of
data collection, data type classification, data pre-processing, data input forms, and the ground truth
generation. RQ3 investigates what types of SE tasks and which SE phases have been facilitated by
DNNs. RQ4 explores key optimization techniques and common evaluation metrics used in primary
studies.

To perform a systematic literature review of DL for SE, we need to retain relevant studies published
in a time range as many as possible and conduct a comprehensive analysis on those relevant studies
for answering the above five RQs. To achieve this, we designed an effective search method including
three steps: literature search and selection, literature filtering, and data extraction and collection. For
space limitations, we include a detailed description of each step in our SLR in Appendix A. In the
following sections we answer each of our RQs in detail from the SLR analysis.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Yanming Yang, Xin Xia, David Lo, and John Grundy

3 RQ1: WHAT DL TECHNIQUES ARE APPLIED TO SUPPORT SE TASKS?
3.1 Classification of DNNs in SE
Many sorts of DNNs have been proposed, and certain neural network architectures contain diverse
DNNs with different implementations. For instance, although LSTM and GRU are considered two
different DNNs, they are both RNNs. We categorized DL-based models according to their architecture
and different DNNs used. We classified the architecture of various DNNs into 4 categories: the layered
architecture, Encoder-Decoder, AutoEncoder (AE), and Siamese Network [2, 14]. We provided a
detailed classification of DNNs into six categories, i.e., RNN, CNN, FNN, GNN, transformers, and
tailored DNN models where tailored DNNs include the DNNs not often used in SE, e.g., DBN,
HAN, etc. Table 17 (See Appendix C) shows the variety of different DNNs and also provides specific
references in every category.

As can be seen from Table 17 (See Appendix C) where we compare DL architectures, layered-based
DNNs are the most popular and widely used architecture for SE tasks. In the layered architecture,
almost 200 primary studies used 8 different kinds of RNN-based models to solve practical SE issues,
where LSTM is the most often applied RNN-based model, followed by standard RNN. The variants of
LSTM, such as GRU and Bi-LSTM, are often adopted by researchers in multiple research directions,
such as program repair, bug detection, etc. 74 primary studies employed CNN-based models, where
almost 90% of studies employed CNN. The FNN-based model is the third most frequently used
family, followed by GNN-based models and tailored models. There are 13 combined DNNs proposed
in tailored models.

37 primary studies leveraged different types of DNNs following the Encoder-Decoder architecture,
where RNN-based models were used in 28 studies, which is much higher than the number of
other models used, i.e., CNN and FNN. In the AE architecture, 8 studies used FNN-based AEs as
their proposed novel approaches; only 5 and 1 studies selected GRU and CNN to construct AEs
respectively. There are only 3 studies published in 2020 that built DL models using the Siamese
Network architecture to address SE tasks. For example, Wu et al. [IEEE27] leveraged the Siamese
Network to detect functional clones. Pan et al. [ACM25] proposed a novel approach to conduct
automated testing towards Android applications by using the Siamese Network.

In addition, as Google presents a language understanding model so-called BERT in 2019, which
is built by pre-training a bidirectional Transformer and achieves good performance in 11 different
tasks, the transformer has become popular recently. A number of studies applied the transformer
[ACM10, ACM26, IEEE36] or pre-trained BERT [ACM07, IEEE19, IEEE29, IEEE34] to get the
vector representation of code and natural language in different SE tasks, such as code comment
generation [IEEE36], code generation [ACM10], code completion [ACM34], vulnerability detection
[ACM26], program repair [IEEE29], etc.

3.2 DL technique selection strategy
Since heterogeneous DNNs have been used for SE tasks, selecting and employing the most suitable
network is a crucial factor. We scanned the relevant sections of DL technique selection in all of the
selected primary studies and classified the extracted rationale into three categories.

Characteristic-based selection strategy (𝑆1): The studies justified the selected techniques based
on their characteristics to overcome the obstacles associated with a specific SE issue [ACM02, EL12,
IEEE41, SP10]. For instance, most of the seq2seq models were built by using RNN-based models
thanks to their strong ability to analyze the sequence data.

Selection based on prior studies (𝑆2): Some researchers determined the most suitable DNN used
in their studies by referring to the relevant DL techniques in the related work [ACM01, ACM23,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:5

EL16]. For instance, due to the good performance of CNN in the field of image processing, most
studies selected CNN as the first option when the dataset contains images.

Using multiple feasible DNNs (𝑆3): Though not providing any explicit rationale, some studies
designed experiments for technique comparisons that demonstrated that the selected algorithms
performed better than other methods. For example, some studies often selected a set of DNNs in the
same SE tasks to compare their performance and picked up the best one [IEEE104, EL03, SP08].

We noticed that the most commonly selection strategy is 𝑆1 (i.e., Characteristic-based selection
strategy), accounting for 68.8%, nearly 3 times that of 𝑆2 (27.2%). Only 10% of primary studies
adopt 𝑆3 to select their suitable DL algorithms.

Summary

(1) There are 4 different DNN architectures and over 30 different DNNs used in the selected primary
studies.

(2) We used a classification of DL-based algorithms from two perspectives, i.e., their architectures
and the families to which they belong. The architecture can be classified into four types: Layered
architecture, Encoder-Decoder, AutoEncoder (AE), and Siamese Network; the family can be
classified into six categories: RNN-based, CNN-based, FNN-based, GNN-based, Transformer-
based, and Tailored models.

(3) Compared with other DNN architectures, the layered architecture of DNNs is by far the most
popular option in SE.

(4) Four specific DNNs are used in more than 20 primary studies, i.e., CNN, LSTM, RNN, and
FNN, and each of them has several variants that are also often used in many SE tasks.

(5) As Google proposed a transformer-based language understanding model named Bert in 2019,
many studies used the transformer-based models (e.g., Bert) to generate the vector representation
of code and natural language.

(6) We summarized three types of DNN-based model selection strategies. The majority of studies
adopted 𝑆1 to select suitable DL algorithms. Only 10% of primary studies used 𝑆3 as the model
selection strategy due to the heavy workload brought by 𝑆3.

4 RQ2: HOW ARE DATASETS COLLECTED, PRE-PROCESSED, AND USED?
Data is one of the most important roles in the training phase. There are many factors that may impact
the quality of datasets, such as the source of a dataset, the dataset scale, the dataset whether has
been preprocessed and the ground truth in the dataset. For example, using unsuitable datasets or data
processing techniques can result in failed approaches or tools with low performance. We focused
on the data used in primary studies and conducted a comprehensive analysis on the steps of data
collection, data classification, data pre-processing, and data representation.

4.1 What were the sources of datasets used for training DNNs?
DL models often have the data-hungry problem [van2014modern], i.e., the scale of datasets is not
large enough to effectively train a DL model. Hence, where and how to collect large-scale datasets is
a key research question for DL model construction. In this section, we first investigated the methods
for obtaining datasets. Through analysis on the data collection methods, datasets can be classified
into four categories by utilizing different collection methods: open-source datasets, collected datasets,
constructed datasets, and industry datasets. Open-source datasets essentially incorporate benchmarks,
datasets that have been utilized in prior studies, and public datasets. Collected datasets represent
the datasets that comprise various software projects and those projects are gathered from certain
forums and websites, such as GitHub, Stack Overflow, Youtube, etc. Since there are no public and
suitable datasets for some SE tasks, many studies constructed the datasets according to their specific

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Yanming Yang, Xin Xia, David Lo, and John Grundy

125

75

37

15

N
um

be
r

of
 P

ub
lic

at
io

ns

0

20

40

60

80

100

120

140

open-source datasets collected datasets constructed datasets industry datasets

(a) The collection strategies of DL-related dataets.

35

8 8

5

19

N
um

be
r

of
 P

ub
lic

at
io

ns

0

5

10

15

20

25

30

35

40

GitHub StackOverfl�ow APP store Youtube Other systems or projects

(b) The sources of collected datasets.

Fig. 1. The source of datasets used in primary study papers
requirements. Besides, a number of studies adopted industry datasets to evaluate their DL models,
but most of these are not available, i.e., closed-source data, which increases the difficulty for other
studies to reuse them.

Fig. 1(a) shows the source of datasets in the primary studies. It can be seen that 125 studies trained
DNNs by using open-source datasets. One potential reason for choosing open-source datasets is that
using open-source datasets is a very convincing way to evaluate the performance of DNNs, which is
beneficial for other studies to reproduce and replicate those DNNs. For this reason, the existence
of widely accepted datasets in certain SE issues (e.g., code clone detection, software effort/cost
prediction, etc) are the first choice for most studies. However, if no such datasets exist, studies can
only collect related materials as a dataset from some forums or just construct a dataset. 75 studies
were estimating the effectiveness of DNNs by using collected datasets, followed by constructed
datasets (36). Only 15 studies partnered with companies and used industry data to train DNNs,
accounting for 6%.

In addition, we found two studies whose datasets come from two different data sources. Li et al.
[IEEE118] trained a DL model to extract features and variabilities from requirement specifications
and utilized an open-source dataset where the requirement documentations in the dataset are gathered
from Body Comfort System (BCS). To enlarge the scale of data, they also collected requirement
specifications from different domains. Thus, the data sources in this study combine the open-source
and collected data. Wu et al. [IEEE138] trained their DL models with two different training datasets,
respectively. One is an open-source dataset, which has been used in prior work for the programming
language syntax correction task. And they crawled useful content from the Codeforces website 1,
which is an online judge website, as a supplement. Thus, there are two data sources for datasets used
in this study: open-source and constructed data.

A large proportion of studies performed a series of experiments on large-scale datasets so as to
verify the scalability and robustness of their models. However, the lack of open-source datasets
during solving certain SE issues facilitates practitioners to collect multiple small datasets from
different places. Fig. 1(b) describes the source of collected datasets. As tens of thousands of software
practitioners contribute to the GitHub community by uploading source code of their software artifacts,
GitHub has become the most frequently used source of collected data (46.7%). Stack Overflow and
APP stores are the second most common sources for collecting data. We discussed the reason why
the number of studies that collected data from Stack Overflow is significantly smaller than that of
studies gathering data from GitHub. One reason is that since most of the studies leverage the source
code as their datasets (see Section 5.1), Stack Overflow contains source code on a small scale from a
huge number of knowledge units (i.e, Q&A pairs), and even APP store only involves text-based data,
such as the description of APP, user comments, etc. Yet, GitHub not only includes huge amounts of

1https://codeforces.com/

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:7

source code of numerous software systems but also much text-based information that can be used,
e.g., pull requests and commit messages. Such difference between GitHub and Stack Overflow as
well as APP stores makes most researchers tend to find out valuable data on GitHub. Five studies
collected screenshots from YouTube, only accounting for 6.7%. Apart from these commonly used
data sources for collected data, 19 studies collected their datasets to train DL-based models from
different systems and projects. For instance, Deshmukh et al. [IEEE54] collected bug reports from
several bug tracking systems, i.e., issue tracking systems of Open Office, Eclipse, and Net Beans
projects, as datasets to build a DL-based model for duplicated bug detection.

4.2 What were the types of SE datasets used in prior DL studies?
The datasets used in primary studies are of various data types. It is essential to analyze data types
of datasets since the relationship between the type of implicit feature being extracted and the
architecture has a dominating influence on model selection. Besides, the difference in data types used
in primary studies also impacts the data pre-processing technique adoption. Therefore, we classify
and summarize the data types in primary studies. Then, we further conduct an analysis to interpret
how data types determine the choice of data pre-processing techniques and DNNs.

Data type Classification. We classified the data types of used datasets into six categories – code-
based, text-based, metric-based, graph-based, software repository-based, and combined data types.
Table 18 (See Appendix D) describes specific data in each data type. We summarize the datasets
used in 250 primary studies. We observe that most of these studies adopted code-based datasets to
conduct their experiments, where over 80% of them used source code directly in some important
SE activities, such as software testing and maintenance. This phenomenon indicates that source
code, as the most valuable data type in SE, can provide more complete information for software in
contrast with other code-based data types. Text-based datasets include the most data types (19). The
bug report (11) and requirement documentation (8) are the two most commonly studied data types,
followed by the issue report (4). In addition, the types of the vulnerability report, code comment,
and log information, as common text-based information in SE, are used as the datasets with high
frequency. Some studies used metric-based datasets to address specific SE tasks, such as software
metrics and code metrics. For example, Kumar et al. [EL18] used a metric-based dataset to predict the
maintainability of an object-oriented software system. The dataset contains eight software metrics:
Weighted method per class (WMC), Depth of inheritance tree (DIT), Number of children (NOC),
Data abstraction coupling (DAC), Message-passing coupling(MPC), Response for class (RFC), Lack
of cohesion among methods (LCOM), Number of methods (NOM), SIZE1, and SIZE2, and they
also described the definition of each of them. The graph-based datasets used in SE often involve GUI
images, programming or video screenshots, etc. Those datasets can be used to detect GUI elements
in Android applications or identify incorrect programs from students’ programming tasks. To the
datasets used in primary studies, most of the graph-based datasets consist of a major number of
GUI images, followed by programming screenshots. Only two image-based datasets contain video
screenshots and the behavior trajectory of the model class, respectively.

Other than the above types of datasets, there are several datasets constructed by collecting the
domain-specific data elements from open-source software repositories and forums, such as GitHub
and Stack Overflow (SO). We summarized these datasets and classified them into software repository-
based ones. As we can see from Table 18, the knowledge unit (QA pairs) in SO is the most commonly
used data type, and seven studies selected id as their datasets. Apart from knowledge units in SO,
GitHub is also an important software repository as the source of SE datasets, which includes lots of
valuable content that can be explored further for finding out the solutions to specific SE problems,
such as pull-request, issues, and commits.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 1. The data pre-processing procedure for code-based datasets.

Pre-processing
techniques

Description Examples References

Data extraction Extract useful code blocks from the
corresponding datasets according to
different gradularities and SE tasks.

function-level, file-level code snip-
pets, or the source code of the whole
software systems

[IEEE32, SP07, ACM13,
IEEE32, SP07]

Unqualified data
deletion

Apply some rules to remove some
unqualified samples and retain ap-
propriate samples for different SE
tasks.

remove the code samples without
frequent occurrences in the dataset;
retain the functions with certain
method names

[MITP02, IEEE06, IEEE32,
IEEE35]

Duplicated
instance deletion

Remove duplicated samples in the
dataset.

[ICLR10, MITP02, IEEE06,
IEEE34, IEEE35]

Data compilation Compile the code blocks to generate
the compiled files.

Transform java files into .class files
throughout compilation

[IEEE27, ICLR06, ICLR04,
ICLR07]

Uncompilable
data deletion

Remove the code samples that can-
not be compiled.

[IEEE27]

Code representationToken-based code representation Tokenize the source code or binary
code into tokens

[IEEE17, IEEE32]

Tree-based code representation Parse the source code or binary code
into AST

[ACM23, ICLR10, IEEE47,
IEEE51, MK09, EL16,
EL20, IEEE72]

Graph-based code representation Generate the source code or binary
code into XFG (CFG, DFG)

[EL03, MITP01, MITP02,
MITP03, MITP05]

Data segmenta-
tion

Split the code samples for training
or testing the model.

A dataset is often divided into two
parts (e.g., training set and test set)
or three parts (e.g., training set, vali-
dation set, and test set)

[IEEE35, ICLR02, ACM16,
IEEE24]

The datasets in a few research encompass more than one single sort of data type, and we classified
those datasets into the “mixed dataset” category. From Table 18 (See Appendix D), we can see
that there are 8 varieties of mixed datasets, where all of them contain code-related data, which
also indicates source code is the most important data in SE. Besides, 7 out of 8 mixed datasets
contain two different data types, and only one study used three different kinds of data, i.e., source
code, diff files, and commit message. For instance, Xu et al. [MK02] present a novel DL model to
automatically generate commit messages for code changes by way of the use of three different data
types as their dataset, e.g., source code, diff files, and the commit messages. Besides, “source code
and its comments” is the most common combination for mixed datasets, and this combination can be
used in multiple SE tasks, such as code generation, code completion, comment generation, etc.

4.3 How have data types determined the choice of data-preprocessing
techniques?

Raw datasets used in studies need to undertake several data processing techniques to attain clean
datasets. In addition, different dataset types affect the adoption of data pre-processing strategies.
Therefore, there are near and apparent relationships between the types of datasets and the data
pre-processing strategies used. To reveal those relationships, we collected the data pre-processing
process for each type of dataset and summarized all steps and strategies utilized in related studies.
2 In this section, we present the data pre-processing procedures for four different types of data,
including code-, text-, metric-, and graph-based data. These four data pre-processing procedures can
generally clean all types of datasets.

2Note that: if the reader has a tendency to take the data processing steps of certain data types provided in this article, he just
needs to pick some of the appropriate steps in keeping with the characteristics of their dataset.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:9

Table 2. The data pre-processing procedure for text-based datasets.

Pre-processing
techniques

Description Examples References

Data extraction Extract useful texts from different
SE documentations, and sometimes
extract texts according to the time
order.

Software requirements, issue re-
ports, bug reports, code comments
etc.

[ACM03, IEEE03,
IEEE22, SP05]

Initial data seg-
mentation

Split the data to meet the require-
ments of different tasks.

Different studies may split texts into
sentences or worlds.

[ACM07, IEEE04,
IEEE21]

Unqualified data
deletion

Eliminate useless or unqualified
parts in the text.

Filter out source code fragments in
pull requests

[ACM07, ACM21,
IEEE04, IEEE19, SP02]

Text pre-
processing

Conduct further pre-processing op-
erations towards text

Lowercase the texts, remove stop
words and white spaces, etc

[ACM21, IEEE03,
IEEE21, IEEE30, SP02]

Duplicated
instance deletion

Remove duplicate samples in the
datasets

[IEEE03]

Data tokenization Use token-based text representation Tokenize the texts, sentences, or
words into tokens

[IEEE04, IEEE60,
IEEE61, EL12]

Data segmenta-
tion

Split the text-based samples for
training or testing the model.

A dataset is often divided into two
parts (e.g., training set and test set)
or three parts (e.g., training set, vali-
dation set, and test set)

[IEEE03, IEEE40]

The data pre-proceesing procedure for code-based datasets. In this section, we summarized
the data pre-processing strategies used in primary studies for cleaning code-based datasets. There
are mainly seven steps during the complete pre-processing procedure for code-based datasets. We
describe the specific strategies in Table 1.

The initial phase in the code-based data pre-processing procedure is code-based data extraction,
i.e., not all parts of the dataset are helpful for SE tasks. Accordingly, researchers need to filter out
superfluous data and hold valuable source code. For example, researchers need to eliminate the
code comments in datasets when performing clone detection as the input of code clone detectors
is only source code. Yet by far, for the vast majority of code generation tools, code comments are
the valuable data, assisting tools to understand the semantic of source code needed to be generated.
After code extraction, researchers often provide some rules to remove unqualified code. For instance,
Ben et al. [MITP02] discard code statements that occur less than 300 times in their datasets, and
Lacomis et al. [IEEE06] filtered out the methods that have no renamed variables together with ones
with more than 300 AST nodes in their data pre-processing phase. The “Duplicated instance deletion”
phase is a necessary step for most studies. The two pre-processing steps, “data compilation” and
“uncompilable data deletion”, are frequently utilized by certain studies that need to generate binary
code, Assembly code, or intermediate representation (IR) of code. After obtaining clean source code,
there are three main methods to represent code, i.e., token-based, tree-based, and graph-based code
representation methods. For studies using source code as their datasets, the most commonly used
representation is to parse the source code into ASTs, followed by the graph-based representation
way. The last step in the data pre-processing procedure is data segmentation or data splitting. Studies
using DL-based models need to split the dataset into two or three parts for training, validating, and
testing DL models.

The data pre-processing procedure for text-based datasets. Compared with code-based datasets,
there are some differences in the data pre-processing strategy for text-based datasets. We listed the
specific steps in Table 2. Seven phases are commonly used for pre-processing text-based datasets,
where some steps are similar to those for code-based datasets, such as filtering out unqualified
texts, duplicated instance deletion, and data splitting. There are still some pre-processing techniques

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 3. The data pre-processing procedure for metric-based datasets.

Pre-processing
techniques

Description Examples References

Duplicated
instance deletion

eliminate the i with same metric val-
ues and class labels.

Those defects whose metric values
are all the same need to be deleted.

[EL10,
IEEE87]

Unqualified data
deletion

Some instances with wrong or with-
out metric values need to be elimi-
nated.

If one or more metrics in an instance
are missing due to some reasons.

[EL10,
IEEE86]

Data Normaliza-
tion

The metric values need to be normal-
ized when those value have different
orders of the magnitude.

The value range for a metric is be-
tween 0 and 10, but that for another
one is over 1000.

[EL10,
ACM33]

Data segmenta-
tion

Split the metric-based instances for
training or testing the model.

A dataset is often divided into two
parts (e.g., training set and test set)
or three parts (e.g., training set, vali-
dation set, and test set)

[EL10,
ACM33,
IEEE87]

with the characteristic of the text. For instance, some data needs to be extracted in chronological
order from SE documentation. Hence, researchers require to consider the influence of time in the
text-based data extraction step. Different from source code, text-based data can be cut into sentences
or words according to the need of specific SE tasks. The two steps, unqualified data deletion and text
pre-processing, are often combined together by many studies [SP02, ACM21]. In these two steps,
like code-based data pre-processing strategies, researchers also present some rules to eliminate the
useless contents and also conduct further processing on the text-based data, such as lowercasing the
texts of the data, removing stop words, etc. Two approaches are frequently used in DL models to
tokenize the text-based data, i.e., word2vec and one-hot encoding. For word2vec is a general concept
as a number of studies encoded each word into a vector, but some studies considered a sentence
as a unit and leveraged the approach similar to word2vec to generate a representation vector for a
sentence. Finally, data segmentation is still a necessary phase for text-based datasets.

Data pre-processing procedure for metric-based datasets. Table 3 shows the data pre-processing
procedure for metric-based data. There are three steps to clean the metric-based datasets, including
duplicated instance deletion, unqualified data deletion, data normalization, and data segmentation.
When getting a dataset that contains a set of metrics, duplication instance deletion is still a necessary
step for data pre-processing. Different from the pre-processing procedure for code-based and text-
based datasets, the “unqualified data deletion” phase for metric-based datasets is target to eliminate
the instances without metric values or instances with wrong metric values. Throughout the above
data pre-processing steps, relatively clean data can be achieved but the ranges of metric values in
a dataset are pretty different. Therefore, adopting data normalization can effectively normalize the
range of metric values, which facilitates DL models to further operate the metric values.

Data pre-processing procedure for image-based datasets. Table 4 describes the data pre-
processing procedure for image-based data, involving seven pre-processing phases: image-based data
collection, duplicated instance deletion, unqualified data deletion, data augmentation, data trimming,
data annotation, and data segmentation. Different from other types of data, there are few open-source
image-based datasets in SE, and thus most studies created images and collected those images as
their datasets. For this reason, we use the name “Data collection” to express the first phase for
pre-processing image-based data. For instance, Chen et al. [IEEE44] took the screenshots for the GUI
of APPs to obtain image-based datasets. “Duplicated instance deletion” and “Unqualified instance
deletion” are still applied in some studies [SP08, IEEE44, ACM24, IEEE129]. Since training a DL

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:11

Table 4. The data pre-processing procedure for image-based datasets.

Pre-processing
techniques

Description Examples References

Data collection Collect images from different soft-
ware systems.

Collect or take the screenshots of
the app GUI and the programming
platforms.

[IEEE44,
ACM24]

Duplicated
instance deletion

Eliminate the duplicated figures in
the datasets.

Remove the repeated screenshots
from the dataset.

[SP08,
IEEE44]

Unqualified
instance deletion

Remove the unqualified instances
from the dataset.

Some studies eliminated the UI
screenshots that only contain Lay-
out components, WevViews, or the
components that only appeared very
few times.

[ACM24,
IEEE129]

Data augmenta-
tion

To ensure the proper training sup-
port, the data augmentation tech-
nique can be adopted to enlarge the
scale of datasets.

Data augmentation can generate new
images to increase the size of the
datasets by rotating the existing im-
ages or changing the colors of the
images.

[IEEE129]

Data trimming Tune the scale of data, i.e., the action
can resize images into other appro-
priate sizes.

The images are rescaled into
300*300 pixels.

[IEEE78,
IEEE23]

Data annotation Data annotation is the categorization
and labeling of data for different ap-
plications.

Give a correct label for every image
in the dataset throughout manual ver-
ification.

[SP08,
ACM24]

Data segmenta-
tion

Split the image-based samples for
training or testing the model.

A dataset is often divided into two
parts (e.g., training set and test set)
or three parts (e.g., training set, vali-
dation set, and test set)

[IEEE129]

model requires the dataset on a large scale, “Data augmentation” becomes a good option to increase
the dataset size when the preprocessing procedure is conducted for image-based data. After a dataset
containing enough image-based data, these instances often need to be cropped by the “Data trimming”
phase to the required size. Another problem is that Since most of the image-based data in SE are
generated by collecting or creating images from forums or apps (e.g. GitHub, SO, Android, etc),
which are not open-source datasets or benchmarks. For this reason, many image instances have no or
wrong labels, and therefore the “Data annotation” phase usually occurs in the processing of image
data pre-processing. In this phase, researchers need to provide a correct label for each image to
ensure that the dataset can be used to train an effective DL model. It is indisputable that the “Data
segmentation” phase is the final step of data pre-processing.

4.4 What input forms were datasets transformed into when training DNNs?
After selecting suitable datasets and obtaining clean data through data pre-processing, data needs
to be transformed into appropriate forms that can be used as the input of DNNs. In this section, we
summarized five commonly used input forms of datasets when training DL models: Token-based
input, Tree/graph-based input, Feature/metric-based input, Pixel-based input, and Hybrid input. We
give a definition of each input form and also provide an example for each input form for better
understanding. Finally, we describe usage trends for different input forms during training models.

Token-based input. Since some studies treated source code as text, they used a simple program
analysis technique to generate code tokens into sequences and transformed tokens into vectors as

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Yanming Yang, Xin Xia, David Lo, and John Grundy

the input of their DL-based models. A token-based input form can be applied to source code and
text-based data when processing related datasets. For instance, Liu et al. [IEEE34] used Bert to
generate the vector representation of source code. They treated source code as texts and transformed
source code into token sequences as the input of their model.

Tree/graph-based input. To better comprehend the structure of source code, several studies
convert source code into Abstract Syntax Trees (AST) or Control Flow Graphs (CFGs), and then
generate vector sequences by traversing the nodes in each tree or graph. For instance, different from
the approach proposed by Liu et al. [IEEE34], Alone et al. [ICLR07] also proposed an alternative
approach to encode source code by using a decoder-encoder architecture with LSTM cells. To
generate the input of their model, they first parsed source code into ASTs, which is a tree-based
representation way. After that, they represent each node using a learned embedding matrix and
encoded the entire sequence using Bi-LSTM.

Feature/metric-based input. For analyzing the characteristics of software artifacts, some studies
applied datasets consisting of features or metrics extracted from different products, and thus the
input form of the models proposed in these studies is software feature/metric-based vectors. For
example, Barbez wt al. [IEEE50] present a DL-based approach to detect anti-patterns. They first
mined version control systems to get the historical values of structural code metrics and trained a
CNN model to infer anti-pattern classes from these metric values. To identify anti-patterns from
classes, they considered seven different source code metrics: Assess To Foreign Data (ATFD), Lack
of COhesion in Methods (LCOM5), Line of Code (LOC), Number of Attributes Declared (NAD),
Number of Associated Data Classes (NADC), Number of Methods Declared (NMD), and Weighted
Method Count (WMC). Zhao et al. [IEEE90] proposed a model, named Simplified Deep Forest
(SDF) to perform Just-in-Time (JIT) defect prediction. To identify JIT defects, they generated the
feature representation of defects by using six features to depict commits in the defect data, including
the Number of unique changes to modified files (NUC), Lines of code deleted (LD), Lines of code
added (LA), Number of modified files (NF), Number of modified directories (ND), and Number of
developers working on the files (NDEV).

Pixel-based input. Some studies used datasets containing a large number of images and screen-
casts, e.g., program screencasts, UI images, etc. When preprocessing these datasets, they often
broke down screencasts into pixels as an effective input form, for analyzing graph-based datasets in
different SE tasks, such as bug detection, code extraction, etc. For instance, Chen et al. [IEEE44]
trained a neural machine translator to translate a UI design image into a GUI skeleton. Since their
dataset consists of lots of images, they transformed images into pixels and constructed input matrices
as the input of their translator.

Hybrid input. Many studies combined two or more data types extracted from software products
to build comprehensive datasets with more information for enhancing the quality and accuracy of
proposed models. For instance, Leclair et al. [ACM16] proposed a novel approach for generating
summaries of programs not only by analyzing their source code but also their code comments. For
example, Leclair et al. [IEEE136] trained a GNN model for code summarization. The dataset used
in their study contains java methods and their comments. They parsed source code into ASTs and
tokenized comments into tokens. Thus, they used hybrid inputs to represent their data, i.e., two
different input forms: tree-based and token-based input forms.

Embedding. In addition, only the vectorization of data can be the input of DNNs. We found
two techniques were often used to transform different input forms of data into vectors: One-hot
encoding and Word2vec. For example, when source code is divided into node tokens, researchers
require to adopt a proper embedding method to transform tokens into vectors. In primary studies,
only 5 studies [ACM06, SP10, IEEE50, IEEE53, IEEE76] produced the input of their models by

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:13

Table 5. The various input forms of DL-based models proposed in primary studies.

Family Input forms #Studies Total References

Token-based
input

Code in tokens 51 [AAAI01, AAAI03, AAAI05, AAAI06, ACM01, ACM06,
ACM09, IEEE07, IEEE15, IEEE32, IEEE17, IEEE34, SP02,
ACM10, ICLR02, ICLR03, ICLR04, ICLR09, ICLR11, ACM18,
ACM13, IEEE42, IEEE66, IEEE55, IEEE24, IEEE67, MK06,
MK07, ACM27, MITP08, ACM39, IEEE84, IEEE91, IEEE101,
IEEE103, IEEE112, IEEE121, IEEE115, IEEE116, IEEE122,
IEEE126, IEEE53, ACM31, W01, ACM15, ACM26, ACM17,
IEEE123, ACM12, ACM30, IEEE08, IEEE83]

Text in tokens 55 [ACM03, ACM05, ACM07, ACM08, IEEE03, IEEE04,
IEEE11, IEEE12, IEEE13, IEEE16, IEEE191, IEEE22, IEEE36,
IEEE30, SP03, SP05, IEEE39, ACM21, ACM22, IEEE45,
IEEE46, IEEE48, IEEE59, IEEE54, IEEE57, IEEE58, IEEE62,
MK02, IEEE70, EL02, EL05, EL09, EL12, IEEE71, IEEE76,
IEEE79, IEEE88, IEEE94, IEEE95, IEEE97, IEEE99, IEEE100,
IEEE118, IEEE119, IEEE58, IEEE120, SP10, ACM34, IEEE134,
fIEEE125, IEEE130, IEEE137, IEEE139, IEEE142, IEEE98]

Code and text in
tokens

14

119

[IEEE29, IEEE73, IEEE75, IEEE25, IEEE108, IEEE104,
IEEE105, IEEE106, IEEE18, IEEE107, IEEE26, IEEE135,
ACM19, IEEE132]

Tree/graph-
based input

Code in tree struc-
ture

43 [AAAI02, AAAI04, AAAI08, ACM02, IEEE01, IEEE06,
IEEE31, IEEE37, ICLR07, ICLR08, ICLR05, ICLR10, ACM20,
IEEE38, ACM23, IEEE43, IEEE46, IEEE51, IEEE63, MK04,
MK08, MK09, MK05, ACM28, EL16, EL20, EL13, IEEE82,
IEEE72, IEEE85, IEEE92, IEEE113, ACM35, IEEE131,
IEEE138, IEEE141, IEEE74, IEEE77, IEEE80, IEEE81,
MITP06, MITP07, MITP04]

Code in graph
structure

16

59

[ACM04, IEEE27, SP09, ICLR06, ICLR01, ACM11, IEEE64,
MK03, EL03, MITP01, MITP02, MITP03, MITP05, ACM38,
IEEE28, ACM37, IEEE98]

Feature-based
input feature/metric 37 37

[IEEE10, IEEE14, IEEE21, SP01, SP04, SP06, IEEE40, ACM14,
IEEE52, IEEE56, IEEE60, IEEE61, IEEE65, IET01, IEEE68,
ACM25, ACM29, EL01, EL06, EL07, EL10, EL11, EL15,
EL17, EL18, EL19, IEEE86, IEEE87, IEEE90, IEEE96, IEEE19,
ACM33, IEEE114, IEEE117, ACM32, IEEE127, IEEE50,
IEEE117]

Pixel-based
input pixel 13 13 [IEEE23, SP08, ACM24, IEEE41, IEEE44, IEEE69, EL04,

IEEE78, IEEE93, ACM36, ACM33, IEEE129, IEEE140]

Hybrid
input

Code in tree struc-
ture + text in to-
ken

19 [IEEE09, IEEE33, IEEE35, IEEE02, SP07, IEEE49, ACM16,
IEEE20, MK01, EL08, EL14, EL21, IEEE89, IEEE110,
IEEE124, IEEE128, IEEE127, IEEE135, IEEE136, IEEE135]

Code in grap
structure + text in
token

1 [AAAI07]

Code features +
text in token

2

22

[IEEE05, IEEE111]

adopting the One-hot technique, and other studies adopted Word2vec and its variants to generate
vector representation of inputs.

Table 5 depicts the input formats of DL-based models in primary studies. We can see that over
47.6% of studies transformed data (i.e., source code and various documentations) into a token-based
input form (119), where 51 studies treated source code as texts and directly converted code into token

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 6. The methods used for generating the ground-truth for unlabeled datasets.

Family Methods Description Examples

Manual
method

Card sorting The process of data labeling conforms
to that of cart sorting.

[IEEE19, IEEE30, IEEE76, IEEE97,
IEEE140]

Rule-based data
labeling

Researchers present some rules and jus-
tify labels of instances in their datasets
based on them.

[IEEE05, IEEE11, ACM19,
IEEE50, IEEE117, IEEE26]

Data label-
ing by user
study/experience

Researchers hire or invite domain ex-
perts or other SE practitioners to do data
labeling.

[ACM08, IEEE18, IEEE22,
IEEE58, IEEE78, MITP03,
IEEE118, IEEE119, IEEE58,
IEEE120]

Simple manual
data labeling

Only a simple description (only one or
several sentences) is provided for the
process of their manual labeling.

[ACM03, SP06, IEEE70, ACM25,
ACM26, MK06, IEEE72, IEEE79]

Random data la-
beling

Researchers randomly sample a part of
instances in the datasets to conduct cart
sorting.

[IEEE13, IEEE15]

Automated
method Tool-based data

labeling
Researchers use proper tools to auto-
matically label the ground truth from
datasets.

[SP08, ICLR04, IEEE54, MITP04]

Combined
method Tool-based man-

ual labeling
Researchers manually label the datasets
with the help of tools.

[EL08]

sequences as the input of models. Also, 13 studies used both source code and text-based data, and
also constructed a token-based data structure as the input of DNNs.

59 studies processed source code into tree- or graph-based representations. In these 59 studies,
over 74% of studies parsed source code into ASTs and only around 26% selected XFG (e.g. CFG and
DFG) to describe the control and data flow of code. This trend is quite beyond our expectation. Our
intuition was that graph-based code representation can retain much more structural and functional
information of code than tree-based representation, and thus studies would be more likely to select to
parse source code into XFGs for achieving the better performance of DNNs. After analysis, we think
of a potential reason on why studies transform source code into ASTs is that parsing code into ASTs
is much easier than converting them into XFGs.For example, Gao et al. [54] proposed an embedding
approach to detect code clones. They constructed ASTs from code and transformed them into vector
sequences. Then they treated the vector sequences as text-based data and leveraged the sent2vec
model to generate code embeddings. But, for studies using graph-based code representations,they
have less choice for DL model selection. Only 37 studies constructed input matrices for transforming
different metrics into the metric/feature-based input form of DNNs, followed by the pixel-based
input form. 13 studies using image-based datasets split screenshots into pixels as the basic unit of the
input form

As shown in Table 5, there are 22 studies that used more than one single data type, combining
source code and text-based data. 19 studies parsed source code into ASTs and tokenized text-based
data and only one study used graph-based representation to describe code information. There are two
studies that mixed features and information extracted from source code and text-based data to train
DNNs.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:15

4.5 How did studies generate the ground-truth for unlabeled datasets?
A ground truth dataset refers to a dataset whose instances have correct labeled instances. For most
SE issues, the ground truth dataset is an important factor to accurately evaluate the performance
of DNNs. In fact, most of the ground-truth datasets are open-source ones. However, there are no
open-source datasets in many SE tasks, and thus many studies have to customize the datasets that
meet their requirements. However, those datasets are unlabeled, unable to be directly used to train
and test DNNs. To address this problem, there are several methods to generate labels for the datasets
without ground truth. We sampled 35 primary studies that trained DNNs on closed-source datasets
(i.e., using collected datasets, constructed datasets, and industry datasets) without ground truth labels
to investigate how these studies label their datasets. We summarized data labeling methods and
classified them into three categories, which are listed in Table 6.

As shown in Table 6, manual data labeling is the most frequently used way to generate ground-truth
labels for datasets, including five main methods. Among them, one of the standard labeling methods
is card sorting. For example, Zhao et al. [ACM07] detailed depicted the tagging process. They invited
five persons, including four students and one senior researcher. To best avoid bias, they divided those
four students into two groups to do data labeling, and the senior researcher worked as the mediator
in case of conflicts. Different from cart sorting, a few studies made the rules and followed them
to generate ground-truth labels for their datasets. For instance, Liu et al. [ACM19] collected data
from four java projects, i.e., Apache, Spring, Hibernate, and Google, and trained a DNN to detect
inconsistent method names. In order to label their datasets, they made two rules. They considered the
buggy versions of the method names and give the “inconsistent’ labels. They labeled the method
names in the fixed version as consistent. Some studies hired or invited the corresponding domain
experts to label data by leveraging their rich experience in SE. However, we noticed that some studies
didn’t adopt certified methods for data labeling. A few studies gave the data labeling process using
a simple description and only mentioned they manually labeled the datasets, lacking the necessary
descriptions to detail the process, such as how many researchers are involved, how to generate
the labels for each instance, and how they manage when meeting conflicts. Besides, other studies
conducted the data labeling process selectively, i.e., they only labeled a part of instances that they
randomly sampled from their datasets, and used sampled instances to train DNNs (random data
labeling). Actually, the scale of data decreased by using the random data labeling method, which
may reduce the performance of trained DL models. Therefore, we don’t recommend studies using
the “simple manual data labeling” and “random data labeling” methods to generate ground truth
labels for datasets.

A significant disadvantage of manual labeling methods is high labor and time costs. To alleviate
this problem, some studies utilized existing tools to simplify the data labeling process. For example,
Alahmad et al. [SP08] trained a CNN model to locate code fragments from screenshots. In order to
add correct labels for images, they leveraged Dataturks 3, a cloud online image annotation service,
for data labeling. In order to identify and label the error code, Le et al. [ICLR04] used Joern 4, Which
is a code analysis shell to automatically identify sloppy coding practices and variants of known
vulnerabilities, to capture error messages by parsing the semantic and syntactical relationships of
code fragments. For the combined method for data labeling, Mi et al. [EL08] proposed the use of
CovNets to improve the code readability classification. They found that source codes that violate
programming guidelines, conventions, or styles are unreadable than others. Based on their findings,

3https://dataturks.com
4http://mlsec.org/joern/

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Yanming Yang, Xin Xia, David Lo, and John Grundy

they selected 13 software projects to find out rule violations from source code as their datasets by
using manual annotation as well as automated methods, i.e., PMD 5 and ChekStyle 6.

Summary

(1) We classified the data collection methods into four types, including open-source, collected,
constructed, and industry datasets. Most studies used open-source datasets to train their models.

(2) We noticed that GitHub is the most commonly used SE community for collecting non-open
source datasets since GitHub involves a huge volume of source code compared with other
communities.

(3) 6 different data types are used in the primary studies, i.e., code-, text-, metric-, graph-, software
repository-based, and mixed data types, where code-based and text-based types are the two main
data types being used in about 80% of primary studies.

(4) Source code is the most essential data type for solving SE issues. Few studies conducted
experiments on the image-based datasets due to lacking image-based open-source datasets in
software repositories and a limited number of SE issues image-based datasets can solve.

(5) We summarized the data pre-processing procedure used in different data types. We found that
several data pre-processing methods are public phases for multiple data types, such as “Data
extraction”, “unqualified data deletion”, “duplicated instance deletion”, and “data segmentation”.
However, in the data segmentation step, some studies were only divided into two parts: the
training set and the test set, without the validation set.

(6) Most studies parse source code into the token, tree/graph structures, or extract features from
programs. When the raw datasets are documentation, studies would convert them into token-
based vectors as the input form of their models.

(7) We also investigated what methods primary studies used for data labeling. A manual-based
method is the most commonly used for generating ground truth labels. However, some studies
used the manual-based method in the wrong way.

(8) Only a few studies used an automated method for data labeling. Therefore, we suggest further
studies can target different data types to propose more advanced automatical tools for labeling
the ground truth in datasets.

5 RQ3: WHAT TYPES OF SE TASKS AND WHICH SE PHASES HAVE BEEN
FACILITATED BY DL-BASED APPROACHES?

In this section, we explore how DNNs work for different SE activities and types of problems that deep
learning can solve. In this section, we mainly explored how DNNs work in different SE activities (i.e.,
software requirement, software development, software testing, software maintenance, and software
management) and problem types (i.e., regression, classification, generation, and recommendation
problems). We first present the overall trend of DL-based studies for different SE activities and types
of problems. Then, we performed an exhaustive analysis on usages of DL models for each activity
respectively. To achieve this, we investigated relationships of DL models with respect to specific SE
tasks, problem types, and data types, and also summarized the open-source datasets used in diverse
SE topics.

5.1 What were the distributions of DL techniques over different SE activities and
problem types?

We analyzed which SE activity and specific SE task each selected primary study tried to solve,
and then the SE task into corresponding SE activity. As shown in Fig. 2, the largest number of

5https://pmd.github.io/
6https://checkstyle.sourceforge.io/

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:17

Fig. 2. The distribution of DL tech-
niques in Different SE activities.

Fig. 3. The classification of primary
studies.

primary studies focused on addressing SE issues in software maintenance (36%). 23% of studies
researched software testing and debugging, and 24% of studies focused on solving SE tasks in
software development. Software management was the topic of 11% of primary studies, followed by
Software design and modeling (2%) and software requirements (4%). In Fig. 2, we observed that
software development, testing, and maintenance are the three most important activities throughout
the whole Software Development Life Cycle (SDLC).

We classified all primary studies into four categories based on the types of their SE tasks, i.e., the
regression, classification, recommendation, and generation problems. Fig. 3 describes the distribution
of different task types where DL techniques were applied. Classification and generation tasks account
for 80% of primary studies, where classification is the most frequent task (45%). 5% of studies
belong to the regression task and the output of their proposed models is a prediction value, such as
effort cost prediction. In SE, some studies adopted DL to concentrate on a recommendation task,
accounting for 15% of all studies. Therefore, most SE studies trained DNNs for classification and
generation tasks.

5.2 How DNNs were used in software requirements?
In this section, we analyzed main primary studies in software requirements to present the relationships
of DNNs with respect to specific SE tasks, problem types, data types, and commonly used datasets.

5.2.1 SE tasks in software requirements. Table 19 (See Appendix E) describes how DNNs
used in different SE tasks. Among all primary studies, 10 studies contributed to solving three types
of SE issues in software requirements: requirement extraction, requirement traceability, and
requirement validation. We observed that most studies are classification tasks and they trained
DNNs for identifying requirements from requirement specifications. Some of them trained DNN-
based classifiers to extract requirements. For instance, Li et al. [IEEE19] defined the requirements
discovery (DR) as a binary classification task and requirement annotation (RA) as a multi-label
classification task. Therefore, they used Bert to generate the representation of requirement sentences
and trained a Bi-LSTM classifier to identify valid requirements and give them annotations from issue
reports. But other studies treat the requirement extraction task as a generation problem. For example,
Li et al. [IEEE581] trained an LSTM-CRF model with the encoder-decoder architecture to generate a
sequence for each requirement documentation and extracted requirement entities from the sequence.

Except for using DNNs for requirement extraction, two related studies leveraged DNNs for
requirement traceability and requirement validation. To conduct automated requirements tracing,
Wang et al. [IEEE96] trained an FNN model with one input layer, one output layer, and three hidden
layers, to generate embeddings of requirement terms. They then fed the embeddings into a term-pair

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 7. The open-source datasets in software requirement.

Data type Dataset Reference

text-based data

Body Comfort System (BCS) [IEEE118, IEEE120]
IT4RE [EL09]
Danfoss [IEEE58]
MODIS [IEEE96]
CM-12 [IEEE96]

ranking model for obtaining the requirement traces. For requirement validation, the requirements
specification may be subject to validation and verification procedures, ensuring that developers
have understood the requirements and the requirements conform to company standards. Winkler et
al. [IEEE95] present an automatic approach to identify and determine the method for requirement
validation. They predefined six possible verification methods and trained a CNN model as a multiclass
and multilabel classifier to classify requirements with respect to their potential verification methods.
The mixed results revealed that the imperfect training data impacted the performance of their classifier,
but it still achieved good results on the testing data.

5.2.2 The open-source datasets in software requirements. In addition, we listed the open-
source datasets used in software requirements in Table 7. All datasets in this SE activity are the
text-based open-source data type, i.e., requirement documentation, where BCS had been used in two
primary studies. Apart from studies listed in Table 7, some studies [IEEE94, IEEE95] used industry
datasets to train DNNs.

5.3 How DNNs were used in Software design?
Table 20 (See Appendix E) shows the usages of DNNs in software design. We noticed that both of
them trained CNNs as classifiers to detect design patterns although only two studies focused on this
topic. UI design is an essential component of software development, yet previous studies cannot
reliably identify relevant high-fidelity UI designs from large-scale datasets. Martín et al. [IEEE129]
proposed a DL-based search engine to detect UI designs in various software products. The core idea
of this search engine is to build a CNN-based wireframe image autoencoder to automatically generate
labels on a large-scale dataset of Android UI designs. After manual evaluation of experimental
results, they confirmed that their search engine achieved superior performance compared with image-
similarity-based and component-matching-based methods. Thaller et al. [IEEE109] proposed a
flexible human- and machine-comprehensible software representation algorithm, namely Feature
Maps. They first extracted subtrees from the system’s abstract semantic graph (ASG). Then their
algorithm pressed the high-dimensional and inhomogeneous vector space of these micro-structures
into a feature map. Finally, they adopted a classical machine learning model and a DL model (i.e.,
Random Forest and CNN) to identify instances of design patterns in source code. Their evaluation
suggested that Feature Map is an effective software representation method, revealing important
information hidden in the source code.

We describe the way of DNNs are used in software design. There are only four studies that trained
DNNs for addressing two SE issues (i.e., software design pattern detection) in software design.

5.3.1 SE tasks in software design. For GUI modeling is a generation task to transform other
materials into software design. Chen et al. [IEEE41] proposed a neural machine translator to learn
a crowd-scale knowledge of user interfaces (UI). Their generative tool encoded the spatial layouts
of visual features learned from a UI image and learned to generate its graphical user interface

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:19

Table 8. The open-source datasets in software design.

Data type Dataset Reference

image-based data Google Play [ACM33, IEEE129, IEEE41]
text-based data Pattern-like Micro-Architecture Repository (P-MARt) [IEEE109]

(GUI) skeleton by combining RNN and CNN models. Its performance had been verified on the
large-scale UI data from real-world applications. Moran et al. [IEEE129] proposed a strategy to
facilitate developers automate the process of prototyping of GUIs in 3 steps: detection, classification,
and assembly. First, they used computer vision techniques to detect logical components of a GUI
from mock-up metadata. They then trained CNNs to category GUI-components into domain-specific
types. Finally, a KNN algorithm was applied to generate a suitable hierarchical GUI structure to
assemble prototype applications. Their evaluation achieved an average GUI-component classification
accuracy of 91%.

5.3.2 The open-source datasets in software design. In Table 8, 3 out of 4 studies addressed
specific software design problems by using image-based datasets. After analysis on relevant studies,
we observed that the design of mobile applications is a main research direction in software design as
most of the relevant studies used GUI or application screenshots as their datasets. However, since
few such open-source datasets consisting of a large number of mobile application screenshots exist
in SE communities, the studies built their datasets by collecting useful screenshots from certain
well-known mobile application markets, such as Google Play and Apple Store. Therefore, we
summarized the common place where relevant studies collect image-based data in the first row of
Table 8. Besides, we also list an open-source text-based dstaset, P-MARt, which is a repository of
pattern-like micro-architecture and is commonly used in the design pattern identification task.

5.4 How DNNs were used in software development?
In this section, we depicted how DNNs were used in software development and analyzed the usages
of different DL models combining with specific SE tasks, data types, problem types, and common
datasets in software development.

5.4.1 SE tasks in software development. Code representation. Table 21 (See Appendix E)
described the usages of DNNs in software development in detail and present the relationships among
DNNs, task types, problem types, DL architectures, and data types. Most of the studies (13) trained
DNNs to design a new code representation for better understanding the semantic of code. For instance,
different from traditional information retrieval methods that treat source code as texts to generate code
representation, Zhang et al. [ACM23] trained an AST-based neural network for code representation.
In order to reduce the scale of ASTs, they first divided a large AST into multiple sub-ASTs, and each
sub-tree represented a statement of code. After obtaining a sequence of sub-ASTs, they captured
the lexical and syntactical knowledge from them and trained a Bi-LSTM to produce the vector
representation of code. We observed that all studies in this SE task used source code as their datasets
without the combination of text data (e.g., code comments) as auxiliary information to produce code
representation. Most of the studies adopted RNN-based DNNs to process code-based data and two
studies used FNN for source code modeling, which indicates that over 90& of studies considered
these trees as sequences by traversing them although source code was parsed into tree structures.
[ACM38] is a special work, they utilized a Graph-based neural network to learn semantic program
embeddings. Specifically, they constructed the CFGs of source code and trained a GNN to learn the
semantic of code from CFGs for generating code vectors.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Yanming Yang, Xin Xia, David Lo, and John Grundy

Code generation. The second common SE task in software development is code generation also
known as code synthesis. Code generation is a typical generation problem, and 12 primary studies
used DNNs to solve it. Over half of the studies constructed their DNNs using DL architectures for
code generation, significantly higher the frequency of DL architectures used in other SE tasks of
software development. Among them, five studies used the encoder-decoder architecture to train
their models, but only one study adopted the transformer, one of the most popular DL architectures
in recent years, to produce source code. Svyatkovskiy et al. [ACM10] utilized the state-of-the-art
generative transformer model trained on large-scale source code in four programming languages
(i.e., Python, C#, JavaScript, and TypeScript languages) to automatically generate the syntactically
correct code. [ICLR09] is another interesting study for code generation since its data type was
different from most relevant studies, using code- and text-based data and their proposed DL model
combined two different DNNs, i.e., LSTM and CNN. Specifically, Bune et al. [ICLR09] combined
source code and code comments as their datasets, and utilized CNN to generate joint embeddings
of the input-output pairs independently. After that, they trained a seq2seq model with LSTM cells
to generate the syntactically correct programs. Similar to code representation, almost all relevant
studies leveraged RNN-based models to analyze the semantic of code- and text-based data. Hence,
we apparently noticed that studies tend to use the variants of RNN-based models when solving SE
tasks since source code is the main data type in SE.

Code comment generation. Code comments are crucial to program comprehension. If code
generation was to automatically synthesize syntactically correct code based on developers’ intentions,
code comment generation was to produce one or several sentences to describe the semantic of code
fragments. In this SE task, studies leveraged the materials of software projects to generate code
comments. For instance, Wei et al. [IEEE33] trained a BI-LSTM model with the encoder-decoder
architecture to leverage the existing comments of source code as exemplars for guiding the comment
generation process. Zhou et al. [EL21] first parsed source code into ASTs and extracted context
information and dependencies of code by using the program analysis technique. Then they trained an
RNN model to generate code comments by using contexts and dependencies of code as input.

Code search. There are eight studies for searching code from large-scale databases. Gu et al.
[ACM02] proposed DeepAPI, a DL-based approach to generate functional API usage sequences
for a given natural language-based user query by using an attention-based GRU Encoder-Decoder.
DeepAPI first encoded the user query into a fixed-length context vector and produced the API
sequence according to the context vector. It also enhanced their model by considering the importance
of individual APIs. To evaluate its effectiveness, they empirically evaluated their approach on 7
million code snippets. Gu et al. [IEEE20] proposed a code search tool, DeepCS by using a novel DNN
model. They considered code snippets as well as natural language descriptions, and then embedded
them into a high-dimensional unified vector representation. Thus, DeepCS gave the relevant code
snippets by retrieving the vector of the corresponding natural language query. They evaluated DeepCS
with a large-scale dataset collected from GitHub.

Code localization. Code localization is the task to identify source code from different data types.
In our primary studies, five studies localized code fragments from image-based datasets. These
five studies [SP08, ACM36, IEEE140, ACM24, IEEE78] extracted programming screenshots from
YouTube as their datasets and all trained CNN models to find out the code fragments from images.
Therefore, we observed that there are no open-source datasets for code localization and studies are
used to adopting the CNN model to process image-based data since CNN is beneficial for extracting
characteristics from images throughout multiple filters.

Code completion. There are four studies for code completion and code localization respectively.
Code completion can help developers automatically fill up the missing code snippet from software
systems. Therefore, source code is their main data type and for processing code data, RNN-based

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:21

Table 9. The open-source datasets in software development.

Task type Data type common dataset Reference

Code
representation

code-based data Java-med [ICLR07]
code-based data eth_py150_open [ACM18, ACM38]
code-based data Code.org’s Hour of Code (HOC) [ACM20]

Code
generation

code-based data HearthStone (HS) [SP09, MITP06]
code-based data Karel dataset [ICLR09, MITP08, ICLR03]
code-based data Spider [MITP06]
code-based data DeepCom [MITP07]

Code comment
generation

code-based data Google Code Jam [AAAI08]
text-based data WMT19 [IEEE36]
code- and text-baseddata CODEnn [IEEE36]

Code search
code- and text-based data StaQC benchmark [IEEE02]
code- and text-based data CODEnn [IEEE24]
code- and text-based data COsBench [IEEE24]

Code
completion

code-based data JavaScript (JS) [MK09]
code-based data Python (PY) [MK09]

Code localization image-based data YouTube [SP08, ACM24, ACM36, IEEE140]

Code
summarization

code-based data NCF representation [ICLR06]
code- and text-baseddata LeClair et al. [IEEE136]

Method name
generation code- and text-baseddata MCC corpus [IEEE59]

models become the main DNN type they selected. Different from other studies, Liu et al. [IEEE34]
pre-trained Bert, the state-of-the-art language representation model proposed by Google with a
transformer-based architecture, and fine-tuned this model for code understanding and code comple-
tion.

Code summarization and method name generation. There is a total of seven studies that
researched code summarization (5) and method name generation (2). 4 out of 5 studies used RNN-
based models to generate the description of code. Different from them, Leclair et al. [EEE136] used
a graph-based neural architecture to match the default structure of the AST for generating code
summarization. For method name generation, Gao et al. [IEEE112] combined source code and their
method name as their datasets and introduced an attention-based Encoder-Decoder framework to
directly generate sensible method names by considering the relationship between the functional
descriptions and method names. To evaluate their model, experiments were performed on large-scale
datasets for handling the cold-start problem, and the model achieved significant improvement over
baselines. Nguyen et al. [IEEE59] used code- and text-based data, including the implementation,
interface, and method names to train a seq2seq model for automatically generating method names
for functions.

5.4.2 The open-source datasets in software development. Table 9 lists the used open-source
datasets in these eight SE tasks. No benchmark datasets were used in code localization since most of
code localization tasks trained DNNs on the image-based data, and thus we provided the website
where the datasets in relevant studies were collected. We noticed that some datasets were used for
multiple SE issues. For example, A dataset named CODEnn was used in code comment generation
and code search, and The dataset, Google Code Jam, is also one of the benchmark datasets for code
clone detection. Some common datasets were used in multiple studies for the same task. For instance,
three datasets, i.e., eth_py150_open, HearthStone (HS), and the Karel dataset are used in 2, 2, and 3

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Yanming Yang, Xin Xia, David Lo, and John Grundy

studies respectively. Among these datasets, over 60% of datasets are code-based data, about 33% of
one are combined datasets, including code- and text-based data types. In addition, we present the
website, YouTube, which is frequently used to crawl the image-based data for many studies.

5.5 How DNNs were used in software testing?
In this section, we generalized specific primary studies into different SE tasks during the activity of
testing and debugging. We then summarized the datasets frequently used in these tasks.

5.5.1 SE tasks in software testing. Table 22 (See Appendix E) lists the studies working for
software testing, and includes eight different SE issues, i.e., bug-related detection, bug localization,
testing techniques, test case generation, program analysis, vulnerability detection, certification
validation, and stateful service virtualization.

Bug-related detection. In Table 22 (See Appendix C), we noticed that bug-related tasks (i.e., bug-
related detection, bug localization, and vulnerability detection) are the three most popular research
directions in software testing. A number of specific SE bug-related issues were generalized in bug
detection. For example, Barbez et al. [IEEE50] analyzed and mined the version control system to
achieve historical values of structural code metrics. They then trained a CNN based classifier, CAME,
to infer the anti-patterns in the software products. Wan et al. [IEEE68] implemented a Supervised
Representation Learning Approach (SRLA) based on an autoencoder with double encoding-layers
to conduct cross-project Aging-Related Bugs (ARBs) prediction. Wang et al. [IEEE69] present a
novel framework, Textout, for detecting text-layout bugs in mobile apps. They formulated layout
bug prediction as a classification issue and addressed this problem with image processing and deep
learning techniques. Thus, they designed a specifically-tailored text detection method and trained a
CNN classifier to identify text-layout bugs automatically. Textout achieved an AUC of 95.6% on the
dataset with 33,102 text-region images from real-world apps. Source code is composed of different
terms and identifiers written in natural language with rich semantic information.

Bug localization. 12 related studies used DNNs for bug localization. According to their problem
types, they can be classified into three categories: six classification tasks, six recommendation
tasks, and one regression task. For classification tasks, to locate buggy files, Lam et al. [IEEE40]
built an autoencoder in combination with Information Retrieval (IR) technique, rVSM, which
learned the relationship between the terms used in bug reports and code tokens in software projects.
For regression tasks, Huo et al. [IEEE124] present a deep transform learning algorithm, TRANP-
CNN, for cross-project bug localization by training a CNN model to extract transferable semantic
features from source code. The output of model output their relevant scores for bug localization.
For recommendation tasks, Zhang et al. [IEEE103] proposed CNNFL, which localized suspicious
statements in source code responsible for failures based on CNN. They trained this model with
test cases and tested it by evaluating the suspiciousness of statements. Xiao et al. [EL07] used the
word-embedding technique to retain the semantic information of the bug report and source code and
enhanced CNN to consider bug-fixing frequency and recency in company with feature detection
techniques for bug localization.

Vulnerability detection. Seven studies constructed DNNs for vulnerability detection. Among
them, Tian et al. [EL03] proposed to learn the fine-grained representation of binary programs and
trained four different DNNs (i.e., RNN, LSTM, GRU, and BRNN) for intelligent vulnerability
detection. Apart from two studies using FNNs [ICLR04, MK03], most tasks trained RNN-based and
CNN models to identify vulnerabilities in software. For example, Dam et al. [IEEE131] trained an
LSTM model for vulnerability detection, which automatically captured both syntactic and semantic
features of source code. The experiments on 18 Android applications and Firefox applications
indicated that the effectiveness of their approach for within-project prediction and cross-project

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:23

prediction. Han et al. [IEEE57] trained a shallow CNN model to capture discriminative features
of vulnerability description and exploit these features for predicting the multi-class severity level
of software vulnerabilities. They collected large-scale data from the Common Vulnerabilities and
Exposures (CVE) database to test their approach.

Testing techniques. Many studies focus on new methods to perform testing, such as for apps
[ACM25], games [IEEE07], and other software systems [IEEE14]. There are also some studies using
well-known testing techniques (e.g., fuzzing [IEEE12, ACM31] and mutation testing [IEEE65])
for improving the quality of software artifacts. Zheng et al. [IEEE07] conducted a comprehensive
analysis of 1,349 real bugs and proposed Wuji, a game testing framework, which used an FNN model
to perform automatic game testing. Ben et al. [IEEE14] also used the FNN to test Advanced Driver
Assistance Systems (ADAS). They leveraged a multi-objective search to guide testing towards the
most critical behaviors of ADAS. Pan et al. [ACM25] present Q-testing, a reinforcement learning-
based approach, benefiting from both random and model-based approaches to automated testing
of Android applications. Mao et al. [IEEE65] performed an extensive study on the effectiveness
and efficiency of the promising PMT technique. They also complemented the original PMT work
by considering more features and the powerful deep learning models to speed up this process of
generating the huge number of mutants.

Test case generation. Test case generation is another important SE task in software testing, and
three different DNNs (i.e., FNN, RNN, and LSTM) are used to generate test cases for enhancing
testing efficiency. In these studies, two studies [ACM26, IEEE17] trained DNNs into the encoder-
decoder architecture. Specifically, Liu et al. [ACM26] proposed a deep natural language processing
tool, DeepSQLi, to produce test cases used for detecting SQLi vulnerabilities. They trained an
encoder-decoder-based seq2seq model to capture the semantic knowledge of SQLi attacks and used
it to transform user inputs into new test cases. Only one study combined two different DNNs for test
case generation. For example, Zhao et al. [IEEE61] trained a DL-based model that combines LSTM
and FNN to learn the structures of protocol frames and deal with the temporal features of stateful
protocols for carrying out security checks on industrial networks and generating fake but plausible
messages as test cases. In addition, the data types for test case generation are diverse.

Program analysis. Some studies utilized DNNs for program analysis, attempting to find patterns
or anomalies thought to reveal specific behaviors of the software. These studies mainly focused on
two directions: static analysis and type inference.

For example, Due to the impact of high false-positive rates on static analysis tools, Koc et al.
[IEEE64] performed a comparative empirical study of 4 learning techniques (i.e., hand-engineered
features, a bag of words, RNNs, and GNNs) for classifying false positives, using multiple ground-
truth program sets. Their results suggest that RNNs outperform the other studied techniques with high
accuracy. For type reference, Malik et al. [ACM17] formulated the problem of inferring Javascript
function types as a classification task. Thus, they trained a LSTM-based neural model to learn
patterns and features from code annotated programs collected from real-world projects, and then
predicted the function types of unannotated code by leveraging the learned knowledge.

Others. Some studies leveraged DNNs on certain special SE tasks. For example, Chen et
al.[IEEE52] applied deep reinforcement learning to automated testing of certificate verification
in SSL/TLS implementations. They trained a CNN model for feature extraction and an RNN model
for the next action recommendation, which guided to output newly generated certificates that could
trigger discrepancies with high efficiency. Enicser et al. [SP10] used LSTM to conduct stateful
service virtualization for improving software testing.

5.5.2 The open-source datasets in software testing. Table 10 lists the datasets that have been
used in software testing for addressing different research topics. No benchmark datasets were used in

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 10. The open-source datasets in software testing.

Task type Data type Dataset Reference

Bug detection code-based data Linux, MySQL and Apache HTTPD server [IEEE68]
code-based data [17] includes 986 apps, 578 normal apps,

and 408 vulnerable apps
[EL17]

text-based data bug report from Mozilla [EL12]

Bug localization code-based data Defects4J benchmark [IEEE40]
text-based data [18] bug report benchmark [IEEE40]
code- and text-based data AspectJ in Bugzilla, SWT, JDT, Tomcat [IEEE135]

Vulnerability detection code-based data MC&NH dataset [EL03]
text-based data CVE Details websit [IEEE57]

Test case generation code-based data REAPER [IEEE17]
image-based data MNIST, fashion-MNIST [IEEE93]
image-based data CIFAR-10, CIFAR-100 [IEEE93]

Program analysis text-based data static analysis alarm data [IEEE62]

bug classification code-based data MozillaProject, Radare2Project [EL13]

the SE research topic of testing techniques. This is because 4 out of 6 studies in this research topic
utilized industry datasets or constructed datasets by themselves. Only 2 studies trained DNNs using
collected datasets. Actually, the datasets used in bug detection, bug localization, and bug classification
tasks can act as generic bases being used for other bug-related studies, where code-based datasets
generally consist of several open-source projects, and the text-based datasets are composed of a
number of bug reports that provide the information or diverse metrics of bugs. Therefore, there are two
normal pre-processing methods for bug reports and certain similar text-based datasets. one is to treat
the content in those datasets as text and then tokenize the content according to suitable granularities,
such as words, sentences, or paragraphs, etc. Another method is to extract valuable features/metrics
from the dataset. CVE security vulnerability database (aka. CVE) is the most well-known dataset for
vulnerability detection, but another study trained the DL model on the MC&NH dataset in this SE
task. We found three open-source datasets that were used for test case generation. Two of three are
image-based datasets, and these two are both well-known handwritten digital datasets. For program
analysis, only one benchmark dataset is noticed, containing many descriptions on static analysis
alarm data. Therefore, researchers need to contribute to constructing benchmark datasets for certain
SE tasks, such as program analysis and testing techniques. But, there are some well-known and public
benchmark datasets for some SE topics, such as the relationship between CVE and vulnerability
detection. In addition, the scale of datasets is another important point for further study.

5.6 How DNNs were used in software maintenance?
There are a lot of studies contributing to increasing maintenance efficiency, such as improving
source code, logging information, software energy consumption, etc. [IEEE123, IEEE125, IEEE126,
IEEE56, ACM14]. We summarized the SE problems the related studies solved and classified them
into different categories based on their research topics. Since over 100 studies are classified into
this category, it is difficult to present them all in this section. Therefore, we listed 12 main search
topics, where each topic was researched by no less than two studies. Then, we present the benchmark
datasets being multiple used in these 12 topics.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:25

5.6.1 SE tasks in software maintenance. Defect prediction. Defect prediction is the most
extensive and active research topic in the use of DL techniques in software maintenance. In Table 23
(See Appendix E), we noticed that over 20% of primary studies focused on identifying defects
[EL10, EL15, IEEE128, IEEE114, IEEE74, EL06]. These studies for defect prediction can be
further classified into three categories: metric-based, semantic-based, and Just-In-Time(JIT) defect
prediction.

Metrics or features extracted from a software product can give a vivid description of its running
state, and thus it is easy for researchers and participants to use these software metrics for defect
prediction. Xu et al. [EL15] built an FNN model with a new hybrid loss function to learn the intrinsic
structure and more discriminative features hidden behind the programs. Previous studies obtained
process metrics throughout analyzing change histories manually and often ignored the sequence
information of changes during software evaluation. Liu et al. [IEEE114] proposed to obtain the
Historical Version Sequence of Metrics (HVSM) from various software versions as defect predictors
and leveraged RNN to detect defects.

For semantic-based defect prediction, Wang et al. [IEEE43, IEEE127] leveraged Deep Belief
Network (DBN) to automatically learn semantic features from token vectors extracted from programs’
ASTs, compared to most previous works that use manual feature specification. They evaluated their
approach on file-level defect prediction tasks (within-project and cross-project) and change-level
defect prediction tasks (within-project and cross-project) respectively. Similarly, Dam et al. [IEEE74]
used a tree-based LSTM network, which can directly match with the AST of programs for capturing
multiple levels of the semantics of source code.

For Just-In-Time (JIT) defect prediction, Hoang et al. [IEEE73] presented an end-to-end DL-based
framework, DeepJIT, for change-level defect prediction, or Just-In-Time (JIT) defect prediction.
DeepJIT automatically extracted features from code changes and commit messages, and trained
a CNN model to analyze them for defect prediction. The evaluation experiments on two popular
projects showed that DeepJIT achieved improvements over 10% for two open-source datasets in
terms of AUC.

Program repair. Apart from defect prediction, diverse DNNs were frequently applied for repairing
incorrect programs (13). For example, Bhatia et al. [IEEE42] proposed a novel neuro-symbolic
approach combining DL techniques with constraint-based reasoning for automatically correcting
programs with errors. Specifically, they trained an RNN model to perform syntax repairs for the
buggy programs and ensured functional correctness by using constraint-based techniques. Tufano et
al. [ACM35] proposed to leverage the proliferation of software development histories to fix common
programming bugs. They used the Encoder-Decoder framework to translate buggy code into its fixed
version after generating the abstract representation of buggy programs and their fixed code. White
et al. [IEEE105] trained an autoencoder framework to reason about the repair ingredients (i.e., the
code reused to craft a patch). They prioritized and transformed suspicious statements and elements in
the code repository for patch generation by calculating code similarities. Lutellier et al. [ACM27]
present a new automated generate-and-validate program repair approach, CoCoNuT, which trained
multiple models to extract hierarchical features and model source code at different granularity levels
(e.g., statement and function level) and then constructed a CNN model to fix different program bugs.

Code clone detection. Code clone detection is one of the most important aspects to assess software
quality and reusability. 11 primary studies trained DL models for detecting code clones. In Table 23
(See Appendix E), we observed that the RNN-based model is the first choice for these studies to
detect code clones, and the code-based dataset is the main data type for clone detection. Most studies
use RNNs including RNN [IEEE51], RvNN [IEEE15], and LSTM [IEEE110, IEEE77] to identify
clones in source code. White et al. [IEEE15] proposed a novel code clone detector by combining two
different RNNs, i.e., RtNN and RvNN, for automatically linking patterns mined at the lexical level

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Yanming Yang, Xin Xia, David Lo, and John Grundy

with patterns mined at the syntactic level. They evaluated their DL-based approach based on file-
and function-level. Gao et al. [IEEE51] first transformed source code into AST by parsing programs
and then adopted a skip-gram language model to generate vector representation of ASTs. After that,
they used the standard RNN model to find code clones from java projects. Buch et al. [IEEE110]
introduced a tree-based code clone detection approach, and traversed ASTs to form data sequences as
the input of LSTM. Perez et al. [IEEE77] also used LSTM to learn from ASTs, and then calculated
the similarities between ASTs written in Java and Python for identifying cross-language clones. Since
source code can be represented at different levels of abstraction: identifiers, Abstract Syntax Trees,
Control Flow Graphs, and Bytecode. One study treated code clone detection as a regression task,
calculating the similarities between code fragments. For example, Tufano et al. [IEEE80] conducted a
series of experiments to demonstrate how DL can automatically learn code similarities from different
representations.

Bug report related. The bug report is one of the important crucial SE documentation for software
maintenance, and bug reports with high quality can effectively reduce the cost of fixing bug pro-
grams. Six studies focused on improving the quality of bug reports, mainly including three research
directions: bug report summarization [IEEE39, IEEE137], bug report recommendation [SP02], and
valid bug report detection [IEEE142, IEEE64]. For example, Li et al. [IEEE39] performed the first
exploration on bug report summarization by applying DL techniques. They proposed a new DL-based
framework, called Deepsum, which used a stepped auto-encoder to integrate the features of bug
reports into the auto-encoder network. This framework was an unsupervised DNN, reducing the
effort on labeling datasets. Choetkiertikul et al. [SP02] trained an LSTM model as a predictive model
to automatically learn semantic features of bug reports and recommended the most relevant code
and solutions for new issues. He et al. [IEEE142] trained a CNN model to determine the valid bug
reports by capturing the contextual and semantic features of these reports.

Software quality evaluation. Some primary studies proposed DL-based models to evaluate
software quality in terms of multiple perspectives, such as traceability, readability, reliability, main-
tainability, and trustworthiness. For example, Guo et al. [ACM21] present a solution to incorporate
requirements artifact semantics and domain knowledge into the tracing solution for avoiding misun-
derstanding of software artifacts and delivering imprecise and inaccurate results. They implemented
a tracing neural network architecture to generate trace links by using word Embedding and various
RNN models. They evaluated their approach on 360 different configurations of the tracing network
and found that BI-GRU was the best DNN model for the tracing task. Mi et al. [EL08] proposed to
leverage CNN to improve code readability classification. First, they present a transformation strategy
to generate integer matrices as the input of ConvNets. Then they trained Deep CRM, a DL-based
model, which was made up of three separate ConvNets with identical architectures for code readabil-
ity classification. For software maintainability and trustworthiness, Kumar et al. [EL18] performed
two case studies and applied three DNNs i.e., FLANN-Genetic (FGA and AFGA), FLANN-PSO
(FPSO and MFPSO), FLANN-CSA (FCSA), to design a model for predicting maintainability. They
also evaluated the effectiveness of feature reduction techniques for predicting maintainability. The
experimental result showed that feature reduction techniques can achieve better results compared
with using DNNs. It is essential and necessary to evaluate software trustworthiness based on the
influence degrees of different software behaviors for minimizing the interference of human factors.
Tian et al. [EL04] constructed behavior trajectory matrices to represent the behavior trajectory and
then trained the deep residual network (ResNet) as a software trustworthiness evaluation model
to classify the current software behaviors. After that, they used the cosine similarity algorithm to
calculate the deviation degree of the software behavior trajectory.

Compiled-related. Four studies focused on addressing two specific problems (i.e., compiled
code generation and compiler optimization) in software compilation. These two studies [IEEE06,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:27

IEEE113] proposed DL-based models to generate decompiled source code and identifiers, and other
studies [IEEE67, IEEE91] recommended optimization option sequences during compilation. The
data type of their work is source code and 3 out of 4 studies adopted RNN-based models as their
solutions.

SATD detection and code smell detection. Technical debt (TD) is a metaphor to reflect the trade-
off developers make between short-term benefits and long-term stability. Self-admitted technical
debt (SATD), a variant of TD, has been proposed to identify debt that is intentionally introduced
during SDLC. Ren et al. [ACM34] proposed a CNN-based approach to determine code comments as
SATD or non-SATD. They exploited the computational structure of CNNs to identify key phrases
and patterns in code comments that are most relevant to SATD for improving the explainability of
our model’s prediction results. Zampetti et al. [IEEE100] proposed to automatically recommend
SATD removal strategies by building a multi-level classifier on a curated dataset of SATD removal
patterns. Their strategy was capable of recommending six SATD removal patterns, i.e., changing
API calls, conditionals, method signatures, exception handling, return statements, or telling that a
more complex change is needed.

Code review and software/code classification. For code review, Siow et al. [IEEE99] believed
that the hinge of the accurate code review suggestion is to learn good representations for both code
changes and reviews. Therefore, they designed a multi-level embedding framework to represent the
semantics provided by code changes and reviews and then well-trained through an attention-based
deep learning model, CORE. Guo et al. [IEEE106] proposed Deep Review Sharing, a new technique
based on code clone detection for accurate review sharing among similar software projects, and
optimized their technique by a series of operations such as heuristic filtering and review deduplication.
They evaluated Deep Review Sharing on hundreds of real code segments and it won considerable
positive approvals by experts, illustrating its effectiveness.

For software/code classification, Bui et al. [IEEE104] described a framework of Bi-NN that built a
neural network on top of two underlying sub-networks, each of which encoded syntax and semantics
of code in a language. Bi-NN was trained with bilateral programs that implement the same algorithms
and/or data structures in different languages and then be applied to recognize algorithm classes
across languages. Software categorization is the task of organizing software into groups that broadly
describe the behavior of the software. However, previous studies suffered very large performance
penalties when classifying source code and code comments only. Leclair et al. [IEEE53] proposed a
set of adaptations to a state-of-the-art neural classification algorithm and conducted two evaluations.
In addition, we noticed that most studies in terms of these two SE tasks used code-based datasets to
train different DNNs as classifiers for solving specific issues.

Code change and incident detection. For code change-related tasks, Tufano et al. [ACM15]
trained an RNN model with an encoder-decoder architecture to learning code changes from pull
requests. Hoang et al. [IEEE45] used the HAN model to learn from log messages for generating the
suitable representation of code changes.

For incident detection. Chen et al. [ACM08] selected multiple models to identify linked incidents
from all incidents collected from 465 different services. Chen et al. [IEEE22] trained an attention-
based CNN model to characterize and prioritize incidents for large-scale online service systems.

Others. Apart from the studies concentrating on these 12 SE tasks, a number of studies applied
DNNs on other research topics for improving software quality. For example, Romansky et al.
[IEEE56] used an LSTM model to learn from features of applications to estimate the software
energy consumption. Hoang et al. [IEEE123] trained a CNN-based model on patches that have been
committed to mainline Linux kernel and detect stable patches from them.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:28 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 11. The open-source datasets in software maintenance.

Task type Data type Dataset Reference

defect prediction code-based data PROMISE dataset [SP04, IEEE46, IEEE43,
IEEE85, IEEE127]

code-based data Ivy, jEdit, Log4j, Lucene,
PBeans, POI, Synapse, Velocity,
Xalan-J, Xerces

[IEEE87, IEEE92]

code-based data cleaned NASA , AEEEM
datasets

[SP04]

code-based data Bugzilla, Columba, Eclipse JDT,
Eclipse Platform, Mozilla and
PostgreSQL

[IEEE84]

text-based data CSIC dataset [IEEE30]

program repair code-based data DeepFix dataset [AAAI03, IEEE138]
code-based data SATE IV [MITP01]
code-based data ETH-Py1502, MSR-VarMisuse [ICLR02]
code-based data SPoC dataset [ACM11]
code- and text-based data Bears, QuixBugs,

ManySStuBs4J
[IEEE29]

code- and text-based data Bugs.jar [IEEE29, IEEE46]
code- and text-based data Defects4J [IEEE29, IEEE46,

IEEE132]

code clone detection code-based data BigCloneBench [AAAI04, ACM04,
IEEE27, MK04, MK05,
IEEE110, IEEE38,
IEEE51, IEEE55]

code-based data OJClone [AAAI04, MK04, MK05,
ACM28, IEEE38]

code-based data Google Code Jam [ACM04, IEEE27]

bug report related text-based data Summary Dataset(SDS) [IEEE137, IEEE39]
text-based data Authorship Dataset (ADS) [IEEE137, IEEE39]
text-based data OpenOffice, Eclipse, Net Beans [IEEE139]

SADT detection text-based [19] [IEEE100]
text-based data [1] [IEEE28]

code review code-based data cloudstack, ambari,aurora, drill-
git, accumulo and hbase-git.

[AAAI05]

code change text-based data QT, OPENSTACK datasets [IEEE45]

software/code classifi-
cation

code-based data [AAAI02] [AAAI02]

5.6.2 The open-source datasets in software maintenance. Table 11 depicts the open-source
datasets used for diverse SE tasks in software maintenance, where there are four SE tasks that no
benchmark datasets were applied in, i.e., software quality evaluation, compiled-related, code smell
detection, and incident detection. Open-source and benchmark datasets are applied in 8 different
research directions. In defect prediction, the PROMISE dataset was used in five studies. Two studies
for defect prediction utilized a series of open-source software systems as their datasets. There are six
open-source datasets that can be used to repair bug programs, including four code-based and two
combined data types. Defects4J, Bugs.jar, DeepFix datasets were used in multiple studies.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:29

Three well-known benchmark datasets are built for code clone detection, where BigCloneBench is
the most widely used dataset applied in nine different studies. Each dataset contains a large number
of function pairs in different clone types. The BigCloneBench and OJClone are two benchmark
datasets in Java, and GoogleCodeJam is the dataset in the C language. Three datasets have been used
for bug report-related studies, and they contain information on bug reports. Hence, two different
ways to process these datasets. One is to extract useful metrics from bug reports and another way is
just to treat bug reports as pure texts in data pre-processing before further analysis. There are two
open-source datasets for SADT detection, and these two datasets are also constructed and published
by prior work. In all primary studies, only one open-source dataset exists in the field of code review,
code change, and software/code classification.

5.7 How were DNNs used in software management?
Software management involves a series of SE tasks that can be classified into two categories: effort
cost prediction and software repository mining. Actually, there are five sub-directions in software
repository mining, i.e., mining GitHub, ming Stack Overflow (SO), app mining, tag mining, and
developer-based mining.

5.7.1 SE tasks in software management. Effort cost prediction. Since only 39% of software
projects are finished and published on time relative to the duration planned originally [EL19, IET01],
it is necessary to assess the development cost to achieve reliable software within development
schedule and budget. Table 24 (See Appendix E) shows the relationships between DNNs used for
effort cost prediction and several factors that include task types, problem types, DL architecture,
and data types. For example, Lopez et al. [EL19] compared three different neural network models
for effort estimation. The experimental result demonstrated that MLP and RBFNN can achieve
higher accuracy than the MLR model. Choetkiertiku et al. [IEEE134] observed that few studies
focused on estimating effort cost in agile projects, and thus they proposed a DL-based model for
predicting development cost based on combining two powerful DL techniques: LSTM and recurrent
highway network (RHN). Phannachitta et al. [EL01] conducted an empirical study to revisit the
systematic comparison of heuristics-based and learning-based software effort estimators on 13
standard benchmark datasets. Ochodek et al [EL02] employed several DNNs (i.e., CNN, RNN,
Convolutional + Recurrent Neural Network (CRNN)) to design a novel prediction model, and
compared the performance of the DL-based model with three state-of-the-art approaches: AUC,
AUCG, and BN-UCGAIN. They noticed that CNN obtained the best prediction accuracy among all
software effort adaptors.

Effort cost prediction is a vital regression task for software management. Table 24 (See Appendix
E) shows that two data types were involved in this task, i.e., text- and metric-based data, and studies
often applied FNN-based models to learn metric-based datasets in this task.

Mining GitHub. GitHub, as one of the most popular and widely used SE communities, involves
the huge scale of source code and other forms of information (e.g., pull requests, commit messages,
and issues) to help developers build and design software. According to different contents collected
from GitHub, three interesting SE tasks arise in 6 primary studies. Among them, three studies
worked for commit message generation [MK02, IEEE11, IEEE75], and two studies contributed
to issue-commit link recovery [EL14, IEEE107]. Only one primary study focused on pull request
description generation [IEEE04]. For instance, Xie et al. [IEEE107] proposed a new approach to
recover issue-commit links. They constructed the code knowledge graph of a code repository and
captured the semantics of issue- or commit-related text by generating embeddings of source code files.
Then they trained a DNN model to calculate code similarity and semantic similarity using additional
features. Ruan et al. [EL14] propose a novel semantically-enhanced link recovery method, DeepLink,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:30 Yanming Yang, Xin Xia, David Lo, and John Grundy

using DL techniques. They applied word embedding and RNN to implement a DNN architecture
to learn the semantic representation of code and texts as well as the semantic correlation between
issues and commits. Liu et al. [IEEE04] proposed a DL-based approach to automatically generate
pull request descriptions based on the commit messages and the added source code comments in pull
requests. They formulated this problem as a text summarization problem and solved it, constructing
an attentional encoder-decoder model with a pointer generator.

Each of the studies related to mining GitHub in Table 24 (See Appendix E) trained an RNN-based
model as a generator for solving these three SE issues. All of them were used text-based data as
the whole or a part of their datasets, where 4 out of 6 studies combined text data with source code.
Throughout analysis on the relationships between these factors, studies tend to utilized RNN-based
models for generation tasks, and the RNN models are better at learning something from text-based
data.

Mining SO and app mining. Similar to mining GitHub, a number of studies adopted diverse
DNNs to mine Stack Overflow (SO) and applications in Google Play. For mining SO, Chen et al.
[IEEE16] also applied word embeddings and the CNN model to mine SO for retrieving cross-lingual
questions. They compared their approach with other translation-based methods, and the final results
showed that their approach can significantly outperform baselines and can also be extended to dual-
language document retrieval from different sources. Yin et al. [IEEE79] proposed a new approach to
pair the title of a question with the code in the accepted answer by mining high-quality aligned data
from SO using two sets of features.

Except for mining from SO, several studies employed DL techniques to mine constructive contents
from the application store. For example, Gao et al. [IEEE03] treated a review and its response
descriptions as a unit and collected the units as their datasets to train an RNN model with an encoder-
decoder architecture for generating the response for a new review. Guo et al. [IEEE111] used reviews
in Google Play as their datasets and predefined a set of software metrics. They then pre-processed
their text-based data into metrics and trained a CNN model to classify reviews based on their metric
values.

Tag mining and developer-based mining. There are four tag-related studies, involving two rec-
ommendation tasks, one classification task, and one generation task. Among them, one empirical
study [EL05] investigated whether deep learning is better than traditional approaches in tag recom-
mendation for software information sites. They implemented four different DL-based approaches,
i.e., TagCNN, TagRNN, TagHAN, and TagRCNN, and three traditional approaches, i.e., EnTagRec,
TagMulRec, and FastTagRec, for evaluating their performance in tag recommendation. Their ex-
perimental results showed that the performance of these four DL-based models varies significantly,
where TagCNN and TagHAN achieved worse performance than traditional approaches. But, the
performance of two CNN-based models is better than traditional approaches in tag recommendation
tasks. Thus, selecting appropriate DNNs for different SE tasks can achieve better performance than
traditional approaches.

Some studies used DL-based approaches to mine developers’ information. For example, Huang
et al. [IEEE130] proposed a new model to classify sentences from issue reports of four projects in
GitHub. They constructed a dataset collecting 5,408 sentences and refined previous categories (i.e.,
feature request, problem discovery, information seeking, information giving, and others). They then
trained a CNN-based model to automatically classify sentences into different categories of intentions
and used the batch normalization and automatic hyperparameter tuning approach to optimize their
model. Zhang et al. [SP06] present a meta-learning approach to recommend suitable top k developers
with the highest possibility of finishing the corresponding tasks published in the competition-based
crowdsourcing Software Development (CSD) platform.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:31

Table 12. The open-source datasets in software management.

Task type Data type common dataset Reference

effort cost prediction metric-based data ISBSG [EL19]
metric-based data COCOMO datase [IET01]

GitHub mining text-based Jiang and McMillan [MK02]

mining tag text-based McGill and Android tutorial datasets [EL05]

5.7.2 The open-source datasets in software management. Table 12 shows several open-
source datasets that were used in software management. We observed that two benchmark datasets are
in the effort cost prediction and they are both metric-based datasets. There are only two open-source
datasets used in data mining tasks, i.e., GitHub mining and mining tag. One potential reason is that
most data mining tasks crawl appropriate contents from different SE communities, and thus few
open-source datasets are in software repository mining.

Summary

(1) We grouped six SE activities based on the body knowledge of SE – Software requirements,
Software design and modeling, Software implementation, Software testing and debugging,
Software maintenance, and Software management – and provided an outline of the application
trend of DL techniques among these SE activities.

(2) We summarized various SE tasks into four categories – regression task, classification task,
recommendation task, and generation task – and classified all primary studies based on the task
types.

(3) Software testing and software maintenance are the two SE activities containing the most related
studies and include 21 specific SE research topics in which DL techniques were used.

(4) We discussed the relationships between DNNs, DL architectures, problem types, and data
types. We found that most of the encoder-decoder and autoencoder architectures were used in
generation tasks.

(5) We noticed that the DL-based model selection has a close relationship between the data input
forms. Studies often adopted RNN-based models to train sequence data including text-based
and a part of code-based data, and used CNN models to extract features from code-based data in
tree and graph structures as well as image-based data.

(6) Text- and code-based datasets are the most common data types in different SE tasks.

6 RQ4: WHAT TECHNIQUES ARE USED TO OPTIMIZE AND EVALUATE DL-BASED
MODELS IN SE?

In the training phase, developers attempt to optimize the models in different ways for achieving good
performance. In this section, we summarized the information describing the optimization methods
and evaluation process, and performed an analysis on key techniques.

6.1 What learning algorithms were used in order to optimize the models?
The performance of DL-based models is dependent on selected optimization methods, which can
systematically adjust the parameters and learning rates of the DNN as training progresses.

We identified the optimization algorithms in primary studies and separated them into two categories.
One category consists of the optimizers for the way DNNs converge and adjust parameters. Another
category includes optimizers that can adjust the learning rate. Fig 4 illustrates the frequency of the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:32 Yanming Yang, Xin Xia, David Lo, and John Grundy

2

2

3

8

11

1

1

1

2

7

15

31

P
ar

am
et

er
 o

pt
im

iz
at

io
n

al
go

rit
hm

s

Bayesian optimization

L-BFGS

PSO

Hyperparameter

Fine-tuning

Scaled gradient

Conjugate gradient

Gradient clipping

Policy GD

min-batch SGD

GD

SGD

0 5 10 15 20 25 30 35

2

2

2

2

3

3

4

5

71

Le
ar

ni
ng

 r
at

e
op

tim
iz

at
io

n
al

go
rit

hm
s

Nesterov momentum

Adamdelt

Adagrad

Adam stochastic

Adamax

Minibatch adam

RMSProp

Adam update

Adam

0 10 20 30 40 50 60 70 80

(a) Various parameter optimization algorithms used in primary studies.

Fig. 4. Distribution of optimizers used in primary studies.

use of parameter adjustment and learning rate optimization methods used in primary studies. We see
that from Fig. 4(a), Gradient descent is one of the preferred ways to optimize neural networks and
many other machine learning methods, which was used by 15 different primary studies [AAAI03,
IEEE03, IEEE33, ACM22, IEEE50]. Besides, its six different gradient descent variants, including
SGD, mini-batch GD, policy GD, gradient clipping, conjugate gradient, and scaled gradient, are also
widely used in primary studies, where SGD is the most popular optimizer selected by over 30 studies
[AAAI05, AAAI07, AAAI08, ACM05, IEEE19, SP05, ACM10, ICLR11, MK07, MK08, IEEE85,
ACM19]. Except for gradient-based optimizers, five other types of parameter optimization algorithms
were used in over 20 studies, where 11 studies mentioned they used fine-tuning [IEEE44, IEEE97,
ACM27, IEEE97] to optimize their parameter values, followed by the Hyperparameter optimization
algorithm [IEEE50, IEEE81, IEEE83]. There are seven studies that selected PSO, L-BFGS, and
Bayesian optimization algorithms to tune their parameters.

Apart from tuning parameters in neural networks, choosing a proper learning rate can be also im-
portant to improve the performance of DL-based models. Fig. 4(b) shows the distribution of the usage
of learning rate optimization algorithms. We noticed that Adam was apploed in a majority of studies
[AAAI01, IEEE02, IEEE18, IEEE24, IEEE28, IEEE30, IEEE32, SP02, IEEE34, IEEE35, ICLR01,
SP09, ICLR03, ICLR04, ICLR05, ICLR06, ICLR08, ACM11, ACM12] and its use frequency is
significantly higher than other optimizers. Several variants of Adam were also used in some primary
studies, such as Adam update [IEEE57], Adagrad [IEEE65], Adadelt [IEEE11], minibatch [IEEE03],
Adam stochastic [ACM10], and Adamax [IEEE91]. In addition, RMSProp [IEEE39, IEEE77] is also
a common used to optimize the learning rate, followed by Nesterov Momentum [ICLR07].

Throughout the analysis on parameter and learning rate optimization algorithms, we noticed that
the studies using the same optimization algorithm distributed in different SE activities and problem
types, i.e., some of the studies focused on classification problems in software testing and others
addressed the recommendation tasks in software maintenance. And studies applying different kinds
of DNNs can use the same optimization algorithm. Therefore, the optimization algorithm selection is
independent of DNN model selection, task types, and problem types.

6.2 What methods were used to alleviate the impact of Overfitting?
One major problem associated with applying any type of learning algorithm is overfitting. Overfitting
is the phenomenon of a DNN learning to fit the noise in the training data extremely well, yet not
being able to generalize to unseen data, which is not a good approximation of the true target function
that the algorithm is looking forward to learn. We summarized six general methods that used in
primary studies to combat overfitting.

Table. 25 (See Appendix F) illustrates the distribution of the techniques used for combating
overfitting problems. Dropout has been used frequently among the selected studies to prevent
overfitting; it is used in 47 studies, followed by the pooling method (26). Regularization, including

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:33

L1 and L2 methods, is the third most popular technique used in 24 studies. There are 9 studies that
prevent overfitting by enlarging the scale of data, such as using a large-scale dataset, combining
multiple datasets, and using different data augmentation techniques. 4 studies used early stopping.
In order to data balancing, 5 studies reduced data to combat the overfitting problem. Furthermore,
among all primary studies, some studies used other algorithms proposed by some studies to solve
overfitting. We analyzed which factors may have an impact on the overfitting technique selection.
We noticed that the techniques used for combating overfitting have no strong association with either
data types or input forms. However, there is a special relationship between model selection and these
techniques. Most of the studies that adopted CNNs to address specific SE tasks selected pooling as
their first choice for preventing the overfitting problem.

There are several findings during the analysis on overfitting techniques. First, Dropout method is
the most commonly adopted method to combat overfitting. Second, Regularization mainly consists of
two specific methods, i.e., L1 and L2 regularization. Most studies employed L2 methods compared
with L1 regularization methods. A majority of studies using CNNs adopted the Pooling layer to select
main features for combating overfitting. Besides, except for pooling, adoption for other overfitting
methods has no close relationship with the variety of used DL models.

6.3 What measures are used to evaluate DL-based models?
Accessing appropriate benchmarks is a crucial part of evaluating any DL-based models in SE. We
also explored the frequent metrics used to measure the performance of DL-based models applied
to respective SE tasks. In fact, the evaluation measure adoption is related to the problem types of
different SE tasks. For example, the metric, BLEU score, is often used to evaluate the performance
for generation tasks and MRR is one of the evaluation metrics for recommendation tasks. Therefore,
we summarized and classified the common evaluation metrics based on different problem types, i.e.,
regression, classification, recommendation, and generation.

Table 26 (See Appendix F) summarizes the commonly used evaluation metrics in different problem
types, used in no less than 2 studies. Only four regression evaluation metrics were used in primary
studies due to few studies using DNNs for regression problems. Precision, recall, and F1-score are
the three most commonly used evaluation metrics for classification tasks, and all of them were used in
over 60 studies. In classification tasks, the second tier of evaluation metrics is composed of F1-score
and accuracy, which were both used over 20 times. MCC is a metric for evaluating the quality of
binary classifications, used in 8 different studies, followed by the ROC metric. Several studies used
simple metrics, such as true positive rate, false-positive rate, and false-negative rate.

There are five frequently used metrics for commendation tasks. MRR and MAP are common
evaluation metrics in information retrieval, and they were used in 17 and 11 recommendation tasks
respectively. Besides, for ranking/recommendation tasks, researchers often estimated the performance
of the top k ranking or recommendation results in terms of precision, recall, and F1-score, i.e.,
precision@k, recall@k, and F1-score@k.

Several special evaluation metrics for language tasks appeared in the generation problem, such as
BLEU and ROUGE. BLEU is a frequently used metric for language translation, but it is also a usual
metric in seq2seq tasks. For example, some comment generation tasks [IEEE11, IEEE33, IEEE36,
SP07] trained DNNs to learn semantic information from source code and comments in software
systems for generating comments for unseen code fragments. It is because a code comment generation
task can be also treated as a language translation task, i.e., using DDNs translates source code into
natural language. For the similar reasons, BLEU were also used in code summarization [IEEE31,
IEEE136, ACM16], commit message generation [IEEE75, IEEE33], and code generation tasks [SP09,
MITP07, MITP06]. ROUGE is another language metric, which is often used for summarization tasks,
including bug report summarization [IEEE137, IEEE39], code summarization [IEEE136, IEEE31],

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:34 Yanming Yang, Xin Xia, David Lo, and John Grundy

etc. The Exact match metric is the most straightforward evaluation metric, measuring the similarity
between the generated sequences and the ground truth, which was used in seven studies, followed by
the Running time (6). METEOR and PP are also two metrics that are commonly used for generation
tasks, and there are 5 and 2 studies that used them respectively.

6.4 Accessibility of DL-based models used in primary studies.
The replicability and reproducibility of DL applications have a great impact on the transfer of
research results into industry practices. According to the ACM policy on artifact review and badging,
replicability refers to the ability of an independent group to obtain the same result using the author’s
own artifacts. Likewise, reproducibility is the act of obtaining the same result without the use of
original artifacts (but generally using the same methods). Reproducibility is clearly the ultimate goal,
but replicability is an intermediate step to promote practices. Somewhat unfortunately, according to
Fu and Menzies [4], it is hard to replicate or reproduce DL applications from SE research due to the
nondisclosure of datasets and source code.

We checked whether the source code of DL-based models is accessible for supporting replicability
and reproducibility. 101 studies provided the replication packages of their DL-based models, only
accounting for 40.4% of all primary studies. Other studies proposed novel DL-based models without
publicly available source code, making it difficult for other researchers to reproduce their results;
some of these studies only disclosed their datasets. Based on this observation, obtaining open-
source code of DNNs is still one of the challenges in SE because many factors may result in never
realizing the replicability and reproducibility of DL application, e.g., data accessibility, source code
accessibility, different data preprocessing techniques, optimization methods, and model selection
methods. Therefore, we recommend future DL studies to release replication packages.

Summary

(1) We summarized widely used parameter and learning rate optimization algorithms in DNNs. We
noticed that most of studies used SGD and Adam as their parameter and learning rate optimizers.

(2) We noticed that optimization algorithm adoption is not affected by other factors, including
DNNs, data types, task types, and problem types.

(3) We summarized the use frequency of techniques that combat the overfitting problem in primary
studies, and found that Pooling was comonly used in CNNs and other DL models are used to
adopting dropout technique.

(4) We summarized frequently used evaluation metrics in different problem types, i.e., regression,
classification, recommendation, and generation. 10 different evaluation metrics were used in
classification tasks, followed by generation tasks (9).

7 LIMITATIONS

Data Extraction. There are several potential limitations to our work. One limitation is the potential
bias in data collection. Although we have listed the data items used for analysis in RQs in Section
3.4, some disagreements still appeared inevitably when extracting related content and classifying
these data items. Two researchers first recorded the relevant descriptions in each primary study and
then discussed and generalized temporary categories based on all data in one item by comparing
the objectives and contributions with related studies. If they were unable to reach an agreement on
classification, another researcher would join in and resolve differences, which can mitigate the bias
in data extraction to study validity.
Study Selection Bias. Another threat might be the possibility of missing DL related studies during the
literature search and selection phase. We are unable to identify and retrieve all relevant publications

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:35

considering the many publication venues publishing SE relevant papers. Therefore, we carefully
selected 21 publication venues, including conference proceedings, symposiums, and journals, which
can cover many prior works in SE. Besides, we identified our search terms and formed a search string
by combining and amending the search strings used in other literature reviews on DL. These could
keep the number of missed primary studies as small as possible.

8 CHALLENGES AND OPPORTUNITIES

Challenge 1: The generalizability for DNNs. In section 5, when analyzing the studies related to
code clone detection, we found that several open-source public data sets are often used repeatedly
in these studies to evaluate their proposed models. A similar situation also exists in other research
topics. These highlight the dependence on some studies on large publicly available labelled datasets.
One reason is that training a DNN requires a massive volume of data, but copious amounts of training
data are rarely available in most SE tasks. Besides, it is impossible to give every possible labeled
sample of a problem space to a DL algorithm. Therefore, it will have to generalize or interpolate
between its previous samples in order to classify data it has never seen before. It is a challenge to
tackle the problem that DL techniques currently lack a mechanism for learning abstractions through
explicit, verbal definition and only work best with thousands, millions, or even billions of training
examples. One solution is to construct widely accepted datasets by using industrial labeled data
or crawling software repositories to collect related data samples and label them as public datasets.
Another is to develop new DL techniques, which can learn how to learn and be trained as an effective
model with as little data size as possible, such as few shot learning.
Challenge 2: The transparency of DL. In this study, we discussed 250 studies that used DL to
address various SE issues. We noticed that few studies declared the reason for the architecture they
chose and explained the necessity and value of each layer in DNN, which leads to low transparency of
the proposed DL solutions. Because it is inherently difficult to comprehend what drives the decisions
of the DNN due to the black-box nature of DL. Humans only pay attention to the output of DNNs
since they can provide wise and actionable suggestions for humans. Furthermore, DL algorithms sift
through millions of data points to find patterns and correlations that often go unnoticed by human
experts. The decision they make based on these findings often confound even the engineers who
created them. For example, many studies present novel DL-based models for defect prediction,
but it is difficult to apply them in the practical use. Since developers cannot be convinced by the
DL-based predictive models to believe that there are potential defects in the code that functions well.
New methods and studies on explaining the decision-making process of DNNs should be an active
research direction, which facilitates software engineers to design more effective DNN architectures
for specific SE problems.
Challenge 3: Validity of Parameters. Many internal parameters are required for DNN construction,
such as batch size, stop condition, optimizers, learning rate, etc. Dl-related studies have usually
initialized these parameters with default settings and do not verify the effectiveness of this parameter
choice. They have also sometimes tuned the parameters without clarifying the reasons or validity.
Challenge 4: Limited Performance Measures. Although researchers used diverse performance
metrics to measure the performance of DNN models, as listed in Table 26, some evaluation aspects
are not fully considered by most related studies.

1) Efficiency. Most SE tasks have a high demand for the efficiency of DNN models, i.e., these
tasks require getting correct results as fast as possible, such as code clone detection, code completion,
code search. However, most primary studies did not estimate the performance of DNNs in terms of
running/training time. Especially, DL-based models often have more time cost, which may lead to

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:36 Yanming Yang, Xin Xia, David Lo, and John Grundy

the time cost being not acceptable even if these models achieve high performance in terms of other
evaluation metrics.

2) Scalability. Most DL-based studies adopted limited datasets to train and test their DNNs, which
causes many DNN models can only achieve high performance on used datasets. Therefore, it is also
necessary to evaluate the scalability of DNNs proposed on different scales of datasets.
Opportunity 1: Using DL in more SE activities. In Section 5, we found that DL has been widely
used in certain SE topics, such as defect prediction, code clone detection, software repository mining,
etc. However, few studies used DL for some SE research topics compared with other techniques
or other learning algorithms. Although Software requirements and software design are the most
two important documentations during SDLC, not many studies focus on these two SE activities.
Therefore, one potential opportunity is that researchers can utilize DL techniques to explore new
research topics or pay attention to classical topics in software requirements and design.
Opportunity 2: The new input form of natural language. In Table 5, we noticed that for the
natural language, the input form only exists the “text in token”, but without other forms, such as
“text in tree structure”. Only code can be transformed in tree or graph structures. Single input form
for natural language narrows the scope of model selection. Therefore, in Table 19, we can see that
the majority of studies selected RNN- or FNN-based models to analyze requirement documentation.
Actually, natural language can be also pared into the tree structure based on the lexical structure of
sentences, and using the tree structure to represent the texts may enable using CNN- or GNN-based
models to train texts possible. Besides, using syntax trees to represent natural language can better
describe structures rather than identifiers.
Opportunity 3: Comparison study on code embedding in DL. In Section 5.4, we noticed that
several studies utilized DL-based models to propose new code embeddings. But, unlike BRET
being well-known in NLP, no one of these similar embedding approaches becomes a widely used
embedding approach for source code, and few studies investigate their characteristics. We think there
are two potential reasons for this phenomenon. First, the code representation methods lack extensive
evaluation on multiple tasks compared with BRET. When Google proposed BRET, the authors
evaluated the performance of BRET in over 10 different specific tasks, but these code embedding
approaches are only evaluated on two or three SE tasks. Second, lack of studies that performed
systematic experiments to summarize their respective advantages, disadvantages as well as usage
scenarios. Therefore, researchers need to conduct more studies on classifying DNNs according to
their functions and compare the performance and characteristics among themselves and traditional
techniques in different SE research topics where most DL algorithms were applied.
Opportunity 4: No open-source datasets in certain fields. In Section 5, we present commonly
used datasets in different SE tasks. But, we noticed that almost no open-source image-based datasets
although image-based datasets were widely used in 5 out of 6 SE activities, including software
design pattern detection, GUI modeling, code localization, bug detection, and software quality
assessment. It is actually a huge contribution to constructing image-based benchmark datasets. Since
more open-source and benchmark datasets have been developed for a SE field, the field has more
opportunities for development. future studies can work on building benchmarks for SE tasks having
no open-source datasets.
Opportunity 5: Performance comparison between DNNs and traditional techniques in SE
tasks. DL has been gradually used in more and more SE tasks, replacing the status of traditional
algorithms. However, are DL algorithms really more efficient than traditional algorithms? What SE
tasks are suitable for DL algorithms? What factors determine whether DL algorithms are better or
worse than traditional algorithms? In our work, we summarized three related studies that compared

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:37

the performance of DNNs and traditional models in different SE tasks: code clone detection, tag
recommendation, and the classifying relatedness between knowledge units. According to the experi-
mental results in their studies, we noticed that traditional approaches can achieve good performance
in detecting Type 1 Type 2 and Type 3 code clones. And DL-based clone detectors have an advan-
tage over semantic clone detection. In the task of prediction of relatedness in stack overflow, the
performance of traditional approaches (SVM) is slightly better than DL-based. Besides, some of the
traditional approaches for tag recommendation outperform DL-based models. However, there is a
lack of studies to compare the performance differences of traditional algorithms (e.g., rule-based
algorithms), machine learning algorithms, and deep learning algorithms on different problem types
(i.e., regression, classification, recommendation, and generation).

Besides, based on our findings in our work, we think that DL-based models may not be suitable
for some SE tasks. If a SE issue can be generalized into rules, i.e. rule-based, using traditional
approaches achieves good performance with high probability, and if a SE issue involves semantic
understanding, DL techniques can be the first choice.
Opportunity 6: Semantic understanding using DNNs. The existing traditional clone detectors
[9, 16] (i.e., not using DNNs) have achieved well performance (over 90% F1-score), especially
detecting type 1-3 clones. Hence, a question arises, i.e., is it necessary for DNNs to be used for code
clone detection? After further research, we found that compared with traditional tools, DL-based
approaches can generally achieve better performance on type-4 clone detection. This finding may
answer this question to some extent. That is, the DL is better at understanding the semantic of data,
no matter code, and natural language.
Opportunity 7: Code transformation. Many SE studies require solving specific issues across
multiple languages. For example, many identical functions can be written in different languages, such
as the quick sort algorithm in C and Java respectively. However, most DNN models only target one
specific program language. Therefore, a potential opportunity is to construct the mappings between
code fragments written in different program languages with the same functionalities by leveraging
the characteristic that DNNs can better understand the code semantics. In this way, it is can alleviate
the language limit for DNNs to some extent.

9 CONCLUSION
This work performed a SLR on 250 primary studies related to DL for SE from 32 publication
venues, including conference proceedings, symposiums, and journals. We established a background
analysis of primary studies and four research questions to comprehensively investigate various
aspects pertaining to applications of DL models to SE tasks. Our SLR showed that there was a
rapid growth of research interest in the use of DL for SE. Through an elaborated investigation and
analysis, four DL architectures containing 30 different DNNs were used in primary studies, where
RNN, CNN, and FNN are the three most widely used neural networks compared with other DNNs.
We also generalized three different model selection strategies and analyzed the popularity of each
one. To comprehensively understand the DNN training and testing process, we provided a detailed
overview of key techniques in terms of data collection, data classification, data processing, data
representation RQ2. IN RQ3, we analyzed the distribution of DL techniques used in different SE
activities, investigated the relationships of DNNs with respect to DL architecture, task types, problem
types, and data types. We also classified primary studies according to specific SE tasks they solved
and gave a brief summary of each work. We observed that DL techniques were applied in 40 SE
topics, covering 6 SE activities. IN RQ4, we summarized the widely used optimization algorithms in
DNNs and classified important evaluation metrics used in regression, classification, recommendation,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:38 Yanming Yang, Xin Xia, David Lo, and John Grundy

and generation tasks. Finally, we identified a set of current challenges that still need to be addressed
in future work on using DLs in SE.

ACKNOWLEDGEMENTS
This research is supported by ARC Laureate Fellowship (FL190100035) and the National Research
Foundation, Singapore under its Industry Alignment Fund – Pre-positioning (IAF-PP) Funding
Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National Research Foundation, Singapore.

REFERENCES
[1] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using natural language processing to

automatically detect self-admitted technical debt. IEEE Transactions on Software Engineering 43, 11 (2017), 1044–
1062.

[2] Li Deng. 2014. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions
on Signal and Information Processing 3 (2014).

[3] Xiaoning Du, Yi Li, Xiaofei Xie, Lei Ma, Yang Liu, and Jianjun Zhao. 2020. Marble: Model-based Robustness
Analysis of Stateful Deep Learning Systems. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 423–435.

[4] Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning. In FSE. 49–60.
[5] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen. 2020. Audee: Automated

Testing for Deep Learning Frameworks. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 486–498.

[6] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural
computation 18, 7 (2006), 1527–1554.

[7] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. 2017. A systematic literature review and meta-analysis
on cross project defect prediction. TSE 45, 2 (2017), 111–147.

[8] Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, and Xin Xia. 2019. A survey on adaptive random
testing. TSE (2019).

[9] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007. Deckard: Scalable and accurate
tree-based detection of code clones. In 29th International Conference on Software Engineering (ICSE’07). IEEE,
96–105.

[10] Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews in software engineering. Technical
Report. Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

[11] Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2020. On the Replicability and Repro-
ducibility of Deep Learning in Software Engineering. arXiv preprint arXiv:2006.14244 (2020).

[12] Warren S McCulloch and Walter Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics 5, 4 (1943), 115–133.

[13] Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton. 2009. Deep belief networks for phone recognition. In
Nips workshop on deep learning for speech recognition and related applications, Vol. 1. Vancouver, Canada, 39.

[14] Tapas Nayak and Hwee Tou Ng. 2020. Effective modeling of encoder-decoder architecture for joint entity and relation
extraction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 8528–8535.

[15] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies
in software engineering: An update. IST 64 (2015), 1–18.

[16] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V Lopes. 2016. Sourcerercc: Scaling code
clone detection to big-code. In Proceedings of the 38th International Conference on Software Engineering. 1157–1168.

[17] Xi Xiao, Ruibo Yan, Runguo Ye, Qing Li, Sancheng Peng, and Yong Jiang. 2015. Detection and prevention of code
injection attacks on HTML5-based apps. In 2015 Third International Conference on Advanced Cloud and Big Data.
IEEE, 254–261.

[18] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant files for bug reports using domain knowledge.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. 689–699.

[19] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2018. Was self-admitted technical debt removal
a real removal? an in-depth perspective. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, 526–536.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:39

APPENDIX
A SLR METHODOLOGY
A.1 Literature Search and Selection
To collect DL related papers in SE, we identified a search string including several DL related terms
frequently appeared in SE papers that make use of DL. We then refined the search string by checking
the title and abstract of a small number of relevant papers. After that, we used logical ORs to combine
these terms, and the search string is:

("deep learning" OR "neural" OR "Intelligence" OR "reinforcement" OR "NN" OR "nn")
We specified the range the papers are published later: 2006- 2020. Following previous studies

[7, 8, 11], we selected 32 widely read journals (10) and conferences (22) listed in Table 13 to conduct
a comprehensive literature review. We run the search string on three databases (i.e., ACM digital
library 7, IEEE Explore 8, and Web of Science 9) looking for publications in the 32 publication venues
whose meta data (including title, abstract and keywords) satisfies the search string. Our preliminary
results search returns 824 relevant papers.

A.2 Literature Filtering
After retrieving studies that match our search string, it is necessary to filter unqualified studies, such
as studies with insufficient contents or missing information. To achieve this, we applied our inclusion
and exclusion criteria to determine the quality of candidate studies for ensuring that every study we
kept implemented and evaluated a full DL approaches to tackle SE tasks.

The following inclusion and exclusion criteria are used:
✔ The paper must be written in English.
✔ The paper must adopt DL techniques to address SE problems.
✔ The length of paper must not be less than 6 pages.
✘ Books, keynote records, non-published manuscripts, and grey literature are dropped.
✘ If a conference paper has an extended journal version, the conference version is excluded.
The literature filtering consisted of three steps and was performed by three researchers with rich

experience in software engineering. We first discarded duplicate papers from our preliminary results.
After that, we applied the inclusion/exclusion criteria by reading their title, abstract and keywords,
and narrow the candidate set to 271 studies. After looking through these 271 studies to ensure their
relevance (i.e., if a study used deep learning techniques to address practical problems in software
engineering, it will be kept as a primary study.), we retained 250 studies. We invited a third researcher
to double-check the inconsistencies between the two researchers in the last two steps to minimize
human error.

A.3 Data Extraction and Collection
After removing the irrelevant and duplicated papers, we extracted and recorded the essential data and
performed overall analysis for answering our four RQs. Table 14 described the detailed information
being extracted and collected from 250 primary studies, where the column ′𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝐼𝑡𝑒𝑚𝑠 ′

lists the related data items that would be extracted from each primary study, and the column ‘𝑅𝑄 ′

denotes the related research questions to be answered by the extracted data items on the right. To avoid
making mistakes in data collection, two researchers extracted these data items from primary studies
together and then another researcher double checked the results to make sure of the correctness of
the extracted data.
7https://dl.acm.org
8https://ieeexplore.ieee.org
9http://apps.webofknowledge.com

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:40 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 13. Publication venues for manual search

No. Acronym Full name No. Acronym Full name

1. ICSE ACM/IEEE International Confer-
ence on Software Engineering

23. TSE IEEE Transactions on Software En-
gineering

2. ASE IEEE/ACM International Confer-
ence Automated Software Engineer-
ing

24. TOSEM ACM Transactions on Software En-
gineering and Methodology

3. ESEC/FSE ACM SIGSOFT Symposium on the
Foundation of Software Engineer-
ing/European Software Engineering
Conference

25. ESE Empirical Software Engineering

4. ICSME IEEE International Conference on
Software Maintenance and Evolu-
tion

26. JSS Journal of Systems and Software

5. ICPC IEEE International Conference on
Program Comprehension

27. IST Information and Software Systems

6. ESEM ACM/IEEE International Sympo-
sium on Empirical Software Engi-
neering and Measurement

28. ASEJ Automated Software Engineering

7. RE IEEE International Conference on
Requirements Engineering

29. IETS IET Software

8. MSR IEEE Working Conference on Min-
ing Software Repositories

30. STVR Software Testing, Verification and
Reliability

9. ISSTA ACM SIGSOFT International Sym-
posium on Software Testing and
Analysis

31. JSEP Journal of Software: Evolution and
Process

10. SANER IEEE International Conference on
Software Analysis, Evolution and
Reengineering

32. SQJ Software Quality Journal

11. ICST IEEE International Conference on
Software Testing, Verification and
Validation

12. ISSRE IEEE International Symposium on
Software Reliability Engineering

13. COMPSAC IEEE International Computer Soft-
ware and Applications Conference

14. QRS IEEE International Conference on
Software Quality, Reliability and Se-
curity

15. SPLC Software Product Line Conferences
16. OOPSLA ACM SIGPLAN international con-

ference on Object oriented program-
ming systems languages

applications

17. PLDI ACM SIGPLAN Conference on Pro-
gramming Language Design and Im-
plementation

18. AAAI Proceedings of the AAAI Confer-
ence on Artificial Intelligence

19. ICML The International Conference on
Machine Learning

20. ICLR International Conference on Learn-
ing Representations

21. NeurIPS Annual Conference on Neural Infor-
mation Processing Systems

22. IJCAI International Joint Conference on
Artificial Intelligence

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:41

Table 14. Data Collection for Research Questions

RQs Extracted data items

RQ1 Basic information of each primary study (i.e., title, publication year, authors, publication venue)
RQ1 The type of main contribution in each study (e.g., empirical study, case study, survey, or algorithm)
RQ2 DL techniques used in each study
RQ2 Whether and how the authors describe the rationale behind techniques selection
RQ3 Dataset source (e.g., industry data, open source data, or collected data)
RQ3 Dataset name
RQ3 The generation method of ground-truth for training/testing/validation sets
RQ3 Data type (e.g., source code, nature language text, and pictures)
RQ3 The process that datasets are transformed into input sets suitable for DNNs
RQ3 Presence / absence of replication package
RQ4 The practical problem that a SE task tries to solve
RQ4 The SE activity in which each SE task belongs
RQ4 The approach used for each SE task (e.g., regression, classification, ranking, and generation)
RQ5 Whether and what optimization techniques are used
RQ5 What measures are used to evaluate the DL model

B BA: WHAT ARE THE TRENDS IN THE PRIMARY STUDIES ON USE OF DL IN SE?
We analyzed the basic information of primary studies to comprehend the trend of DL techniques used
in SE in terms of the publication date, publication venues, and main contribution types of primary
studies.

B.1 Publication trends of DL techniques for SE
We analyzed the publication trends of DL-based primary studies published between 2006 and 2020.
Although the concept of “Deep Learning” has been proposed in 2006 and DL techniques had been
widely used in many other fields in 2009, we did not find any studies using DL to address SE tasks
before 2015. Fig. 5(a) shows the number of relevant studies published in predefined publication
venues since 2020. It can be observed that the number of publications from 2015 to 2020 shows a
significant increase, with the number researching 93 papers in 2020. Besides, another trend among
DL studies is that a growing number of papers turn the research direction into using software
engineering techniques at the service of DL models, i.e., SE4AI. For example, Guo et al. [5] utilized
software testing techniques to locate bugs in the DL frameworks. They present a search-based
approach, AUDEE, to identify three types of bugs: logical bugs, crashes, and Not-a-Number (NaN)
errors. Specifically, they initialized diverse seeds by exploring hidden layers, inputs, parameters,
and model structures and adopted three mutation strategies to generate test cases: Network-level
mutation, Input-level mutation, and Weight-level mutation. They then leveraged a heuristic-based
cross-checking approach to detect output inconsistencies among different DL frameworks. Finally,
they located the corresponding layers in the network by using the causal-testing technique. To
improve the ability to resist adversarial attacks, Du et al. [3] performed quantitative robustness
analysis on RNN-based DL frameworks to estimate the capability of an RNN neural network in
tolerating input perturbations. They built an abstract model to conduct light-weight robustness
estimation for real-time Dl applications.

We also performed an analysis of the cumulative number of publications as shown in Fig. 5(b). We
fit the cumulative number of publications as a Cubic function, showing the publication trend in the
last five years. We can notice that the slope of the curve fitting the distribution increases substantially
between 2015 and 2020, and the coefficient of determination (𝑅2) attains the peak value (0.99928),
which indicates that the number of relevant studies using DL in SE intends to experience a strong
rise in the future. Therefore, after analyzing Fig. 5, it can be foreseen that using DL techniques to

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:42 Yanming Yang, Xin Xia, David Lo, and John Grundy

4

11

19

48

75

93

N
um

be
r

of
 P

ub
lic

at
io

ns

0

10

20

30

40

50

60

70

80

90

100

Years
2015 2016 2017 2018 2019 2020

(a) Number of publications per year.

4
15

34

82

157

250

N
um

be
r

of
 P

ub
lic

at
io

ns

0

50

100

150

200

250

Years
2015 2016 2017 2018 2019 2020

(b) Cumulative number of publications per year.

Fig. 5. Publication trends of DL-based primary studies in SE.

Table 15. Publication Venues with DL-based Studies in SE.

Conference venue Journal venue

Acronym # Studies Acronym # Studies Acronym # Studies

ASE 31 AAAI 8 TSE 13
SANER 22 ISSTA 7 IST 11

ICSE 20 ICST 5 JSS 10
MSR 13 ICML 5 ESE 8
ICPC 12 SPLC 4 TOSEM 5

ICSME 12 ISSRE 4 ASEJ 1
ICLR 11 RE 3 IETS 1
QRS 10 OOPSLA 2 STVR 1
IJCAI 9 COMPSAC 2 SQJ 1
FSE 9 ESEM 1

NeurIPS 8 PLDI 1

address various SE tasks has become a prevalent trend since 2015, and huge numbers of studies will
adopt DL to address further challenges of SE.

B.2 Distribution of publication venues
We reviewed 250 studies published in various publication venues, including 22 conference proceed-
ings and symposiums as well as 10 journals, which covers most research areas in SE. Table 15 lists
the number of relevant papers published in each publication venue. 79.6% of publications appeared
in conferences and symposiums, while only 20.4% of journal papers leveraged DL techniques for SE
tasks. Among all conference papers, 8 different conferences include over 10 studies using DL in SE
in the last five years, i.e., ASE, SANER, ICSE, MSR, ICPC, ICSME, ICLR, and QRS. Compared
with other conference proceedings, ASE is the most popular one containing the highest number of
primary study papers (31), followed by SANER (22). There are 20 and 13 relevant papers published
in ICSE and MSR, respectively. Meanwhile, in all journals, TSE includes the highest number of
relevant papers (13), followed by IST (11). 10 and 8 studies related to DL techniques were published
in JSS and EMSE, respectively. And 5 were published in TOSEM.

We also checked the distribution of primary studies published in conferences and journals between
2015 and 2020, shown in Fig. 6. Fig 6(a) illustrates that the publication trend of various conference
proceedings and symposiums has a noticeable increase from 2015 to 2020. 86.8% of conference
papers were published between 2018 and 2020, while only a few different conferences or symposium

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:43

PLDI
ESEM
COMPSAC
OOPSLA
RE
ISSRE
SPLC
ICML
ICST
ISSTA
AAAI

NeurLPS
FSE
IJCAL
QRS
ICSME
ICPC
MSR
ICSE
SANER
ASE

N
um

be
r

of
 P

ub
lic

at
io

ns

0

10

20

30

40

50

60

70

Year
2015 2016 2017 2018 2019 2020

(a) Number of primary studies published in various conference
proceedings.

SQJ
STVR
IETS
ASEJ
TOSEM
EMSE
JSS
IST
TSE

N
um

be
r

of
 P

ub
lic

at
io

ns

0

5

10

15

20

25

Year
2015 2016 2017 2018 2019 2020

(b) Number of primary studies published in various journals.

Fig. 6. Distribution of papers in different publication venues.
Table 16. The definition of five main contributions in primary studies.

Main contribution Definition

New technique or methodology The study provided a solid solution or developed a novel framework to
address specific SE issues.

Tool The study implemented and published the source code of the DL model
or a tool demo targeting SE issues.

Empirical study The study collected primary data and performed a quantitative and quali-
tative analysis on the data to explore interesting findings.

Case study The study analyzed certain SE issues based on one or more specific
cases.

User study The study conducted a survey to investigate the attitudes of different
people (e.g., developers, practitioners, users, etc) towards SE issues.

venues included relevant papers between 2015 and 2017, which demonstrates a booming trend in the
last few years.

Fig. 6(b) shows the number of primary study papers published in different journal venues. It can
be seen that there is an increasing trend in the last five years, especially between 2018 and 2020.
Furthermore, the relevant papers published in TSE, as one of the most popular journals, accounts for
the largest proportion in 2018 and 2019; while another popular journals, IST and JSS, also make up
a large percentage in 2019 and 2020.

B.3 Types of main contributions
We summarized the main contribution of each primary study and then categorized these studies
according to their main contributions into five categories, i.e., New technique or methodology, Tool,
Empirical study, Case study, and User study. We give the definition of each main contribution in Fig 7.
The main contribution of 90.8% of the primary studies was to build a novel DNN as their proposed
new technique or methodology for dealing with various problems in different SE activities. There are
101 studies whose source code of their DL tools or models is available, accounting for 40.4%. Sharing
DL models proposed in studies is a valuable contribution for related researchers since it benefits to
replicate and reproduce those models in their research. 27 relevant studies concentrated on performing
assessment and empirical studies for exploring the benefits of DL towards different SE aspects, such
as research on the differences between ML and DL to solve certain SE tasks, the performance of
using DL to mine software repositories, applying DL in testing, etc. The main contribution of 5.6%
was case studies, and 4 studies conducted user studies to evaluate the performance of DL models. 6
primary studies that both proposed a novel methodology and evaluated the novel methodology via a
user study.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:44 Yanming Yang, Xin Xia, David Lo, and John Grundy

227

101

27
14

4

O
ve

rfi
�tti

ng
 te

ch
ni

qu
es

0

50

100

150

200

250

New technique Tool Empirical study Case study User sutdy

Fig. 7. Types of main contributions

Summary

(1) DL has shown a booming trend in recent years.
(2) Most of primary study papers were published between 2018 and 2020.
(3) The number of conference papers employing DNNs for SE significantly exceeds that of journal

papers.
(4) ASE is the conference venue publishing the most DL-based papers (31), while TSE includes the

highest number of relevant papers among all journals (13).
(5) Most DL-based studies were only published in a few conference proceedings (e.g., ASE, SANER,

ICSE, MSR, and ICPC) and journals (e.g., TSE, IST, JSS, EMSE, and TOSEM).
(6) The main contribution of 90.8% primary studies is to propose a novel methodology by applying

various DL techniques, while only 4 primary studies performed a user study to better understand
users’ attitudes and experience toward various DNNs used for solving specific SE tasks.

C DL MODELS USED IN SE
Table 17 classifies the common DNNs used in primary studies based on their DL architectures and
presents the distribution of DNNs in terms of publication time.

D DATA TYPES IN DATASETS
We classified the datasets used in all primary studies into six categories: code-, text-, metric-, graph-,
software repository-based datasets, and combined datasets. Table 18 summarizes the specific data
types in each category and also describes the usage distribution of those six categories according to
the number of references.

E DL MODELS IN DIFFERENT SE ACTIVITIES
Table 19 to Table 24 illustrates the relationships of DNNs with respect to DL architectures, data
types, task types, and problem types in six different SE activities, i.e., software requirement, software
design, software development, software testing, software maintenance, and software management.

F EVALUATION METRICS FOR DL MODELS
Table 25 and Table 26 list common overfitting techniques and evaluation metrics for DNNs used in
four different problem types, including regression, classification, recommendation, and generation
SE tasks.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:45
Ta

bl
e

17
.

Th
e

nu
m

be
ro

fv
ar

io
us

D
N

N
s

ap
pl

ie
d

in
pe

ry
ea

r.

A
rc

hi
te

ct
ur

eF
am

ily
M

od
el

N
am

e
20

15
20

16
20

17
20

18
20

19
20

20

L
ay

er
ed

ar
ch

ite
ct

ur
e

R
N

N
-b

as
ed

m
od

el
(7

2)

R
N

N
[I

EE
E8

3]
[I

E
E

E
15

]
[A

C
M

09
,

IE
E

E
12

,
A

C
M

22
]

[A
C

M
05

,
A

C
M

06
,

IE
E

E
20

,
IE

E
E

52
,

A
C

M
30

,
M

IT
P0

2,
IE

E
E

11
4]

[I
E

E
E

04
,

IE
E

E
06

,
SP

04
,

A
C

M
16

,
IE

E
E

51
,

IE
E

E
64

,A
C

M
29

,E
L

05
,E

L
21

,
IE

E
E

12
6,

IE
E

E
10

7]

[A
C

M
07

,
E

L
02

,
E

L
03

,
IE

E
E

26
]

R
tN

N
[A

C
M

02
,

IE
E

E
15

]
[I

E
E

E
80

]

B
id

ir
ec

tio
na

l
R

N
N

(B
R

N
N

)
[A

C
M

07
,E

L
03

]

L
ST

M
[A

C
M

09
,

A
C

M
21

,
IE

E
E

56
,

M
K

05
,

M
K

06
,

IC
L

R
08

]

[A
C

M
05

,
IC

L
R

09
,

IE
E

E
49

,
IE

E
E

42
,

IE
E

E
53

,
M

K
04

,
M

K
09

,
A

C
M

31
,

E
L

17
,

IE
E

E
87

,
IE

E
E

11
6,

IE
E

E
12

8,
IE

E
E

13
1]

[A
A

A
I0

3,
A

A
A

I0
4,

A
A

A
I0

5,
A

A
A

I0
6,

IE
E

E
01

,
IE

E
E

08
,

IC
L

R
02

,
IE

E
E

38
,

A
C

M
17

,
IE

E
E

63
,

E
L

14
,

IE
E

E
74

,
IE

E
E

77
,

IE
E

E
13

4,
IE

E
E

11
0,

IE
E

E
10

4]

[A
A

A
I0

7,
A

C
M

07
,

IE
E

E
21

,
IC

LR
01

,I
EE

E6
7,

EL
03

,E
L2

0,
IE

E
E

97
,

IE
E

E
99

,
IE

E
E

10
8,

A
C

M
32

,I
E

E
E

13
5,

IE
E

E
14

1]

B
i-

L
ST

M
[I

EE
E5

4]
[A

C
M

23
,I

E
E

E
12

5,
IE

E
E

94
]

[E
L

12
,

IE
E

E
28

,
A

C
M

18
,

E
L

03
,I

E
E

E
35

,I
E

E
E

92
]

G
R

U
[A

A
A

I0
1,

IC
L

R
05

]
[A

A
A

I0
8]

[I
E

E
E

10
7,

A
C

M
37

]
[A

C
M

07
,

IE
E

E
18

,
A

C
M

10
,

E
L

16
,E

L
03

,E
L

11
,I

E
E

E
13

6]
B

id
ir

ec
tio

na
lG

R
U

[M
K

02
]

[E
L

03
]

R
ec

ur
re

nt
H

ig
hw

ay
N

et
w

or
k

[I
E

E
E

13
4]

C
N

N
-b

as
ed

m
od

el

C
N

N
[A

A
A

I0
2,

A
A

A
I0

5,
IE

E
E

13
,

IE
E

E
16

,
A

C
M

13
,

M
K

07
]

[I
E

E
E

54
,

IE
E

E
57

,
M

K
06

,
IE

E
E

85
]

[A
C

M
03

,
A

C
M

05
,

E
L

08
,

IE
E

E
10

,
IC

L
R

09
,

IE
E

E
41

,
IE

E
E

52
,

IE
E

E
53

,
IE

E
E

78
,

IE
E

E
81

,
IE

E
E

11
5,

IE
E

E
11

8,
m

or
an

20
18

m
ac

hi
ne

,
IE

E
E

13
0]

[E
L

07
,

A
C

M
24

,
A

C
M

19
,

IE
E

E
50

,
IE

E
E

62
,

IE
E

E
65

,
IE

E
E

69
,

E
L

05
,

IE
E

E
73

,
IE

E
E

76
,

IE
E

E
12

5,
M

IT
P0

3,
IE

E
E

12
4,

IE
E

E
12

3,
IE

E
E

12
2,

A
C

M
34

,
IE

E
E

11
1,

IE
E

E
10

9,
IE

E
E

10
6,

IE
E

E
10

3,
IE

E
E

95
,

IE
E

E
94

,M
IT

P0
4]

[A
A

A
I0

7,
A

C
M

08
,

IE
E

E
18

,
IE

E
E

22
,

IE
E

E
23

,
IE

E
E

02
,

IE
E

E
30

,
SP

08
,

IE
E

E
46

,
IE

E
E

47
,

IE
E

E
24

,
IE

E
E

67
,

A
C

M
27

,
E

L
02

,
IE

E
E

10
0,

IE
E

E
10

2,
A

C
M

36
,

IE
E

E
13

5,
IE

E
E

13
9,

IE
E

E
14

0,
IE

E
E

14
2,

IE
E

E
13

2]
Tr

ee
-b

as
ed

C
N

N
(T

B
C

N
N

)
[I

E
E

E
10

4]
[E

L
13

]

R
C

N
N

[E
L

05
]

[E
L

02
]

D
PC

N
N

[M
IT

P0
5]

D
ee

p
R

es
id

ua
l

N
et

-
w

or
k

[E
L

04
]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:46 Yanming Yang, Xin Xia, David Lo, and John Grundy
A

rc
hi

te
ct

ur
e

Fa
m

ily
M

od
el

N
am

e
20

15
20

16
20

17
20

18
20

19
20

20

FN
N

-b
as

ed
m

od
el

FN
N

[I
EE

E1
4,

IE
T

01
,

E
L

18
]

[I
EE

E5
5]

[A
C

M
04

,
E

L
09

,
IE

E
E

10
,

SP
01

,
E

L
17

,
IE

E
E

86
,

IE
E

E
96

,
IE

E
E

12
1,

IE
E

E
12

0,
W

01
]

[I
E

E
E

07
,

IE
E

E
09

,
E

L
15

,
IE

E
E

88
]

[I
E

E
E

60
,

E
L

01
,

IE
E

E
71

,
IE

E
E

82
,

IE
E

E
11

9,
IE

E
E

91
,

IE
E

E
93

,
IE

E
E

25
,

IE
E

E
11

7,
IE

E
E

58
]

R
B

FN
N

[E
L1

9,
A

C
M

20
]

D
ee

p
Sp

ar
se

FN
N

[A
C

M
14

]
M

L
P

[S
P0

4]
L

ay
er

ed
ar

ch
ite

ct
ur

e
G

N
N

-b
as

ed
m

od
el

G
G

N
N

[I
C

LR
10

]
[I

E
E

E
01

,
IE

E
E

06
,

M
IT

P0
3,

IE
E

E
10

4]
[M

IT
P0

5,
IE

E
E

28
,I

E
E

E
13

8]

G
ra

ph
M

at
ch

in
g

N
et

-
w

or
k

(G
M

N
)

[I
E

E
E

64
]

[I
C

L
R

01
,A

C
M

39
]

G
N

N
[A

C
M

38
]

C
on

vG
N

N
[I

E
E

E
13

6]

Ta
ilo

re
d

m
od

el

D
ee

p
B

el
ie

fe
N

et
-

w
or

k
(D

B
N

)
[I

EE
E8

4][
IE

EE
43

]
[I

E
E

E
12

7]

H
A

N
[E

L
05

]
[I

E
E

E
45

]
D

ee
p

Fo
re

st
[E

L
06

]
[I

E
E

E
90

]
G

A
N

[M
IT

P0
1]

D
ee

p
fu

si
on

le
ar

ni
ng

m
od

el
[A

C
M

28
]

M
at

a-
le

ar
ni

ng
[S

P0
6,

IE
E

E
48

,A
C

M
39

]

Tr
an

sf
or

m
er

Tr
an

sf
or

m
er

[I
E

E
E

34
,

IE
E

E
36

,
A

C
M

10
,

A
C

M
26

]

B
er

t
[A

C
M

07
][

IE
E

E
19

1,
IE

E
E

29
]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:47
A

rc
hi

te
ct

ur
e

Fa
m

ily
M

od
el

N
am

e
20

15
20

16
20

17
20

18
20

19
20

20

E
nc

od
er

-D
ec

od
er

R
N

N
-b

as
ed

m
od

el

R
N

N
[I

EE
E1

5]
[M

K
08

,
IE

E
E

79
,

IE
E

E
11

3]

[g
ao

20
19

au
to

m
at

in
g,

SP
03

,
A

C
M

15
,

IE
E

E
75

,
A

C
M

35
,

IE
E

E
11

2]

[I
E

E
E

59
]

L
ST

M
[I

EE
E1

1]
[I

E
E

E
31

,
IE

E
E

41
]

[I
C

L
R

07
,

IE
E

E
61

,
M

IT
P0

6,
M

IT
P0

7]
[I

E
E

E
37

,
A

C
M

11
,

IE
E

E
47

,
M

IT
P0

8,
IE

E
E

10
1,

SP
10

]
B

i-
L

ST
M

[I
E

E
E

32
,I

E
E

E
66

]
L

ST
M

-C
R

F
[I

E
E

E
58

]
G

R
U

[I
C

LR
11

]
C

N
N

-b
as

ed
m

od
el

C
N

N
[A

C
M

12
]

[I
E

E
E

05
]

[I
E

E
E

44
,A

C
M

33
]

FN
N

-b
as

ed
m

od
el

FN
N

[E
L

10
]

[M
K

03
]

[I
E

E
E

17
,A

C
M

26
]

A
ut

oE
nc

od
er

R
N

N
-b

as
ed

m
od

el

B
i-

G
R

U
[I

E
E

E
13

7]
G

R
U

[S
P0

7]
R

N
N

[A
A

A
I0

5]
L

ST
M

[I
C

L
R

03
]

B
i-

L
ST

M
[I

E
E

E
33

]
C

N
N

-b
as

ed
m

od
el

C
N

N
[A

C
M

33
]

FN
N

-b
as

ed
m

od
el

FN
N

[I
EE

E4
0]

[E
L

10
,

IE
E

E
39

]
[S

P0
4,

IC
L

R
04

,
IE

E
E

68
,

IE
E

E
10

5]
[I

E
E

E
72

]

Si
am

es
e

N
et

w
or

k
R

N
N

-b
as

ed
m

od
el

G
R

U
[I

E
E

E
27

]
L

ST
M

[A
C

M
25

]
B

i-
L

ST
M

[I
E

E
E

48
]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:48 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 18. Data types of datasets involved in primary studies.

Family Data types References

Code-based datasets

Source code [AAAI01, AAAI02, AAAI03, AAAI04, AAAI05, AAAI06, ACM01,
ACM02, ACM04, ACM06, ACM09, EL01, IEEE109, IEEE01, IEEE32,
IEEE34, IEEE35, IEEE37, SP09, ACM10, ICLR06, ICLR07, ICLR10,
ACM18, ACM20, ACM23, ACM17, IEEE67, MK08, MK09, EL16,
EL20, IEEE82, IEEE83, MITP02, MITP06, MITP07, ACM38, IEEE25,
IEEE112, IEEE121, IEEE141, IEEE17, IEEE66, IEEE63, IEEE64,
IEEE65, IEEE68, ACM27, EL06, EL17, IEEE74, IEEE102, IEEE103,
IEEE105, IEEE114, IEEE116, IEEE124, IEEE128, IEEE131, IEEE06,
IEEE09, IEEE10, IEEE15, IEEE27, SP07, SP04, ICLR01, ICLR02,
ICLR03, ICLR04, ICLR05, ACM11, ACM12, ACM13, IEEE38,
ACM15, ACM16, IEEE42, IEEE43, IEEE47, IEEE51, IEEE55, MK03,
MK04, MK05, MK06, MK07, ACM28, EL08, IEEE77, IEEE80,
MITP01, MITP03, MITP04, MITP05, MITP08, ACM37, IEEE84,
IEEE85, IEEE86, IEEE87, IEEE91, IEEE92, IEEE101, IEEE28,
IEEE104, IEEE110, IEEE113, IEEE115, IEEE115, W01, IEEE122,
IEEE126, IEEE138, IEEE81, ACM39, IEEE132, IEEE98]

Source code in DSL
(Domain-Special Lan-
guage)

[IET01, ICLR08, ICLR11, IEEE72]

Test case [ACM26, ACM31, EL03, ACM30]
Defects [ACM29, EL10, ACM35]
Patch [IEEE29, IEEE123]
Execution trace [IEEE08]
Code change [IEEE127]
Game bug [IEEE07]

Text-based datasets

Bug report [IEEE40, IEEE54, EL07, EL12, EL13, IEEE39, IEEE60, IEEE71,
IEEE137, IEEE139, IEEE142]

Requirement docu-
mentation

[IEEE58, EL09, IEEE94, IEEE95, IEEE96, IEEE118, IEEE119, IEEE58,
IEEE12]

Issue report [IEEE191, IEEE134, SP02, IEEE130]
Log information [IEEE21, IEEE45, IEEE88]
Code comment [IEEE108, IEEE36, ACM34, IEEE98]
Incident report [ACM08, IEEE05, IEEE22]
Dialog [ACM05] [IEEE48, SP10, IEEE03]
configuration docu-
mentation

[ACM14, ACM21]

API [SP05, SP03]
User behavior [ACM22, SP06]
Protocol message [IEEE61]
Vulnerability descrip-
tions in CVE Details
websit

[IEEE57]

Defect report [IEEE62]
Use case [EL02]
Method names [IEEE59]
Design documentation [IEEE97]
Certification [IEEE52]
SATD [IEEE100]
Web request [IEEE30]
Text information
(PDF)

[IEEE12]

Metric-based datasets

Software metric [EL19, ACM32, IEEE46, IEEE56, EL18, IEEE50, IEEE93]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:49

Code metric [IEEE117]
Driver properties [IEEE14]
resource utilization
traces

[EL11]

Graph-based datasets

GUI images [ACM33, moran2018machine, IEEE41, IEEE23, IEEE69, ACM25,
IEEE44]

program screenshot [SP08, ACM24, IEEE140, ACM36]
Vedio screenshot [IEEE78]
behaviour trajectory of
the model class

[EL04]

Software repository
-based datasets

Q&A pair (Knowl-
edge unit) in forums

[ACM03, IEEE13, IEEE16, IEEE125, IEEE70, IEEE76, IEEE79]

Pull-requests [IEEE04, IEEE99]
Issues and commits [ACM07, EL14]
Tags in forum [SP01, EL05]
Discuss [IEEE111]
Commits [IEEE90]

Combined datasets

source code and com-
ment

[AAAI07, AAAI08, IEEE33, IEEE20, IEEE24, IEEE26, IEEE136,
IEEE31, IEEE49, EL21, IEEE53]

Source code and bug
report

[MK01, IEEE89, IEEE135]

Source code and com-
mit message

[ACM19]

Code change and com-
mit message

[IEEE73, IEEE75]

Source code and Q&A
pair in SO

[IEEE02]

Source code, diff files,
and commit message

[MK02]

Diff file and commit
message

[IEEE11]

Code review and code
clone pair

[IEEE106]

Test case and log file [IEEE18]

Table 21. The relationships of DNNs with respect to DL architecture, task types, problem types, as
well as data types in software development.

Task type Problem type DNN DL architecture Data type Reference

RNN code-based data [IEEE83]
RNN code-based data [MITP02]
LSTM code-based data [ACM09]
LSTM code-based data [EL20]
LSTM Encoder-decoder code-based data [ICLR07]
Bi-LSTM code-based data [ACM18]
GRU code-based data [EL16]
CNN code-based data [AAAI02]
FNN Encoder-decoder code-based data [ACM20]

Code
representation

Generation Bi-RNN code-based data [ACM23]

FNN code-based data [IEEE82]
GGNN code-based data [ICLR10]
GNN code-based data [ACM38]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:50 Yanming Yang, Xin Xia, David Lo, and John Grundy

Code
generation

Generation

RNN Encoder-decoder code-based data [IEEE32]
RNN Encoder-decoder code-based data [IEEE37]
LSTM code-based data [SP09]
LSTM code-based data [ICLR08]
LSTM code-based data [MITP07]
LSTM Encoder-decoder code- and text-based data [MITP08]
LSTM Encoder-decoder code-based data [ICLR03]
LSTM, CNN code- and text-based data [ICLR09]
Bi-LSTM Encoder-decoder code-based data [IEEE66]
Bi-LSTM code-based data [MITP06]
GRU Encoder-decoder code-based data [ICLR11]
Transformer Transformer code-based data [ACM10]

Code comment
generation

Generation

GRU code- and text-based data [AAAI08]
RNN code- and text-based data [EL21]
LSTM code- and text-based data [IEEE49]
LSTM encoder-decoder code-based data [IEEE101]
LSTM code- and text-based data [IEEE108]
Bi-LSTM encoder-decoder code- and text-based data [IEEE33]
Bi-LSTM code- and text-based data [IEEE35]
multiple DNN
models

code- and text-based data [IEEE36]

GRU autoencoder code-based data [SP07]

Code search Recommendation

RNN Encoder-decoder code-based data [ACM02]
RNN code- and text-based data [IEEE26]
CNN code- and text-based data [IEEE02]
CNN code- and text-based data [IEEE24]
FNN code-based data [IEEE25]
CODEnn code- and text-based data [IEEE20]
GGNN code-based data [IEEE01]
DPCNN, GNN code-based data [MITP05]
multiple code-based data [ACM01]

CNN image-based data [SP08]
CNN image-based data [IEEE140]

Code
localization

Classification CNN image-based data [ACM24]

CNN image-based data [ACM36]
CNN image-based data [IEEE78]

Code
completion

Generation

Bert Transformer code-based data [IEEE3]
LSTM code-based data [MK09]
LSTM code-based data [IEEE141]
FNN code-based data [IEEE121]

Code
summarization

Generation

RNN Encoder-decoder text-based data [IEEE31]
RNN Encoder-decoder code-based data [MK08]
RNN code-based data [ACM16]
CNN code-based data [ACM13]
ConvGNNs, GRU code- and text-based data [IEEE136]

Method
name generation

Generation RNN Encoder-decoder code- and text-based data [IEEE112]

seq2seq encoder-decoder code- and text-based data [IEEE59]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:51

Table 19. The relationships of DNNs with respect to DL architecture, task types, problem types, as
well as data types in software requirement.

Task type Problem type DNN DL architecture Data type Reference

Requirement
extraction

classification LSTM-CRF Encoder-decoder text-based data [IEEE58]

LSTM, CNN text-based data [IEEE94]
Bi-LSTM,
deep siamese
network

text-based data [IEEE48]

LSTM, Bert Transformer text-based data [IEEE19]
CNN text-based data [IEEE118]
FNN text-based data [EL09]

recommendation FNN text-based data [IEEE581]
FNN text-based data [IEEE120]

Requirement
validation

classification CNN text-based data [IEEE95]

Requirement
traceability

recommendation FNN text-based data [IEEE96]

Table 20. The relationships of DNNs with respect to DL architecture, task types, problem types, as
well as data types in software design.

Task type Problem type DNN DL architecture Data type Reference

Software
design pattern
detection

classification CNN text-based data [IEEE109]

CNN Autoencoder image-based data [ACM33]

GUI modeling Generation CNN image-based data [IEEE129]
CNN, RNN Encoder-decoder image-based data [IEEE41]

Table 22. The relationships of DNNs with respect to DL architecture, task types, problem types, as
well as data types in software testing.

Task type Problem type DNN DL architecture Data type Reference

bug-related
detection

Classification

CNN image-based data [IEEE23]
LSTM metric-based data [ACM32]
Bi-LSTM text-based data [IEEE54]
Bi-LSTM text-based data [EL12]
GRU code-based data [ACM37]
LSTM, FNN code-based data [EL17]
LSTM, GNN code-based data [ICLR01]
CNN image-based data [IEEE69]
CNN metric-based data [IEEE102]
CNN code- and text-based data [ACM19]
CNN code-based data [IEEE50]
FNN text-based data [IEEE88]
FNN Autoencoder metric-based data [IEEE68]

Bug
localization

Classification FNN Autoencoder text-based data [IEEE40]
CNN, RNN code-based data [MITP04]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:52 Yanming Yang, Xin Xia, David Lo, and John Grundy

recommendation CNN, LSTM,
Deep walk

code- and text-based data [AAAI07]

CNN, LSTM Encoder-decoder code- and text-based data [MK01]
CNN, LSTM code- and text-based data [IEEE135]
LSTM code-based data [IEEE116]
CNN code-based data [MK07]
CNN text-based data [EL07]
CNN code-based data [IEEE103]
CNN, LSTM code-based data [MK06]

Recommendation FNN code- and text-based data [IEEE89]
RNN code-based data [ACM29]
CNN code- and text-based data [IEEE124]

LSTM code-based data [IEEE131]
CNN text-based data [IEEE57]

Vulnerability
detection

Classification GRU, CNN code-based data [MITP03]

RNN, LSTM,
GRU, BRNN

code-based data [EL03]

FNN Encoder-decoder code-based data [ICLR04]
FNN Encoder-decoder text-based data [MK03]

Testing
techniques

Generation RNN text-based data [IEEE12]
LSTM text-based data [ACM31]

Regression LSTM Siamese Network metric-based data [ACM25]
CNN metric-based data [IEEE65]
FNN metric-based data [IEEE14]

Classification FNN code-based data [IEEE07]

Test case
generation

Generation

RNN code-based data [AAAI06]
RNN text-based data [ACM22]
RNN Encoder-decoder code-based data [ACM26]
FNN image-based data [IEEE93]
FNN Encoder-decoder code-based data [IEEE17]
LSTM code-based data [IEEE63]
FNN, LSTM metric-based data [IEEE61]
RNN text-based code [ACM30]

Program
analysis

Classification LSTM code-based data [IEEE14]
CNN text-based data [IEEE65]
CNN, GRU text-based data [IEEE07]
CNN, RNN,
LSTM

text-based data [ACM05]

Recommendation RNN code-based data [IEEE12]
LSTM code-based data [ACM17]
GGNN code-based data [ACM39]

Bug
classification

Classification TBCNN code- and text-based data [EL13]
recommendation FNN text-based data [IEEE60]
CNN Encoder metric- and text-

based data
[IEEE05]

Certification
validation

Recommendation CNN, RNN text-based data [IEEE52]

Stateful ser-
vice virtual-
ization

Generation LSTM Encoder-deocder text-based data [SP10]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:53

Table 23. The relationships of DNNs with respect to DL architecture, task types, problem types, as
well as data types in software maintenance.

Task type Problem type DNN DL architecture Data type Reference

defect predic-
tion

classification CNN, FNN metric-based data [IEEE10]

RNN metric-based data [IEEE114]
RNN code- and text-based data [IEEE135]
LSTM code-based data [IEEE74]
LSTM metric-based data [IEEE87]
LSTM code-based data [IEEE128]
Bi-LSTM, Tree-
LSTM

code-based data [IEEE92]

CNN text-based data [IEEE30]
CNN code-based data [IEEE46]
CNN code- and text-based data [IEEE73]
FNN Autoencoder metric-based data [EL10]
FNN code-based data [IEEE86]
FNN metric-based data [IEEE117]
FNN metric-based data [EL15]
FNN Autoencoder code-based data [IEEE72]
DBN metric-based data [IEEE127]
DBN code-based data [IEEE43]
DBN code-based data [IEEE84]
Deep forest metric-based data [EL06]
Deep forest metric-based data [IEEE90]
RBM code-based data [SP04]
CNN code-based data [IEEE85]

Program re-
pair

generation RNN Encoder-decoder code-based data [ACM35]

LSTM code-based data [AAAI03]
LSTM Encoder-decoder code-based data [IEEE46]
LSTM code-based data [IEEE42]
GRU code-based data [ICLR05]
GRU Encoder-deocder code-based data [AAAI01]
CNN code-based data [ACM27]
CNN code- and text-based data [IEEE132]
GGNN, Bi-GRU code-based data [IEEE138]
GAN code-based data [MITP01]
Bert Transformer code- and text-based data [IEEE29]

classifcation LSTM code-based data [ICLR02]
recommendation LSTM Encoder-decoder code-based data [ACM11]

FNN Autoencoder code-based data [IEEE105]

Code clone
detection

classification RNN code-based data [IEEE51]

RtNN, RvNN code-based data [IEEE15]
LSTM code-based data [AAAI04]
LSTM code-based data [IEEE38]
LSTM code-based data [MK04]
LSTM code-based data [MK05]
LSTM code-based data [IEEE77]
LSTM code-based data [IEEE110]
GRU SiameseNetwork code-based data [IEEE27]
GGNN, GMN code-based data [IEEE98]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:54 Yanming Yang, Xin Xia, David Lo, and John Grundy

regression RTNN code-based data [IEEE80]

bug report re-
lated

classification CNN text-based data [IEEE142]

CNN text-based data [IEEE139]
FNN text-based data [IEEE7]

generation Bi-GRU autoencoder text-based data [IEEE137]
FNN autoencoder text-based data [IEEE39]

recommendation LSTM text-based data [SP02]
BERT, CNN,
RNN-LSTM,
RNN-GRU,
Bi-RNN

text-based data [ACM07]

software reli-
ability

regression FNN code-based data [W01]

software
maintainabil-
ity

FNN metric-based data [EL18]

software
readability

classification CNN code-based data [EL08]

software
trustworthi-
ness

deep residual net-
work

image-based data [EL04]

software
traceability

recommendation LSTM text-based data [ACM21]

compiled-
related

generation RNN Encoder-decoder code-based data [IEEE113]

RNN, GGNN code-based data [IEEE06]
recommendation LSTM, CNN code-based data [IEEE67]

FNN code-based data [IEEE91]

SATD detec-
tion

classification Bi-LSTM autoencoder text-based data [IEEE28]

CNN text-based data [IEEE100]
CNN text-based data [ACM34]

code smell
detection

classification CNN code-based data [IEEE115]

CNN code-based data [IEEE122]
. CNN, LSTM code-based data [ACM12]

Code review classification CNN code-based data [IEEE106]
CNN, LSTM autoencoder code-based data [AAAI05]

recommendation LSTM text-based data [IEEE99]

software/code
classification

classification CNN, LSTM code-based data [IEEE53]

GNN code-based data [IEEE64]
TBCNN, LSTM,
GGNN

code- and text-based data [IEEE104]

code change generation RNN Encoder-decoder code-based data [ACM15]
HAN text-based data [IEEE45]

incident
detection

recommendation CNN text-based data [IEEE22]

classification CNN text-based data [ACM08]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:55

Table 24. The relationships of DNNs with respect to DL architecture, task types, problem types, as
well as data types in software management.

Task type Problem type DNN DL architecture Data type Reference

effort cost
prediction

regression LSTM, recurrent
highway network

text-based data [IEEE134]

CNN, RNN,
CRNN

text-based data [EL02]

FNN metric-based data [IET01]
FNN metric-based data [EL01]
RBFNN metric-based data [EL19]

mining
GitHub

generation Bi-GRU code- and text-based data [MK02]

RNN Encoder-decoder text-based data [IEEE11]
RNN Encoder-decoder code- and text-based data [IEEE75]
LSTM code- and text-based data [EL14]
RNN text-based data [IEEE04]

classification RNN, GRU code- and text-based data [IEEE107]

mining Stack-
Overflow

classification RNN Encoder-decoder text-based data [IEEE79]

CNN text-based data [IEEE76]
CNN text-based data [IEEE81]

recommendation CNN text-based data [IEEE16]

app mining classification CNN text-based data [IEEE111]
generation RNN Encoder-decoder text-based data [IEEE03]

RNN Encoder-decoder text-based data [SP03]

tag mining recommendation FNN metric-based data [SP01]
TagCNN,
TagRNN,
TagHAN and
TagRCNN

text-based data [EL05]

generation LSTM Encoder-decoder text-based data [SP05]
CNN Encoder-decoder image-based data [IEEE44]

developer-
based mining

classification CNN text-based data [IEEE13]

CNN text-based data [IEEE130]
recommendation meta learning text-based data [SP06]

Table 26. Evaluation metrics for different problem types.

problem type Metric # Studies Reference

regression MAE 3 [EL01, EL18, IEEE134]
Standardized
Accuracy
(SA)

3 [EL01, EL02, IEEE134]

MMRE 3 [IET01, EL18, IEEE134]
MdAE 2 [EL02, IEEE134]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:56 Yanming Yang, Xin Xia, David Lo, and John Grundy

classification precision 76 [AAAI04, ACM03, ACM04, ACM05, ACM07, ACM08, IEEE08,
IEEE09, IEEE10, IEEE13, IEEE15, IEEE18, IEEE19, IEEE21, IEEE22,
IEEE23, IEEE27, IEEE28, IEEE30, IEEE32, SP08, ICLR04, IEEE38,
ACM17, ACM19, IEEE43, IEEE46, IEEE48, IEEE50, IEEE53, IEEE54,
IEEE55, IEEE57, ACM24, MK03, MK04, IEEE67, MK05, ACM28,
ACM30, EL03, EL06, EL12, IEEE73, IEEE76, IEEE77, IEEE79,
IEEE81, ACM37, IEEE84, IEEE85, IEEE86, IEEE87, IEEE88, IEEE94,
IEEE28, IEEE100, IEEE102, IEEE106, IEEE107, IEEE109, IEEE111,
IEEE115, IEEE117, ACM34, IEEE122, IEEE123, IEEE125, IEEE127,
IEEE128, IEEE130, IEEE131, IEEE139, IEEE140, IEEE14]

recall 73 [AAAI04, ACM03, ACM04, ACM05, ACM07, ACM08, IEEE08,
IEEE09, IEEE10, IEEE13, IEEE18, IEEE19, IEEE21, IEEE22, IEEE23,
IEEE27, IEEE28, IEEE30, IEEE32, SP08, ICLR04, IEEE38, ACM17,
ACM19, IEEE43, IEEE46, IEEE48, IEEE50, IEEE53, IEEE54,
IEEE55, IEEE57, ACM24, MK04, IEEE67, MK05, ACM28, ACM30,
EL03, EL06, EL12, IEEE73, IEEE76, IEEE77, IEEE79, IEEE81,
ACM37, IEEE84, IEEE85, IEEE86, IEEE87, IEEE88, IEEE94, IEEE28,
IEEE100, IEEE102, IEEE106, IEEE107, IEEE109, IEEE111, IEEE117,
ACM34, IEEE122, IEEE123, IEEE125, IEEE130, IEEE131, IEEE127,
IEEE139, IEEE140, IEEE142]

F1-score 62 [AAAI04, AAAI05, ACM04, ACM05, ACM07, ACM08, IEEE09,
IEEE10, IEEE13, IEEE18, IEEE19, IEEE21, IEEE23, IEEE27, IEEE28,
IEEE32, ICLR04, IEEE38, ACM17, ACM19, IEEE43, IEEE46, IEEE48,
IEEE50, IEEE53, IEEE57, ACM24, MK03, MK04, IEEE67, MK05,
ACM28, ACM30, EL03, EL08, EL12, EL13, IEEE73, IEEE76, IEEE77,
MITP03, IEEE84, IEEE85, IEEE87, IEEE88, IEEE94, IEEE95, IEEE28,
IEEE100, IEEE102, IEEE106, IEEE107, IEEE109, IEEE111, ACM34,
IEEE123, IEEE125, IEEE130, IEEE127, IEEE139, IEEE142]

Accuracy 27 [ICLR02, ICLR04, ACM19, IEEE54, IEEE57, IEEE67, EL03, EL04,
EL06, EL08, MITP03, IEEE86, IEEE88, IEEE95, IEEE104, IEEE109,
IEEE122, IEEE123, IEEE130, IEEE139, IEEE140]

AUC 22 [AAAI05, IEEE22, SP04, ICLR04, EL06, EL10, IEEE73, IEEE76,
IEEE79, IEEE87, IEEE90, IEEE92, IEEE97, IEEE100, IEEE19,
IEEE110, IEEE114, IEEE117, ACM32, IEEE123, IEEE135, IEEE139]

MCC 8 [EL10, IEEE86, IEEE90, IEEE92, IEEE100, IEEE102, IEEE109,
IEEE115]

ROC 6 [ACM05, IEEE79, IEEE92, IEEE110, IEEE115, IEEE117]
True positve
rate

3 [MK03, ICLR02, IEEE86]

False positive
rate

2 [MK03, EL03]

False nega-
tive rate

2 [MK03, EL03]

Recommendation MRR 17 [AAAI07, IEEE02, IEEE16, IEEE20, IEEE24, IEEE25, IEEE26,
SP06, EL07, IEEE89, IEEE99, IEEE116, ACM33, IEEE124, ACM36,
IEEE126, IEEE135]

MAP/MAP@k 11 [AAAI07, IEEE16, IEEE24, ACM21, MK06, EL07, IEEE89, IEEE124,
ACM36, IEEE126, IEEE135]

precision@k 7 [IEEE16, IEEE20, IEEE25, SP01, EL05, ACM33, ACM36]
recall@k 6 [SP01, SP02, IEEE60, EL05, MITP05, IEEE99]
F1-score@k 4 [SP01, EL05, IEEE96, ACM36]

Recall 22 [IEEE04, IEEE06, IEEE29, IEEE32, SP05, IEEE35, SP07, ACM10,
ICLR07, IEEE39, ACM20, IEEE45, ACM23, IEEE58, IEEE59, MK02,
MK08, EL14, EL21, ACM38, IEEE101, IEEE137, IEEE119]

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:57

Generation precision 21 [IEEE04, IEEE11, IEEE29, IEEE32, SP05, SP07, ICLR07, IEEE39,
ACM20, IEEE45, ACM23, IEEE58, IEEE59, MK08, EL14, EL21,
ACM38, IEEE101, IEEE58, IEEE129, IEEE137, IEEE119]

BLEU 19 [IEEE03, IEEE11, IEEE31, IEEE33, SP03, IEEE36, SP07, SP09,
ACM16, IEEE41, IEEE44, MK02, IEEE75, EL21, MITP06, MITP07,
IEEE112, IEEE121, IEEE136]

ROUGE 11 [AAAI08, IEEE04, IEEE31, SP09, IEEE39, IEEE44, IEEE75, MITP07,
IEEE101, IEEE136, IEEE137]

F1-score 10 [IEEE04, IEEE32, SP05, SP09, ICLR07, ICLR10, ACM23, IEEE59,
EL21, IEEE101]

Exact match 7 [ICLR03, ICLR09, IEEE41, MITP06, MITP08, IEEE112, IEEE138]
Running time 6 [IEEE41, ACM22, IEEE63, ACM31, IEEE113, IEEE121]
METEOR 5 [IEEE31, SP07, MK02, EL21, MITP07]
perplexity
(PP)

2 [IEEE66, IEEE83]

G LIST OF PRIMARY STUDIES IN THE SLR
In this section, we classified all primary studies according to their publishers and listed them as
follows:
(EL: Elsevier; MITP: MIT Press; MK: Morgan Kaufmann; SP: Spring; W: Wiley)
AAAI01: Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fixing
common c language errors by deep learning. In Thirty-First AAAI Conference on Artificial Intelli-
gence.
AAAI02: Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural networks
over tree structures for programming language processing. In Thirtieth AAAI Conference on Artificial
Intelligence.
AAAI03: Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2019. Deep reinforcement learning
for syntactic error repair in student programs. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 930–937.
AAAI04: Yan-Ya Zhang and Ming Li. 2019. Find Me if You Can: Deep Software Clone Detection
by Exploiting the Contest between the Plagiarist and the Detector. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 5813–5820.
AAAI05: Shu-Ting Shi, Ming Li, David Lo, Ferdian Thung, and Xuan Huo. 2019. Automatic code
review by learning the revision of source code. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 4910–4917.
AAAI06: Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz: Automatic
generation of syntax valid c programs for fuzz testing. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 1044–1051.
AAAI07: Xuan Huo, Ming Li, and Zhi-Hua Zhou. 2020. Control flow graph embedding based
on multi-instance decomposition for bug localization. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34. 4223–4230.
AAAI08: Yuding Liang and Kenny Zhu. 2018. Automatic generation of text descriptive comments
for code blocks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.
ACM01: Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019.
When deep learning met code search. In FSE. 964–974.
ACM02: Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API
learning. In FSE. 631–642.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:58 Yanming Yang, Xin Xia, David Lo, and John Grundy

Table 25. The distribution of various overfitting techniques used in primary studies.

Optimization #Studies References

Dropout 47 [AAAI01, AAAI06,AAAI07, ACM06, IEEE02, IEEE21, IEEE24, IEEE26, IEEE28,
IEEE33, SP02, IEEE34, IEEE35, SP09, ACM10,ICLR07, ACM11, ACM13, ICLR10,
IEEE39, ACM16, ACM18, ACM20, IEEE45, IEEE48, IEEE53, EL10, EL13,EL16,
IEEE75, IEEE79, EL21, IEEE87, IEEE108, IEEE125, IEEE134, IEEE135, IEEE138,
IEEE62, MK02,IEEE66, IEEE67, MK06, MK07, EL02]

Pooling 26 [ACM01, ACM04, ACM19, ACM23, ACM34, ACM33, IEEE05, IEEE06, IEEE15,
IEEE20, IEEE38, IEEE41, IEEE54, IEEE62, EL02, EL05, EL20, IEEE78, IEEE94,
IEEE96, IEEE106, IEEE113, IEEE123, IEEE124, IEEE125, IEEE126]

Regularization 24 [ACM14, ACM17, ACM21, ACM29, IEEE83, IEEE86 IEEE50, IEEE57, IEEE128,
IEEE100, IEEE106, IEEE133, IEEE13, IEEE16, IEEE25, IEEE128, SP02, ICLR04,
ICLR06, ICLR09, EL09, EL11, MITP03, IET01]

Data aug-
mentation

9 [IEEE46, IEEE78, IEEE83, IEEE97, IEEE116, IEEE129, ACM25, ACM36, EL21]

Data balanc-
ing

5 [ICLR08, IEEE46, IEEE60, ACM35, ACM34]

Early stop-
ing

4 [IEEE48, EL10, IEEE73, IEEE134]

ACM03: Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour. 2018. Prediction
of relatedness in stack overflow: deep learning vs. SVM: a reproducibility study. In ESEM. 1–10.
ACM04: Gang Zhao and Jeff Huang. 2018. Deepsim: deep learning code functional similarity. In
FSE. 141–151.
ACM05: Jinman Zhao, Aws Albarghouthi, Vaibhav Rastogi, Somesh Jha, and Damien Octeau. 2018.
Neural-augmented static analysis of Android communication. In FSE. 342–353.
ACM06: Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018. Deep
learning type inference. In FSE. 152–162.
ACM07: Yutong Zhao, Lu Xiao, Pouria Babvey, Lei Sun, Sunny Wong, Angel A Martinez, and Xiao
Wang. 2020. Automatically identifying performance issue reports with heuristic linguistic patterns.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 964–975.
ACM08: Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin, Junjie
Chen, Pu Zhao, Yu Kang, Feng Gao, et al. 2020. Identifying linked incidents in large-scale online
service systems. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 304–314.
ACM09: Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks the best
choice for modeling source code?. In FSE. 763–773.
ACM10: Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode
compose: Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1433–1443.
ACM11: Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program repair
from diagnostic feedback. In International Conference on Machine Learning. PMLR, 10799–10808.
ACM12: Dor Levy and Lior Wolf. 2017. Learning to align the source code to the compiled object
code. In International Conference on Machine Learning. PMLR, 2043–2051.
ACM13: Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention
network for extreme summarization of source code. In International conference on machine learning.
PMLR, 2091–2100.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:59

ACM14: Huong Ha and Hongyu Zhang. 2019. Deepperf: performance prediction for configurable
software with deep sparse neural network. In ICSE. IEEE, 1095–1106.
ACM15: Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshy-
vanyk. 2019. On learning meaningful code changes via neural machine translation. In ICSE. IEEE,
25–36.
ACM16: Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating
natural language summaries of program subroutines. In ICSE. IEEE, 795–806.
ACM17: Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. Nl2type: inferring javascript
function types from natural language information. In ICSE. IEEE, 304–315.
ACM18: Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and
evaluating contextual embedding of source code. In International Conference on Machine Learning.
PMLR, 5110–5121.
ACM19: Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Taeyoung Kim, Kisub Kim, Anil Koyuncu,
Suntae Kim, and Yves Le Traon. 2019. Learning to spot and refactor inconsistent method names. In
ICSE. IEEE, 1–12.
ACM20: Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and
Leonidas Guibas. 2015. Learning program embeddings to propagate feedback on student code. In
International conference on machine Learning. PMLR, 1093–1102.
ACM21: Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. 2017. Semantically enhanced software
traceability using deep learning techniques. In ICSE. IEEE, 3–14.
ACM22: Peng Liu, Xiangyu Zhang, Marco Pistoia, Yunhui Zheng, Manoel Marques, and Lingfei
Zeng. 2017. Automatic text input generation for mobile testing. In ICSE. IEEE, 643–653.
ACM23: Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019.
A novel neural source code representation based on abstract syntax tree. In ICSE. IEEE, 783–794.
ACM24: Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, and Guoqiang Li. 2019. ActionNet:
vision-based workflow action recognition from programming screencasts. In ICSE. IEEE, 350–361.
ACM25: Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020. Reinforcement
learning based curiosity-driven testing of Android applications. In ISSTA. 153–164.
ACM26: Muyang Liu, Ke Li, and Tao Chen. 2020. DeepSQLi: Deep Semantic Learning for Testing
SQL Injection. arXiv preprint arXiv:2005.11728 (2020).
ACM27: Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan.
2020. CoCoNuT: combining context-aware neural translation models using ensemble for program
repair. In ISSTA. 101–114.
ACM28: Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020. Functional
code clone detection with syntax and semantics fusion learning. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 516–527.
ACM29: Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating multiple
fault diagnosis dimensions for deep fault localization. In ISSTA. 169–180.
ACM30: Tien-Duy B Le and David Lo. 2018. Deep specification mining. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 106–117.
ACM31: Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler
fuzzing through deep learning. In ISSTA. 95–105.
ACM32: Yangguang Li, Zhen Ming Jiang, Heng Li, Ahmed E Hassan, Cheng He, Ruirui Huang,
Zhengda Zeng, Mian Wang, and Pinan Chen. 2020. Predicting Node Failures in an Ultra-large-scale
Cloud Computing Platform: an AIOps Solution. TOSEM 29, 2 (2020), 1–24.
ACM33: Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xin Xia, Liming Zhu, John Grundy, and
Jinshui Wang. 2020. Wireframe-based UI design search through image autoencoder. TOSEM 29, 3
(2020), 1–31.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:60 Yanming Yang, Xin Xia, David Lo, and John Grundy

ACM34: Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy. 2019.
Neural network-based detection of self-admitted technical debt: from performance to explainability.
TOSEM 28, 3 (2019), 1–45.
ACM35: Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White,
and Denys Poshyvanyk. 2019. An empirical study on learning bug-fixing patches in the wild via
neural machine translation. TOSEM 28, 4 (2019), 1–29.
ACM36: Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, Minghui Wu, and Xiaohu Yang. 2020.
psc2code: Denoising Code Extraction from Programming Screencasts. TOSEM 29, 3 (2020), 1–38.
ACM37: Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug detection
via context-based code representation learning and attention-based neural networks. Proceedings of
the ACM on Programming Languages 3, OOPSLA (2019), 1–30.
ACM38: Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning semantic program
embeddings with graph interval neural network. Proceedings of the ACM on Programming Languages
4, OOPSLA (2020), 1–27.
ACM39: Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus: Neural
type hints. In Proceedings of the 41st acm sigplan conference on programming language design and
implementation. 91–105.
EL01: Passakorn Phannachitta. 2020. On an optimal analogy-based software effort estimation. IST
(2020), 106330.
EL02: Mirosław Ochodek, Sylwia Kopczynska, and Miroslaw Staron. 2020. Deep learning model
for end-to-end approximation of COSMIC functional size based on use-case names. IST (2020),
106310.
EL03: Junfeng Tian, Wenjing Xing, and Zhen Li. 2020. BVDetector: A program slice-based binary
code vulnerability intelligent detection system. IST 123 (2020), 106289.
EL04: Junfeng Tian and Yuhui Guo. 2020. Software trustworthiness evaluation model based on a
behaviour trajectory matrix. IST 119 (2020), 106233.
EL05: Pingyi Zhou, Jin Liu, Xiao Liu, Zijiang Yang, and John Grundy. 2019. Is deep learning better
than traditional approaches in tag recommendation for software information sites? IST 109 (2019),
1–13.
EL06: Tianchi Zhou, Xiaobing Sun, Xin Xia, Bin Li, and Xiang Chen. 2019. Improving defect
prediction with deep forest. IST 114 (2019), 204–216.
EL07: Yan Xiao, Jacky Keung, Kwabena E Bennin, and Qing Mi. 2019. Improving bug localization
with word embedding and enhanced convolutional neural networks. IST 105 (2019), 17–29.
EL08: Qing Mi, Jacky Keung, Yan Xiao, Solomon Mensah, and Yujin Gao. 2018. Improving code
readability classification using convolutional neural networks. IST 104 (2018), 60–71.
EL09: Aysh Al-Hroob, Ayad Tareq Imam, and Rawan Al-Heisa. 2018. The use of artificial neural
networks for extracting actions and actors from requirements document. IST 101 (2018), 1–15.
EL10: Haonan Tong, Bin Liu, and Shihai Wang. 2018. Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning. IST 96 (2018), 94–111.
EL11: Sukhpal Singh Gill, Shreshth Tuli, Adel Nadjaran Toosi, Felix Cuadrado, Peter Garraghan,
Rami Bahsoon, Hanan Lutfiyya, Rizos Sakellariou, Omer Rana, Schahram Dustdar, et al. 2020.
ThermoSim: Deep learning based framework for modeling and simulation of thermal-aware resource
management for cloud computing environments. JSS (2020), 110596.
EL12: Cheng Zhou, Bin Li, and Xiaobing Sun. 2020. Improving software bug-specific named entity
recognition with deep neural network. JSS (2020), 110572.
EL13: Zhen Ni, Bin Li, Xiaobing Sun, Tianhao Chen, Ben Tang, and Xinchen Shi. 2020. Analyzing
bug fix for automatic bug cause classification. JSS 163 (2020), 110538.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:61

EL14: Hang Ruan, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2019. DeepLink: Recovering
issue-commit links based on deep learning. JSS 158 (2019), 110406.
EL15: Zhou Xu, Shuai Li, Jun Xu, Jin Liu, Xiapu Luo, Yifeng Zhang, Tao Zhang, Jacky Keung, and
Yutian Tang. 2019. LDFR: Learning deep feature representation for software defect prediction. JSS
158 (2019), 110402.
EL16: Yasir Hussain, Zhiqiu Huang, Yu Zhou, and Senzhang Wang. 2020. CodeGRU: Context-aware
deep learning with gated recurrent unit for source code modeling. IST (2020), 106309.
EL17: Ruibo Yan, Xi Xiao, Guangwu Hu, Sancheng Peng, and Yong Jiang. 2018. New deep learning
method to detect code injection attacks on hybrid applications. JSS 137 (2018), 67–77.
EL18: Lov Kumar and Santanu Ku Rath. 2016. Hybrid functional link artificial neural network
approach for predicting maintainability of object-oriented software. JSS 121 (2016), 170–190.
EL19: Cuauhtémoc López-Martín and Alain Abran. 2015. Neural networks for predicting the
duration of new software projects. JSS 101 (2015), 127–135.
EL20: Fang Liu, Lu Zhang, and Zhi Jin. 2020. Modeling programs hierarchically with stack-
augmented LSTM. Journal of Systems and Software 164 (2020), 110547.
EL21: Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. 2019. Augmenting Java
method comments generation with context information based on neural networks. JSS 156 (2019),
328–340.
ICLR01: Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. 2020. Hop-
pity: Learning graph transformations to detect and fix bugs in programs. In International Conference
on Learning Representations (ICLR).
ICLR02: Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. 2019.
Neural Program Repair by Jointly Learning to Localize and Repair. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
ICLR03: Xinyun Chen, Chang Liu, and Dawn Song. 2018. Execution-guided neural program
synthesis. In International Conference on Learning Representations.
ICLR04: Tue Le, Tuan Nguyen, Trung Le, Dinh Phung, Paul Montague, Olivier De Vel, and Lizhen
Qu. 2018. Maximal divergence sequential autoencoder for binary software vulnerability detection. In
International Conference on Learning Representations.
ICLR05: Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Dynamic Neural Program Embeddings
for Program Repair. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018. OpenReview.net
ICLR06: Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy Ranganathan, and Milad Hashemi.
2020. Learning Execution through Neural Code fusion. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
ICLR07: Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
OCLR08: Xinyun Chen, Chang Liu, and Dawn Song. 2018. Towards Synthesizing Complex Pro-
grams From Input-Output Examples. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018. OpenReview.net
ICLR09: Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
2018. Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018. OpenReview.net.
ICLR10: Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to
Represent Programs with Graphs. In 6th International Conference on Learning Representations,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:62 Yanming Yang, Xin Xia, David Lo, and John Grundy

ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net.
ICLR11: Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. 2017. DeepCoder: Learning to Write Programs. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017. OpenReview.net
IEEE01: Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip Yu.
2019. Multi-modal attention network learning for semantic source code retrieval. In ASE. IEEE,
13–25.
IEEE02: Qihao Zhu, Zeyu Sun, Xiran Liang, Yingfei Xiong, and Lu Zhang. 2020. OCoR: an
overlapping-aware code retriever. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 883–894.
IEEE03: Cuiyun Gao, Jichuan Zeng, Xin Xia, David Lo, Michael R Lyu, and Irwin King. 2019.
Automating app review response generation. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 163–175.
IEEE04: Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Automatic
generation of pull request descriptions. In ASE. IEEE, 176–188.
IEEE05: Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu,
Yingnong Dang, and Dongmei Zhang. 2019. Continuous incident triage for large-scale online service
systems. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 364–375.
IEEE06: Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire Le Goues,
Graham Neubig, and Bogdan Vasilescu. 2019. Dire: A neural approach to decompiled identifier
naming. In ASE. IEEE, 628–639.
IEEE07: Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu, Ruimin
Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning. In ASE. IEEE, 772–784.
IEEE08: Dongliang Mu, Wenbo Guo, Alejandro Cuevas, Yueqi Chen, Jinxuan Gai, Xinyu Xing,
Bing Mao, and Chengyu Song. 2019. RENN: efficient reverse execution with neural-network-assisted
alias analysis. In ASE. IEEE, 924–935.
IEEE09: Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K Roy, and Kevin A
Schneider. 2019. CLCDSA: cross language code clone detection using syntactical features and API
documentation. In ASE. IEEE, 1026–1037.
IEEE10: Hui Liu, Zhifeng Xu, and Yanzhen Zou. 2018. Deep learning based feature envy detection.
In ASE. 385–396.
IEEE11: Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generating
commit messages from diffs using neural machine translation. In ASE. IEEE, 135–146.
IEEE12: Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&fuzz: Machine learning
for input fuzzing. In ASE. IEEE, 50–59.
IEEE13: Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li. 2016.
Predicting semantically linkable knowledge in developer online forums via convolutional neural
network. In ASE. IEEE, 51–62.
IEEE14: Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2016. Testing
advanced driver assistance systems using multi-objective search and neural networks. In ASE. 63–74.
IEEE15: Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep
learning code fragments for code clone detection. In ASE. IEEE, 87–98.
IEEE16: Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning a dual-
language vector space for domain-specific cross-lingual question retrieval. In ASE. IEEE, 744–755.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:63

IEEE17: Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella, Sebastiano
Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-Enhancer: Improving the
readability of automatically generated tests. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 287–298.
IEEE18: Mohammad Jafar Mashhadi and Hadi Hemmati. 2020. Hybrid deep neural networks to
infer state models of black-box systems. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 299–311.
IEEE19: Mingyang Li, Lin Shi, Ye Yang, and Qing Wang. 2020. A deep multitask learning approach
for requirements discovery and annotation from open forum. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 336–348.
IEEE20: Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In ICSE. IEEE,
933–944.
IEEE21: Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. 2020. Where shall we log? studying and
suggesting logging locations in code blocks. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 361–372.
IEEE22: Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu Kang,
Feng Gao, Zhangwei Xu, Yingnong Dang, et al. 2020. How incidental are the incidents? character-
izing and prioritizing incidents for large-scale online service systems. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering. 373–384.
IEEE23: Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing Wang. 2020.
Owl eyes: Spotting ui display issues via visual understanding. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 398–409.
IEEE24: Wei Li, Haozhe Qin, Shuhan Yan, Beijun Shen, and Yuting Chen. 2020. Learning Code-
Query Interaction for Enhancing Code Searches. In 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 115–126.
IEEE25: Qing Huang, An Qiu, Maosheng Zhong, and Yuan Wang. 2020. A Code-Description
Representation Learning Model Based on Attention. In SANER. IEEE, 447–455.
IEEE26: Chunyang Ling, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2020. Adaptive deep code search.
In Proceedings of the 28th International Conference on Program Comprehension. 48–59.
IEEE27: Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng, Hong Liang,
and Hai Jin. 2020. SCDetector: software functional clone detection based on semantic tokens analysis.
In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering.
821–833.
IEEE28: Xin Wang, Jin Liu, Li Li, Xiao Chen, Xiao Liu, and Hao Wu. 2020. Detecting and
explaining self-admitted technical debts with attention-based neural networks. In Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering. 871–882.
IEEE29: Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and
Tegawendé F Bissyandé. 2020. Evaluating representation learning of code changes for predicting
patch correctness in program repair. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 981–992.
IEEE30: Lian Yu, Lihao Chen, Jingtao Dong, Mengyuan Li, Lijun Liu, Bai Zhao, and Chen Zhang.
2020. Detecting Malicious Web Requests Using an Enhanced TextCNN. In 2020 IEEE 44th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE, 768–777.
IEEE31: Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu.
2018. Improving automatic source code summarization via deep reinforcement learning. In ASE.
397–407.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:64 Yanming Yang, Xin Xia, David Lo, and John Grundy

IEEE32: Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Yanjun Pu, and Xudong Liu. 2020.
Learning to handle exceptions. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 29–41.
IEEE33: Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine: exemplar-
based neural comment generation. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 349–360.
IEEE34: Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-trained
language model for code completion. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. 473–485.
IEEE35: Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. 2020. Automating just-in-time
comment updating. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. 585–597.
IEEE36: David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to Comment
“Translation”: Data, Metrics, Baselining & Evaluation. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 746–757.
IEEE37: Yating Zhang, Wei Dong, Daiyan Wang, Binbin Liu, and Jiaxin Liu. 2020. Accuracy
Improvement for Neural Program Synthesis via Attention Mechanism and Program Slicing. In
2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,
963–972.
IEEE38: Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang. 2019. Neural
detection of semantic code clones via tree-based convolution. In ICPC. IEEE, 70–80.
IEEE39: Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li. 2018. Unsupervised deep bug
report summarization. In ICPC. IEEE, 144–14411.
IEEE40: An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2017. Bug
localization with combination of deep learning and information retrieval. In ICPC. IEEE, 218–229.
IEEE41: Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018. From ui
design image to gui skeleton: a neural machine translator to bootstrap mobile gui implementation. In
ICSE. 665–676.
IEEE42: Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-symbolic program corrector
for introductory programming assignments. In ICSE. IEEE, 60–70.
IEEE43: Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for
defect prediction. In ICSE. IEEE, 297–308.
IEEE44: Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guoqiang
Li, and Jinshui Wang. 2020. Unblind your apps: Predicting natural-language labels for mobile gui
components by deep learning. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 322–334.
IEEE45: Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. Cc2vec: Distributed
representations of code changes. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 518–529.
IEEE46: Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir Filkov.
2020. Software visualization and deep transfer learning for effective software defect prediction. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 578–589.
IEEE47: Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. Dlfix: Context-based code transforma-
tion learning for automated program repair. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 602–614.
IEEE48: Lin Shi, Mingzhe Xing, Mingyang Li, Yawen Wang, Shoubin Li, and Qing Wang. 2020.
Detection of hidden feature requests from massive chat messages via deep siamese network. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 641–653.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:65

IEEE49: Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In
ICPC. IEEE, 200–20010.
IEEE50: Antoine Barbez, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2019. Deep Learning Anti-
patterns from Code Metrics History. In ICSME. IEEE, 114–124.
IEEE51: Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang, and Yuanfang Cai. 2019. TECCD: A
Tree Embedding Approach for Code Clone Detection. In ICSME. IEEE, 145–156.
IEEE52: Chao Chen, Wenrui Diao, Yingpei Zeng, Shanqing Guo, and Chengyu Hu. 2018. DRL-
gencert: Deep learning-based automated testing of certificate verification in SSL/TLS implementa-
tions. In ICSME. IEEE, 48–58.
IEEE53: Alexander LeClair, Zachary Eberhart, and Collin McMillan. 2018. Adapting neural text
classification for improved software categorization. In ICSME. IEEE, 461–472.
IEEE54: Jayati Deshmukh, KM Annervaz, Sanjay Podder, Shubhashis Sengupta, and Neville Dubash.
2017. Towards accurate duplicate bug retrieval using deep learning techniques. In ICSME. IEEE,
115–124.
IEEE55: Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017. Cclearner: A
deep learning-based clone detection approach. In ICSME. IEEE, 249–260.
IEEE56: Stephen Romansky, Neil C Borle, Shaiful Chowdhury, Abram Hindle, and Russ Greiner.
2017. Deep green: Modelling time-series of software energy consumption. In ICSME. IEEE,
273–283.
IEEE57: Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng. 2017.
Learning to predict severity of software vulnerability using only vulnerability description. In ICSME.
IEEE, 125–136.
IEEE58: Mingyang Li, Ye Yang, Lin Shi, Qing Wang, Jun Hu, Xinhua Peng, Weimin Liao, and
Guizhen Pi. 2020. Automated Extraction of Requirement Entities by Leveraging LSTM-CRF and
Transfer Learning. In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 208–219.
IEEE59: Son Nguyen, Hung Phan, Trinh Le, and Tien N Nguyen. 2020. Suggesting natural method
names to check name consistencies. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 1372–1384.
IEEE60: Wei Zhang. 2020. Efficient Bug Triage For Industrial Environments. In 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). IEEE, 727–735.
IEEE61: Hui Zhao, Zhihui Li, Hansheng Wei, Jianqi Shi, and Yanhong Huang. 2019. SeqFuzzer:
An industrial protocol fuzzing framework from a deep learning perspective. In ICST. IEEE, 59–67.
IEEE62: Seongmin Lee, Shin Hong, Jungbae Yi, Taeksu Kim, Chul-Joo Kim, and Shin Yoo. 2019.
Classifying false positive static checker alarms in continuous integration using convolutional neural
networks. In ICST. IEEE, 391–401.
IEEE63: Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and Saurabh Bagchi. 2019. Pyse: Auto-
matic worst-case test generation by reinforcement learning. In ICST. IEEE, 136–147.
IEEE64: Ugur Koc, Shiyi Wei, Jeffrey S Foster, Marine Carpuat, and Adam A Porter. 2019. An
empirical assessment of machine learning approaches for triaging reports of a java static analysis
tool. In ICST. IEEE, 288–299.
IEEE65: Dongyu Mao, Lingchao Chen, and Lingming Zhang. 2019. An extensive study on cross-
project predictive mutation testing. In ICST. IEEE, 160–171.
IEEE66: Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk.
2020. On learning meaningful assert statements for unit test cases. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 1398–1409.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:66 Yanming Yang, Xin Xia, David Lo, and John Grundy

IEEE67: Davide Pizzolotto and Katsuro Inoue. 2020. Identifying Compiler and Optimization Options
from Binary Code using Deep Learning Approaches. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 232–242.
IEEE68: Xiaohui Wan, Zheng Zheng, Fangyun Qin, Yu Qiao, and Kishor S Trivedi. 2019. Supervised
Representation Learning Approach for Cross-Project Aging-Related Bug Prediction. In ISSRE. IEEE,
163–172.
IEEE69: Yaohui Wang, Hui Xu, Yangfan Zhou, Michael R Lyu, and Xin Wang. 2019. Textout:
Detecting Text-Layout Bugs in Mobile Apps via Visualization-Oriented Learning. In ISSRE. IEEE,
239–249.
IEEE70: Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An empirical
study of common challenges in developing deep learning applications. In ISSRE. IEEE, 104–115.
IEEE71: Irving Muller Rodrigues, Daniel Aloise, Eraldo Rezende Fernandes, and Michel Dagenais.
2020. A soft alignment model for bug deduplication. In Proceedings of the 17th International
Conference on Mining Software Repositories. 43–53.
IEEE72: Timofey Bryksin, Victor Petukhov, Ilya Alexin, Stanislav Prikhodko, Alexey Shpilman,
Vladimir Kovalenko, and Nikita Povarov. 2020. Using large-scale anomaly detection on code to
improve kotlin compiler. In Proceedings of the 17th International Conference on Mining Software
Repositories. 455–465.
IEEE73: Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi. 2019.
DeepJIT: an end-to-end deep learning framework for just-in-time defect prediction. In MSR. IEEE,
34–45.
IEEE74: Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya Ghose,
Taeksu Kim, and Chul-Joo Kim. 2019. Lessons learned from using a deep tree-based model for
software defect prediction in practice. In MSR. IEEE, 46–57.
IEEE75: Qin Liu, Zihe Liu, Hongming Zhu, Hongfei Fan, Bowen Du, and Yu Qian. 2019. Generating
commit messages from diffs using pointer-generator network. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 299–309.
IEEE76: Shaohua Wang, NhatHai Phan, Yan Wang, and Yong Zhao. 2019. Extracting API tips from
developer question and answer websites. In MSR. IEEE, 321–332.
IEEE77: Daniel Perez and Shigeru Chiba. 2019. Cross-language clone detection by learning over
abstract syntax trees. In MSR. IEEE, 518–528.
IEEE78: Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, and Erik Linstead. 2018. A
deep learning approach to identifying source code in images and video. In MSR. IEEE, 376–386.
IEEE79: Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. 2018.
Learning to mine aligned code and natural language pairs from stack overflow. In MSR. IEEE,
476–486.
IEEE80: Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White,
and Denys Poshyvanyk. 2018. Deep learning similarities from different representations of source
code. In MSR. IEEE, 542–553.
IEEE81: Tim Menzies, Suvodeep Majumder, Nikhila Balaji, Katie Brey, and Wei Fu. 2018. 500+
times faster than deep learning:(a case study exploring faster methods for text mining stackoverflow).
In MSR. IEEE, 554–563.
IEEE82: Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding java classes
with code2vec: Improvements from variable obfuscation. In Proceedings of the 17th International
Conference on Mining Software Repositories. 243–253.
IEEE83: Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshyvanyk.
2015. Toward deep learning software repositories. In MSR. IEEE, 334–345.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:67

IEEE84: Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep learning for just-
in-time defect prediction. In 2015 IEEE International Conference on Software Quality, Reliability
and Security. IEEE, 17–26.
IEEE85: Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. 2017. Software defect prediction
via convolutional neural network. In 2017 IEEE International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 318–328.
IEEE86: Caesar Jude Clemente, Fehmi Jaafar, and Yasir Malik. 2018. Is predicting software security
bugs using deep learning better than the traditional machine learning algorithms?. In 2018 IEEE
International Conference on Software Quality, Reliability and Security (QRS). IEEE, 95–102.
IEEE87: Xian Zhang, Kerong Ben, and Jie Zeng. 2018. Cross-entropy: A new metric for software
defect prediction. In 2018 IEEE International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 111–122.
IEEE88: Wensheng Xia, Ying Li, Tong Jia, and Zhonghai Wu. 2019. BugIdentifier: An Approach
to Identifying Bugs via Log Mining for Accelerating Bug Reporting Stage. In 2019 IEEE 19th
International Conference on Software Quality, Reliability and Security (QRS). IEEE, 167–175.
IEEE89: Shasha Cheng, Xuefeng Yan, and Arif Ali Khan. 2020. A Similarity Integration Method
based Information Retrieval and Word Embedding in Bug Localization. In 2020 IEEE 20th Interna-
tional Conference on Software Quality, Reliability and Security (QRS). IEEE, 180–187.
IEEE90: Kunsong Zhao, Zhou Xu, Tao Zhang, Yutian Tang, and Meng Yan. 2021. Simplified Deep
Forest Model Based Just-in-Time Defect Prediction for Android Mobile Apps. IEEE Transactions on
Reliability (2021).
IEEE91: Wu Jiang, Xu Jianjun, Meng Xiankai, Zhang Zhuo, Zhang Nan, and Zhang Haoyu. 2020.
High-Reliability Compilation Optimization Sequence Generation Framework Based ANN. In 2020
IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). IEEE,
347–355.
IEEE92: Xuan Zhou and Lu Lu. 2020. Defect Prediction via LSTM Based on Sequence and Tree
Structure. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 366–373.
IEEE93: Zijie Li, Long Zhang, Jun Yan, Jian Zhang, Zhenyu Zhang, and TH Tse. 2020. PEA-
CEPACT: Prioritizing Examples to Accelerate Perturbation-Based Adversary Generation for DNN
Classification Testing. In 2020 IEEE 20th International Conference on Software Quality, Reliability
and Security (QRS). IEEE, 406–413.
IEEE94: Florian Pudlitz, Florian Brokhausen, and Andreas Vogelsang. 2019. Extraction of system
states from natural language requirements. In RE. IEEE, 211–222.
IEEE95: Jonas Paul Winkler, Jannis Grönberg, and Andreas Vogelsang. 2019. Predicting How to
Test Requirements: An Automated Approach. In RE. IEEE, 120–130.
IEEE96: Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. 2018. Enhancing automated require-
ments traceability by resolving polysemy. In RE. IEEE, 40–51.
IEEE97: Alvi Mahadi, Karan Tongay, and Neil A Ernst. 2020. Cross-Dataset Design Discussion
Mining. In SANER. IEEE, 149–160.
IEEE98: Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones with
Graph Neural Network and Flow-Augmented Abstract Syntax Tree. In SANER. IEEE, 261–271.
IEEE99: Jing Kai Siow, Cuiyun Gao, Lingling Fan, Sen Chen, and Yang Liu. 2020. CORE: Au-
tomating Review Recommendation for Code Changes. In SANER. IEEE, 284–295.
IEEE100: Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2020. Automatically
learning patterns for self-admitted technical debt removal. In SANER. IEEE, 355–366.
IEEE101: Zachary Eberhart, Alexander LeClair, and Collin McMillan. 2020. Automatically Extract-
ing Subroutine Summary Descriptions from Unstructured Comments. In SANER. IEEE, 35–46.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:68 Yanming Yang, Xin Xia, David Lo, and John Grundy

IEEE102: Guangjie Li, Hui Liu, Jiahao Jin, and Qasim Umer. 2020. Deep Learning Based Identifi-
cation of Suspicious Return Statements. In SANER. IEEE, 480–491.
IEEE103: Zhuo Zhang, Yan Lei, Xiaoguang Mao, and Panpan Li. 2019. CNN-FL: An effective
approach for localizing faults using convolutional neural networks. In SANER. IEEE, 445–455.
IEEE104: Bui Nghi DQ, Yijun Yu, and Lingxiao Jiang. 2019. Bilateral dependency neural networks
for cross-language algorithm classification. In SANER. IEEE, 422–433.
IEEE105: Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshy-
vanyk. 2019. Sorting and transforming program repair ingredients via deep learning code similarities.
In SANER. IEEE, 479–490.
IEEE106: Chenkai Guo, Dengrong Huang, Naipeng Dong, Quanqi Ye, Jing Xu, Yaqing Fan, Hui
Yang, and Yifan Xu. 2019. Deep review sharing. In SANER. IEEE, 61–72.
IEEE107: Rui Xie, Long Chen, Wei Ye, Zhiyu Li, Tianxiang Hu, Dongdong Du, and Shikun Zhang.
2019. DeepLink: A code knowledge graph based deep learning approach for issue-commit link
recovery. In SANER. IEEE, 434–444.
IEEE108: Adelina Ciurumelea, Sebastian Proksch, and Harald C Gall. 2020. Suggesting Comment
Completions for Python using Neural Language Models. In SANER. IEEE, 456–467.
IEEE109: Hannes Thaller, Lukas Linsbauer, and Alexander Egyed. 2019. Feature maps: A compre-
hensible software representation for design pattern detection. In SANER. IEEE, 207–217.
IEEE110: Lutz Büch and Artur Andrzejak. 2019. Learning-based recursive aggregation of abstract
syntax trees for code clone detection. In SANER. IEEE, 95–104.
IEEE111: Chenkai Guo, Weijing Wang, Yanfeng Wu, Naipeng Dong, Quanqi Ye, Jing Xu, and Sen
Zhang. 2019. Systematic comprehension for developer reply in mobile system forum. In SANER.
IEEE, 242–252.
IEEE112: Sa Gao, Chunyang Chen, Zhenchang Xing, Yukun Ma, Wen Song, and Shang-Wei Lin.
2019. A neural model for method name generation from functional description. In SANER. IEEE,
414–421.
IEEE113: Deborah S Katz, Jason Ruchti, and Eric Schulte. 2018. Using recurrent neural networks
for decompilation. In SANER. IEEE, 346–356.
IEEE114: Yibin Liu, Yanhui Li, Jianbo Guo, Yuming Zhou, and Baowen Xu. 2018. Connecting
software metrics across versions to predict defects. In SANER. IEEE, 232–243.
IEEE115: Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José
Nelson Amaral. 2018. Syntax and sensibility: Using language models to detect and correct syntax
errors. In SANER. IEEE, 311–322.
IEEE116: Sarah Fakhoury, Venera Arnaoudova, Cedric Noiseux, Foutse Khomh, and Giuliano
Antoniol. 2018. Keep it simple: Is deep learning good for linguistic smell detection?. In SANER.
IEEE, 602–611.
IEEE117: Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger. 2020. Feature-
oriented defect prediction. In Proceedings of the 24th ACM Conference on Systems and Software
Product Line: Volume A-Volume A. 1–12.
IEEE118: Yang Li. 2018. Feature and variability extraction from natural language software require-
ments specifications. In Proceedings of the 22nd International Systems and Software Product Line
Conference-Volume 2. 72–78.
IEEE119: Yang Li, Sandro Schulze, Helene Hvidegaard Scherrebeck, and Thomas Sorensen Fogdal.
2020. Automated extraction of domain knowledge in practice: the case of feature extraction from
requirements at danfoss. In Proceedings of the 24th ACM Conference on Systems and Software
Product Line: Volume A-Volume A. 1–11.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:69

IEEE120: Yang Li, Sandro Schulze, and Gunter Saake. 2018. Reverse engineering variability from
requirement documents based on probabilistic relevance and word embedding. In Proceedings of the
22nd International Systems and Software Product Line Conference-Volume 1. 121–131.
IEEE121: Anh Tuan Nguyen, Trong Duc Nguyen, Hung Dang Phan, and Tien N Nguyen. 2018. A
deep neural network language model with contexts for source code. In SANER. IEEE, 323–334.
IEEE122: Hui Liu, Jiahao Jin, Zhifeng Xu, Yifan Bu, Yanzhen Zou, and Lu Zhang. 2019. Deep
learning based code smell detection. TSE (2019).
IEEE123: Thong Hoang, Julia Lawall, Yuan Tian, Richard J Oentaryo, and David Lo. 2019. PatchNet:
Hierarchical Deep Learning-Based Stable Patch Identification for the Linux Kernel. TSE (2019).
IEEE124: Xuan Huo, Ferdian Thung, Ming Li, David Lo, and Shu-Ting Shi. 2019. Deep transfer
bug localization. TSE (2019).
IEEE125: Suyu Ma, Zhenchang Xing, Chunyang Chen, Cheng Chen, Lizhen Qu, and Guoqiang Li.
2019. Easy-to-Deploy API Extraction by Multi-Level Feature Embedding and Transfer Learning.
TSE (2019).
IEEE126: Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shanping Li.
2019. Which variables should i log? TSE (2019).
IEEE127: Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. 2018. Deep semantic feature
learning for software defect prediction. TSE (2018).
IEEE128: Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2018. How well do change sequences
predict defects? sequence learning from software changes. TSE (2018).
IEEE129: Kevin Patrick Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2018. Machine learning-based prototyping of graphical user interfaces for mobile
apps. TSE (2018).
IEEE130: Qiao Huang, Xin Xia, David Lo, and Gail C Murphy. 2018. Automating intention mining.
TSE (2018).
IEEE131: Hoa Khanh Dam, Truyen Tran, Trang Thi Minh Pham, Shien Wee Ng, John Grundy, and
Aditya Ghose. 2018. Automatic feature learning for predicting vulnerable software components. TSE
(2018).
IEEE132: Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Shin Yoo, and Yves Le Traon. 2018.
Mining fix patterns for findbugs violations. IEEE Transactions on Software Engineering (2018).
IEEE133: Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2018. How well do change sequences
predict defects? sequence learning from software changes. TSE (2018).
IEEE134: Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose, and
Tim Menzies. 2018. A deep learning model for estimating story points. TSE 45, 7 (2018), 637–656.
IEEE135: Jinglei Zhang, Rui Xie, Wei Ye, Yuhan Zhang, and Shikun Zhang. 2020. Exploiting
code knowledge graph for bug localization via bi-directional attention. In Proceedings of the 28th
International Conference on Program Comprehension. 219–229.
IEEE136: Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved
code summarization via a graph neural network. In Proceedings of the 28th International Conference
on Program Comprehension. 184–195.
IEEE137: Haoran Liu, Yue Yu, Shanshan Li, Yong Guo, Deze Wang, and Xiaoguang Mao. 2020.
Bugsum: Deep context understanding for bug report summarization. In Proceedings of the 28th
International Conference on Program Comprehension. 94–105.
IEEE138: Liwei Wu, Fei Li, Youhua Wu, and Tao Zheng. 2020. Ggf: A graph-based method for
programming language syntax error correction. In Proceedings of the 28th International Conference
on Program Comprehension. 139–148.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:70 Yanming Yang, Xin Xia, David Lo, and John Grundy

IEEE139: Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. 2020. Duplicate bug report
detection using dual-channel convolutional neural networks. In Proceedings of the 28th International
Conference on Program Comprehension. 117–127.
IEEE140: Mohammad Alahmadi, Abdulkarim Khormi, and Sonia Haiduc. 2020. UI screens identifi-
cation and extraction from mobile programming screencasts. In Proceedings of the 28th International
Conference on Program Comprehension. 319–330.
IEEE141: Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. 2020. A self-attentional neural
architecture for code completion with multi-task learning. In Proceedings of the 28th International
Conference on Program Comprehension. 37–47.
IEEE142: Jianjun He, Ling Xu, Yuanrui Fan, Zhou Xu, Meng Yan, and Yan Lei. 2020. Deep
Learning Based Valid Bug Reports Determination and Explanation. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 184–194.
IET01: Manjubala Bisi and Neeraj Kumar Goyal. 2016. Software development efforts prediction
using artificial neural network. IETS 10, 3 (2016), 63–71.
MITP01: Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Rebecca L. Russell,
Louis Y. Kim, and Sang Peter Chin. 2018. Learning to Repair Software Vulnerabilities with Gen-
erative Adversarial Networks. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (Eds.). 7944–7954.
MITP02: Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural Code Com-
prehension: A Learnable Representation of Code Semantics. In Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 3589–3601.
MITP03: Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. Devign:
Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph
Neural Networks. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (Eds.). 10197–10207
MITP04: Rahul Gupta, Aditya Kanade, and Shirish K. Shevade. 2019. Neural Attribution for Seman-
tic Bug-Localization in Student Programs. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 11861–11871.
MITP05: Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020. CodeCMR:
Cross-Modal Retrieval For Function-Level Binary Source Code Matching. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).
MITP06: Eui Chul Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and Alex Polozov.
2019. Program Synthesis and Semantic Parsing with Learned Code Idioms. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.).
10824–10834.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Survey on Deep Learning for Software Engineering 1:71

MITP07: Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a Dual Task of
Code Summarization. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily
B. Fox, and Roman Garnett (Eds.). 6559–6569.
MITP08: Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. 2020. Synthesize,
Execute and Debug: Learning to Repair for Neural Program Synthesis. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).
MK01: Prantik Chatterjee, Abhijit Chatterjee, José Campos, Rui Abreu, Subhajit Roy, A Panichella,
G Fraser, D Paterson, GM Kapfhammer, P McMinn, et al. 2020. Diagnosing Software Faults Using
Multiverse Analysis.. In IJCAI. 1629–1635.
MK02: Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu. 2019. Commit
message generation for source code changes. In IJCAI.
MK03: Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yan-
jun Wu. 2019. VulSniper: Focus Your Attention to Shoot Fine-Grained Vulnerabilities.. In IJCAI.
4665–4671.
MK04: Huihui Wei and Ming Li. 2018. Positive and Unlabeled Learning for Detecting Software
Functional Clones with Adversarial Training. In IJCAI. 2840–2846.
MK05: Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional Clone
Detection by Exploiting Lexical and Syntactical Information in Source Code.. In IJCAI. 3034–3040.
MK06: Xuan Huo and Ming Li. 2017. Enhancing the Unified Features to Locate Buggy Files by
Exploiting the Sequential Nature of Source Code. In IJCAI. 1909–1915.
MK07: Xuan Huo, Ming Li, Zhi-Hua Zhou, et al. 2016. Learning unified features from natural and
programming languages for locating buggy source code.. In IJCAI, Vol. 16. 1606–1612.
MK08: Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing Source
Code with Transferred API Knowledge. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme
Lang (Ed.). ijcai.org, 2269–2275.
MK09: Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with Neural
Attention and Pointer Networks. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.).
ijcai.org, 4159–4165.
SP01: Jin Liu, Pingyi Zhou, Zijiang Yang, Xiao Liu, and John Grundy. 2018. FastTagRec: fast tag
recommendation for software information sites. ASEJ 25, 4 (2018), 675–701.
SP02: Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Chaiyong Ragkhitwet-
sagul, and Aditya Ghose. 2021. Automatically recommending components for issue reports using
deep learning. Empirical Software Engineering 26, 2 (2021), 1–39.
SP03: Xu Wang, Chunyang Chen, and Zhenchang Xing. 2019. Domain-specific machine translation
with recurrent neural network for software localization. ESE 24, 6 (2019), 3514–3545.
SP04: Masanari Kondo, Cor-Paul Bezemer, Yasutaka Kamei, Ahmed E Hassan, and Osamu Mizuno.
2019. The impact of feature reduction techniques on defect prediction models. Empirical Software
Engineering 24, 4 (2019), 1925–1963.
SP05: Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Bing Li, Yu Xie, and Baowen Xu. 2021. Generating
API tags for tutorial fragments from Stack Overflow. Empirical Software Engineering 26, 4 (2021),
1–37.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:72 Yanming Yang, Xin Xia, David Lo, and John Grundy

SP06: Zhenyu Zhang, Hailong Sun, and Hongyu Zhang. 2020. Developer recommendation for
Topcoder through a meta-learning based policy model. Empirical Software Engineering 25, 1 (2020),
859–889.
SP07: Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment generation with
hybrid lexical and syntactical information. ESE 25, 3 (2020), 2179–2217.
SP08: Mohammad Alahmadi, Abdulkarim Khormi, Biswas Parajuli, Jonathan Hassel, Sonia Haiduc,
and Piyush Kumar. 2020. Code Localization in Programming Screencasts. ESE 25, 2 (2020),
1536–1572.
SP09: Chen Lyu, Ruyun Wang, Hongyu Zhang, Hanwen Zhang, and Songlin Hu. 2021. Embedding
API dependency graph for neural code generation. Empirical Software Engineering 26, 4 (2021),
1–51.
SP10: Hasan Ferit Eni¸ser and Alper Sen. 2020. Virtualization of stateful services via machine
learning. SQJ 28, 1 (2020), 283–306.
W01: Pooja Rani and GS Mahapatra. 2018. Neural network for software reliability analysis of
dynamically weighted NHPP growth models with imperfect debugging. STVR 28, 5 (2018), e1663.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Methodology
	3 RQ1: What DL techniques are applied to support SE tasks?
	3.1 Classification of DNNs in SE
	3.2 DL technique selection strategy

	4 RQ2: How are datasets collected, pre-processed, and used?
	4.1 What were the sources of datasets used for training DNNs?
	4.2 What were the types of SE datasets used in prior DL studies?
	4.3 How have data types determined the choice of data-preprocessing techniques?
	4.4 What input forms were datasets transformed into when training DNNs?
	4.5 How did studies generate the ground-truth for unlabeled datasets?

	5 RQ3: What types of SE tasks and which SE phases have been facilitated by DL-based approaches?
	5.1 What were the distributions of DL techniques over different SE activities and problem types?
	5.2 How DNNs were used in software requirements?
	5.3 How DNNs were used in Software design?
	5.4 How DNNs were used in software development?
	5.5 How DNNs were used in software testing?
	5.6 How DNNs were used in software maintenance?
	5.7 How were DNNs used in software management?

	6 RQ4: What techniques are used to optimize and evaluate DL-based models in SE?
	6.1 What learning algorithms were used in order to optimize the models?
	6.2 What methods were used to alleviate the impact of Overfitting?
	6.3 What measures are used to evaluate DL-based models?
	6.4 Accessibility of DL-based models used in primary studies.

	7 Limitations
	8 Challenges and opportunities
	9 Conclusion
	References
	A SLR Methodology
	A.1 Literature Search and Selection
	A.2 Literature Filtering
	A.3 Data Extraction and Collection

	B BA: What are the trends in the primary studies on use of DL in SE?
	B.1 Publication trends of DL techniques for SE
	B.2 Distribution of publication venues
	B.3 Types of main contributions

	C DL models used in SE
	D Data types in Datasets
	E DL models in different SE activities
	F Evaluation metrics for DL models
	G List of Primary Studies in the SLR

