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Abstract

As online services and applications are moving towards a more human-centered
design, many app vendors are taking the quality of experience (QoE) increas-
ingly seriously. End-to-end latency is a key factor that determines the QoE
experienced by users, especially for latency-sensitive applications such as online
gaming, autonomous vehicles, critical warning systems and so on. Edge com-
puting has then been introduced as an effort to reduce network latency. In a
mobile edge computing system, edge servers are usually deployed at, or near cel-
lular base stations, offering processing power and low network latency to users
within their proximity. In this work, we tackle the edge user allocation (EUA)
problem from the perspective of an app vendor, who needs to decide which edge
servers to serve which users in a specific area. Also, the vendor must consider
the various levels of quality of service (QoS) for its users. Each QoS level leads
to a different QoE level. Thus, the app vendor also needs to decide the QoS
level for each user so that the overall user experience is maximized. We first
optimally solve this problem using Integer Linear Programming technique. Be-
ing an NP-hard problem, it is intractable to solve it optimally in large-scale
scenarios. Thus, we propose a heuristic approach that is able to effectively and
efficiently find sub-optimal solutions to the QoE-aware EUA problem. We con-
duct a series of experiments on a real-world dataset to evaluate the performance
of our approach against several state-of-the-art and baseline approaches.
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Experience, Resource allocation

1. Introduction

Mobile and Internet-of-Things (IoT) devices, including smartphones, smart
appliances, environmental sensors, etc., have become an integrated part of the
modern society [2]. Its rapid growth has fueled the diversity and sophistication
of online applications and services such as real-time facial recognition [3], inter-
active gaming [4], etc., which require intensive computing power and cause high
power consumption. Since thin clients, such as mobile and IoT devices, have
limited processing capabilities and battery power, heavy computing tasks are
often offloaded to a remote cloud server. Nevertheless, the skyrocketing number
of connected devices, the busy network traffic, and the continuously increasing
computational workloads are posing the challenge of maintaining a low-latency
connection to end-users for app vendors.

Fog computing – sometimes referred to as edge computing [5] – has been
proposed and implemented to facilitate services that require real-time decision
making in large scale [6]. A mobile edge computing (MEC) system involves
numerous distributedly deployed edge servers, usually near cellular base stations
[7]. This highly distributed architecture remarkably reduces end-to-end network
latency, thanks to the close distance between edge servers and end-users. To
avoid non-service areas, i.e., the areas that are not covered by any edge server,
the coverage of adjacent edge servers are partially overlapped in most cases [8, 9,
10]. A user in the overlapping area can be allocated to one of its neighbor edge
servers (proximity constraint) that have adequate computing resources (CPU,
RAM, storage, or bandwidth – capacity constraint 1). In this paper, we study
the quasi-static scenarios where users are relatively static, not roaming across
edge servers quickly [11, 8, 9, 4], e.g. surveillance cameras, traffic sensors, mobile
or IoT users who stay in one location. Table 1 lists the acronyms used in this
paper and their descriptions.

Table 1: Glossary of acronyms used in this paper

Acronyms Description
MEC Mobile Edge Computing
IoT Internet of Things
EUA Edge User Allocation
QoS Quality of Service
QoE Quality of Experience
QoEUA QoE-aware User Allocation, i.e,. the name of our proposed

heuristic
ILP Integer Linear Programming

1Edge server capacity and computing resources are used interchangeably in some parts of
this paper.
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From the perspective of an app vendor, the users-to-edge-servers allocation
needs to be determined so that some optimization objectives are satisfied. This
problem is referred to as an edge user allocation (EUA) problem [10]. An edge
computing system is immensely dynamic and heterogeneous. Many applications
and services support the dynamic quality of service (QoS), or different levels
of service performance, which can be represented by display resolution [12],
frame rate and bitrate [13], data rate [14], network loss and jitter [15], resource
consumption [16, 17], etc. Therefore, apart from deciding which edge servers
to serve which users, an app vendor also needs to decide the QoS level for each
user. Naturally, a higher QoS level is achieved by a series of computation tasks
with higher complexity, thus consumes more computing resources. For example,
high-definition graphics rendering or highly accurate data analysis would require
more CPU, RAM, or bandwidth, on an edge server. Compared to a datacenter
server in cloud computing, a typical edge server possesses a very limited amount
of computing resources [18]. Thus, greedily assigning high QoS levels to users
would exhaust edge servers’ computing resources even quicker.

Unlike the computation offloading problem which challenges the edge infras-
tructure providers, the EUA problem poses a new challenge to app vendors,
who hire computing resources at the edge to serve their users. Recently, this
problem has been attracting a lot of attention [19, 9, 10]. Nevertheless, none of
the existing works tackles user quality of experience (QoE), which is a critical
aspect in any user-oriented, human-centered applications and services. In this
work, we solve the EUA problem with the objective of maximizing the total
QoE of all users in a particular area. A common consensus is that a higher
QoS level leads to a greater QoE level experienced by users. Since a high QoS
level is usually very resource-demanding, it is not always possible to serve users
with high QoS levels. Many researches [15, 20, 21] have demonstrated a quan-
titative relationship between QoS and QoE (Figure 1). In this model, there is
a characteristic that can be leveraged by app vendors to effectively utilize the
edge server’s computing resources. Generally, a user’s QoE increases with an
increase in the QoS level. However, the user’s QoE tends to converge at some
point, e.g. W3 in Figure 1, and remains virtually unchanged at the highest level
regardless of any further increases in the QoS level. Therefore, any QoS level
higher than W3 might not benefit users much.

We refer to the above problem as a QoE-aware edge user allocation (EUA)
problem and make the following main contributions in this paper:

• We formally define the QoE-aware EUA problem and show that it is an
NP-hard problem.

• We propose an optimal approach based on Integer Linear Programming
(ILP) for solving this problem exactly.

• In our previous work [1], we introduced a heuristic approach to tackle
the complexity of the problem. However, its effectiveness under resource-
scarce scenarios needs to be improved. As a result, in this paper, we
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Figure 1: Quality of Experience - Quality of Service correlation

introduce QoEUA – a new heuristic that performs better than our previous
heuristic under resource-scarce circumstances.

• Comprehensive experiments based on a real-world dataset are conducted
to demonstrate the effectiveness and efficiency of QoEUA against several
baseline and state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 provides an example
that motivates this research. Section 3 formulates the QoE-aware problem.
Section 4 proposes two approaches to this problem – an optimal approach to find
exact solutions and an efficient heuristic to find sub-optimal solutions. Section
5 evaluates the proposed approaches. Section 6 reviews the existing literature.
Finally, we conclude the paper and point out future work in Section 7.

2. Motivating Example

Consider a typical game streaming service as an example, game video frames
are rendered on the game vendor’s servers then streamed to player’s devices.
For most players, the difference between 1080p and 1440p display resolution is
barely perceptible on a mobile device, or even between 1080p and UHD from
a distance farther than 1.5x the screen height regardless of the screen size [22].
Thus, it might be unnecessary to serve users with 1440p or UHD video resolution
since it would certainly consume more computing resources (CPU, RAM, or
bandwidth). Instead, those resources could be utilized to serve players who are
unsatisfied with their existing service, e.g. those experiencing poor graphics,
or those not being able to play at all due to all nearby edge servers being
overloaded. Thus, the game vendor can lower the QoS levels of high-demanding
players, potentially without any noticeable QoE downgrade, to better service
unsatisfied players. In this way, the game vendor can maximize its players’
overall satisfaction, measured by their total QoE.

In this context, our research targets at allocating app users to edge servers
and selecting QoS levels for them so that their total QoE is maximized. Take
Figure 2 for example, there are three possible QoS levels, namely W1, W2, and
W3, which consumes 〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, and 〈5, 7, 6, 6〉 units of 〈CPU,RAM,
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Figure 2: EUA example scenario with dynamic QoS

storage,bandwidth〉, respectively. User 2 can be allocated to either edge server
1 or edge server 2, which has less computing resources than edge server 1.
Allocating user 2 to edge server 2 with a high QoS level will exhaust the resources
that could be used to serve users 1 and 6, or to upgrade their QoS levels. Thus,
allocating user 2 to edge server 1 would result in a higher total QoE.

The QoE-aware EUA problem in real-world scenarios is significantly more
complex than this example. It is not always possible to find an optimal allocation
in a prompt manner. Therefore, app vendors need to have an efficient yet
effective approach for finding a near-optimal solution to this problem.

3. Problem Definition

This section defines the QoE-aware EUA problem. Table 2 summarizes
the notations and definitions used throughout this paper. Given a finite set
of m edge servers S = {s1, s2, ..., sm}, and n users U = {u1, u2, ..., un} in a
particular area, we aim to allocate users to edge servers so that the total user
satisfaction, i.e. QoE, is maximized. In the EUA problem, every user covered
by edge servers must be allocated to an edge server unless all the nearby edge
servers have reached their maximum resource capacity. If a user is not located in
the coverage areas of any edge servers, or the computing resources of all nearby
servers have been exhausted, they will be directly connected to the app vendor’s
central cloud server.

5



Table 2: Key Notations

Notation Description
S = {s1, s2, ..., sm} a finite set of edge server sj , where j = 1, 2, ...,m.
D = {CPU,RAM,
storage, bandwidth}

a set of computing resource types.

cj = 〈c1j , c2j , ..., cdj 〉 the available capacity of an edge server sj ∈ S. cj
is a d−dimensional vector with each dimension ckj
representing the available amount of resource type
k ∈ D on edge server sj .

U = {u1, u2, ..., un} a finite set of user ui, where i = 1, 2, ..., n.
W = {W1,W2, ...,Wq} a set of predefined QoS level Wl, where l =

1, 2, ..., q. A higher QoS level requires more com-
puting resources than a lower one.

wi = 〈w1
i , w

2
i , ..., w

d
i 〉 a d−dimensional vector representing the amount of

computing resources required by user ui ∈ U . wi is
selected from the set W, wi ∈W .

U(sj) a set of users allocated to edge server sj , U(sj) ⊆ U .
S(ui) a set of user ui’s neighbor edge servers – edge

servers that cover user ui, S(ui) ⊆ S.
sui

the edge server assigned to serve user ui, sui
∈ S.

cov(sj) the coverage of edge server sj .

A user ui can only be allocated to an edge server sj if it is located in server
sj ’s coverage area cov(sj) (proximity constraint (1)). We denote Sui

as the set
of all user ui’s neighbor edge servers – those that cover user ui. Taking Figure
2 for example, user u4 can be allocated to edge server s2 or s3. Server s1 can
serve users u2, u3, or/and u5 as long as it has sufficient computing resources.

ui ∈ cov(sj),∀ui ∈ U ;∀sj ∈ S (1)

If a user ui is allocated to an edge server, it will be assigned a QoS level,
which corresponds to a specific required amount of computing resources wi =
〈w1

i , w
2
i , ..., w

d
i 〉, where each dimension wki represents the amount of resource

type k ∈ D, e.g. CPU, RAM, storage, or bandwidth. wi is selected from a
predetermined set of q QoS levels W, ranging from low to high resource de-
manding. The total computing resources assigned to all users allocated to an
edge server must not exceed the available capacity of that edge server (capac-
ity constraint (2)). The available capacity of an edge server sj ∈ S is de-
noted as cj = 〈c1j , c2j , ..., cdj 〉, where each dimension ckj represents the amount
of resource type k ∈ D. In Figure 2, users u4 and u5 cannot both receive
QoS level W3 on server s3 because the total required resources would be 2
x 〈5, 7, 6, 6〉 = 〈10, 14, 12, 12〉, exceeding edge server s3’s available resources
〈5, 7, 6, 11〉. ∑

ui∈U(sj)

wi � cj , ∀sj ∈ S (2)
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Each QoS level results in a different QoE level. As stated in [15, 21, 20],
QoS is non-linearly correlated with QoE. When the QoS reaches a specific level,
a user’s QoE improves very trivially regardless of a noticeable increase in the
QoS. For example, in the model in Figure 1, the QoE gained from the W2 −
W3 upgrade is nearly 1. In the meantime, the QoE gained from the W1 −
W2 upgrade is approximately 3 at the cost of a little extra resource. Several
related works model the correlation between QoE and QoS using the sigmoid
function [23, 24, 25]. In this research, we use a logistic function (Equation 3), a
generalized version of the sigmoid function, to model the QoS-QoE correlation.
This gives us more control over the QoE model, including the QoE growth rate,
making the model more generalizable to different domains.

Ei =
L

1 + e−α(xi−β)
(3)

where L is the maximum value of QoE, β controls where the QoE growth should
be, or the mid-point of the QoE function, α controls the growth rate of the QoE
level (how steep the change from the minimum to maximum QoE level is), Ei
represents the QoE level given user ui’s QoS level wi, and xi =

∑
k∈D w

k
i /|D|,

where wki is the normalized amount of type-k resource required by user ui. We
let Ei = 0 if user ui is unallocated. Regarding the applicability of this QoE
model in real-world scenarios, this model well aligns with video streaming ap-
plication [26] and potentially many other applications too. mLab, Huawei’s
in-house research laboratory focusing on the analysis of Internet usage from a
network and end-user experience perspective, shows a mapping of video defini-
tion and mean opinion score (i.e., a quantitative representation of user QoE)
[27] that closely follows Equation (3).

Our objective is to find a users-to-edge-servers allocation including each
individual user’s QoS level so that the total QoE of all users is maximized:

maximize

n∑
i=1

Ei (4)

where Ei is the QoE level of user ui, and n is the number of users. The following
theorem proves the hardness of the QoE-aware EUA problem.

Theorem 1. The QoE-aware EUA problem is NP-hard.

Proof. See Appendix A.

4. Our Approach

We first formulate the QoE-aware EUA problem as an integer linear pro-
gramming (ILP) problem to find its optimal solution. After that, we propose a
heuristic approach to efficiently solve the problem in large-scale scenarios.

4.1. Integer Linear Programming Model

From the app vendor’s perspective, the optimal solution to the QoE-aware
EUA problem must achieve the greatest overall user QoE while satisfying a
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number of constraints. The ILP model of the QoE-aware EUA problem can be
formulated as follows:

maximize

n∑
i=1

m∑
j=1

q∑
l=1

Elxijl (5)

subject to: xijl = 0 ∀l ∈ {1, ..., q},∀i, j ∈ {i, j|ui /∈ cov(sj)} (6)
n∑
i=1

q∑
l=1

W k
l xijl ≤ ckj ∀j ∈ {1, ...,m},∀k ∈ {1, ..., d} (7)

m∑
j=1

q∑
l=1

xijl ≤ 1 ∀i ∈ {1, ..., n} (8)

xijl ∈ {0, 1} ∀i ∈ {1, ..., n},∀j ∈ {1, ...,m},∀l ∈ {1, ..., q}

xijl is the binary indicator variable such that,

xijl =

{
1, if user ui is allocated to server sj with QoS level Wl

0, otherwise.
(9)

The objective (5) maximizes the total QoE of all users. In (5), n is the
number of users, m is the number of edge servers, and q is the number of QoS
levels. The QoE level El corresponding to a QoS level Wl, ∀l ∈ {1, ..., q}, can
be pre-calculated since the QoS level set W is pre-determined. Constraint (6)
enforces the proximity constraints. Users not located within a server’s coverage
area will not be allocated to that server. A user may be located within the
overlapping coverage area of multiple edge servers. Capacity constraint (7)
makes sure that the aggregate resource demands of all users allocated to an
edge server must not exceed the capacity of that server. Constraint family (8)
ensures that every user is allocated to at most one edge server with one QoS
level. In other words, a user can only be allocated to either an edge server or
the app vendor’s cloud server.

By solving this ILP problem with an Integer Programming solver, e.g. IBM
ILOG CPLEX2, or Gurobi3, an optimal solution to the QoE-aware EUA prob-
lem can be found.

4.2. Heuristic Approach

Due to the NP-hardness of the problem, computing an optimal solution will
be intractable for large-scale scenarios. This is demonstrated in our experimen-
tal results presented in Section 5. In this section, we propose QoEUA – an
effective and efficient heuristic approach for finding sub-optimal solutions to the
QoE-aware EUA problem. The pseudocode is presented in Algorithm 1.

2www.ibm.com/analytics/cplex-optimizer/
3www.gurobi.com/
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Algorithm 1 QoEUA

1: initialization:
2: a set of edge servers S, a set of users U , and a set of QoS levels W
3: all users uj ,∀uj ∈ U , are unallocated
4: end initialization
5: sort U in ascending order of the number of neighbor edge servers (i.e., users

who are covered by fewer edge servers are prioritized, being the first to be
allocated)

6: repeat
7: for each user ui ∈ U do
8: S(ui) , user ui’s neighbor edge servers;
9: allocate user ui to an edge server sj ∈ S(ui) which has the most

available capacity, and increase user ui’s current QoS level Wl by one level,
i.e., Wl+1

10: end for
11: until no users can improve their QoS levels

Given a set of edge servers S, a set of users U , and a set of QoS levels W
(lines 1-4), QoEUA tries to allocate the users in U to the edge servers in S.
Initially, all the users are unallocated. QoEUA first sorts the users in U in
ascending order of the number of their neighbor edge servers (line 5). In other
words, users who are covered by fewer edge servers are to be allocated before
those who are covered by more edge servers. This helps increase the probability
of those users being allocated to edge servers.

The user sorting is then followed by an iterative process (lines 6-11). In each
iteration, QoEUA allocates users one by one in the order of their appearances
in the sorted list U (line 7). For each user ui ∈ U , QoEUA retrieves the set of its
neighbor edge servers S(ui), i.e., servers that have the user ui in their coverage
areas (line 8). User ui is then allocated to an edge server sj ∈ S(ui) that has the
most available capacity (line 9). In this way, edge server sj will be more likely
to have sufficient capacity to accommodate other users or to increase the QoS
levels of existing users later on. If user ui has not been allocated before, it will be
assigned the lowest QoS level, i.e., W1. If user ui has been allocated a QoS level
Wl before, it will try to increase its current QoS level by one level, i.e., Wl+1.
The resource and proximity constraints must be fulfilled at all times. Note that
an allocated user is able to switch edge servers during the allocation process.
QoEUA completes when no users can improve their QoS levels anymore.

The running time of QoEUA consists of: (1) p iterations, which costs O(p),
and in each iteration, (2) iterating through all n users, which costs O(n), and
(3) sorting a maximum of m neighbor edge servers for each user, which costs
O(m logm), to obtain the server that has the most remaining resources. Thus,
the overall time complexity of this heuristic approach is O(pnm logm), which
is p times higher than the heuristic proposed in [1]. However, p is found to be
at most only 4 in our experiments.
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The high efficiency of QoEUA allows app vendors to continuously run it,
or execute it on demand, to respond to user mobility. The consideration of
user mobility would not affect the initial problem formulation and the proposed
heuristic in some situations. Specifically, when a user moves outside the coverage
of its serving edge server, it will be disconnected from the edge server; the
occupied computing resources on that edge server will be released; QoEUA will
then consider it as a new user. That user, together with other new users who
need to be allocated, will be allocated to edge servers based on the rules defined
in Algorithm 1, lines 5-11 (one can now consider the set U as a set of new users
who need to be allocated). This is feasible as long as migrating users across
edge servers does not incur extra costs, or if the extra costs are trivial. The
extra costs could be the migration cost or service reconfiguration cost [28]. In
some use cases, those extra costs could be relatively insignificant. Taking video
streaming for example [26], where videos encoded with different resolutions are
cached on edge servers, which allows a user to access them with low latency,
switching the user across edge servers only requires a very small amount of data
to be transferred, e.g., which video the user is watching, the position in the
video where the user left off, and the resolution of the video. For applications
and services where the extra costs are noticeable, the new costs will need to be
modeled. Thus, the initial problem formulation and the proposed solution will
need to be modified.

5. Experimental Evaluation

In this section, we evaluate the proposed approaches by a series of exper-
iments. All the experiments are conducted on a Windows machine equipped
with Intel Core i5-7400T processor (4 CPUs, 2.4GHz) and 8GB RAM. The ILP
model in Section 4.1 is solved with IBM ILOG CPLEX Optimizer solver.

5.1. Benchmark Approaches

Our optimal approach, referred to as Optimal hereafter, and the QoEUA
heuristic are compared to several baselines and state-of-the-art approaches for
solving the EUA problem:

• Random: Each user is allocated to a random edge server as long as that
server has sufficient remaining resources to accommodate this user and has
this user within its coverage area. The QoS level to be assigned to this
user is randomly determined based on the server’s remaining resources.
For example, if the maximum QoS level can be achieved the server is W2,
the user will be randomly assigned either W1 or W2.

• ICSOC19 [1]: This is the greedy-like heuristic proposed in our previous
work.

• TPDS20 [9]: This approach solves the EUA problem with the objectives
of maximizing the number of allocated users and minimizing the overall
system cost calculated based on the costs of required computing resources
on edge servers. Since TPDS20 does not consider dynamic QoS, users’
QoS levels are randomly pre-specified.
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• ICSOC18 [10]: This work proposes an optimal approach that maximizes
the number of allocated users while minimizing the number of edge servers
required to serve the allocated users. Similar to TPDS20, this work does
not consider dynamic QoS either. Thus, users are assigned the same QoS
levels as TPDS20.

5.2. Experimental Settings

The experiments are conducted on the EUA dataset4 [10], which contains
the geographical locations of end-users and all cellular base stations in Australia.
This dataset is also used in [9], [1], and [10] to evaluate TPDS20, ICSOC19, and
ICSOC18, respectively.

Edge servers: To capture the characteristics of a MEC environment [29], we
simulate a highly dense urban area of 1.8 km2 covered by 125 base stations,
each equipped with an edge server. The coverage radius of each edge server is
randomly generated within 100-150m. The computing resources available on the
edge servers, or their capacities, are randomly generated by following a normal
distribution N (µ, σ2), where µ is the average capacity of each resource type in
D, and the standard deviation σ = 10 for all conducted experiments.

Edge users: We assume that for each user, there are three possible QoS levels
W = {< 1, 2, 1, 2 >,< 2, 3, 3, 4 >,< 5, 7, 6, 6 >}, andD = {CPU,RAM, storage,
bandwidth}. Those four types of resources are the representative ones. The pro-
posed approaches can accommodate other types of resources that are specific to
app vendors’ applications. We have conducted experiments with other settings
and achieved similar results. Thus, we select those three QoS levels as represen-
tative in our experiments. Different values for the QoE model (3) have also been
tested. In the experiments, we set L = 5, α = 1.5, and β = 2 as representative.

To comprehensively analyze the performance of our approaches in various
EUA scenarios, we conduct a series of experiments with different varying param-
eters, including the number of users, number of edge servers, and edge server
capacity. Table 3 summarizes the settings of the experiments, which will be
discussed in the next section. Note that the values specified in the table are
representative. Other experiments with different values other than those have
been conducted, which yield similar results. Each experiment is repeated 100
times to obtain 100 different user distributions and the results are then aver-
aged. This allows extreme cases, such as overly dense or sparse user/server
distributions, to be neutralized. To evaluate the performance of the approaches
in achieving the optimization objective, which is to maximize the total QoE
of all users as discussed in Section 3, we compare the total QoE of all users
achieved by the six approaches, the higher the better. In addition, we measure
the number of users allocated to edge servers by each approach, the higher the
better. The efficiency of all approaches is also evaluated.

4www.github.com/swinedge/eua-dataset
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Table 3: Experimental Settings

Number of users Number of servers Edge server’s capacity
Set #1 100, 200, ..., 1000 50% 35
Set #2 500 10%, 20%, ..., 100% 35
Set #3 500 50% 15, 20, ..., 60

5.3. Experimental Results and Discussion

1) Effectiveness: Figures 3, 4, and 5 depict the results of three experiment
Sets #1, #2, and #3, respectively, measured by the overall QoE of all users in
the experiment. We additionally measure the number of users allocated to edge
servers. In general, Optimal, being the optimal approach, obviously achieves
the greatest QoE under all experimental settings, closely followed by QoEUA.

In experiment Set #1 (Figure 3), we vary the number of users from 100
to 1,000 in steps of 100. In general, as the number of users increases, the
total QoE also increases until it can no longer increase since the computing
resources are exhausted to serve a large number of users. From 100 to 600
users, QoEUA achieves a higher total QoE than other approaches (Figure 3a).
Especially in the first four steps (100, 200, 300, and 400 users), QoEUA is
almost as good as Optimal. This occurs in those scenarios because the available
resources are redundant and therefore almost all the users receive the highest
QoS level. However, as the number of users continues to increase while the
amount of available resources is fixed, the average computing resources for each
user become more scarce, making QoEUA start to downgrade. As we can see,
from 500 users onward, the total QoE achieved by QoEUA slowly decreases and
starts being outperformed by ICSOC18, TPDS20, and Random at some point.
Still, the differences in the total QoE between QoEUA and those approaches
are very marginal, even at 1,000 users. Despite being outperformed in terms of
the total QoE in some cases, QoEUA is able to allocate significantly more users
to edge servers than all other approaches (Figure 3b). As we keep increasing
the number of users to be allocated, QoEUA allocates approximately 20% more
users compared to other approaches on average. Given 1,000 users, QoEUA can
allocate almost 80% of them while the second-best approach can only allocate
roughly 60% of them. For more experimental results on the percentage of users
allocated with different QoS levels, please refer to Appendix B.

In experiment Sets #2 and #3, we vary the number of edge servers available
to serve users (Figure 4) and edge server capacity (Figure 5). Increasing those
two parameters consequently increases the redundancy of computing resources
available to serve users. As a result, we can observe the same trend in those
two experiment sets, where the total QoE and the percentage of users allocated
increase with the increase in the number of edge servers and the edge servers’
capacities. This pattern can be observed under all experimental settings and
for all approaches. In terms of the total QoE of all users (Figures 4a and
5a), QoEUA’s performance is very close to Optimal, just slightly lower. In the
meantime, QoEUA manages to allocate the most number of users, considerably

12



(a) Number of users vs. Total QoE (b) Number of users vs. Percentage of users
allocated

Figure 3: Experiment Set #1 results

(a) Number of edge servers vs. Total QoE (b) Number of edge servers vs. Percentage of
users allocated

Figure 4: Experiment Set #2 results

(a) Edge server capacity vs. Total QoE (b) Edge server capacity vs. Percentage of
users allocated

Figure 5: Experiment Set #3 results

greater than all other approaches under any experimental settings (Figures 4b
and 5b). Clearly, QoEUA significantly outperforms the baseline and state-of-
the-art approaches in experiment Sets #2 and #3. For more experimental
results on the percentage of users allocated with different QoS levels, please
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(a) Number of users vs.
Execution CPU time

(b) Number of edge servers vs.
Execution CPU time

(c) Edge server capacity vs.
Execution CPU time

Figure 6: Execution CPU time in experiment Sets #1, #2, and #3

refer to Appendix B.
2) Efficiency: Figure 6 illustrates the efficiency of all the approaches in the

study, measured by the elapsed CPU time. The execution time of Optimal and
ICSOC18 follow a similar pattern in all three experiment sets. As the exper-
imental parameters increase from the starting point to a threshold somewhere
in the middle – 400 users in Set #1, 80% of the number of edge servers in Set
#2, and 55 average server resource capacity in Set #3 – the time rapidly rises
until it reaches a cap of around a hefty 8 seconds (for Optimal), which is un-
acceptable for real-time, latency-sensitive applications. This is expected since
the QoE-aware EUA problem is NP-hard. The rationale for this lies in the
complexity of the problem. Adding up more users, edge servers, and available
resources generates more possible options and solutions for Optimal to select
from. After passing those thresholds, the execution time decreases then tends
to converge. This happens in experiment Set #1 (Figure 6a) since when the
number of users exceeds 400, a newly generated user tends to be positioned at
the exact location of an existing user. Thus, the IBM CPLEX solver’s decision
to be made for the new user can be based on the decision made for the existing
user. As a result, we can see the elapsed CPU time of Optimal is almost sym-
metrical around that threshold (400 users) then roughly stabilizes at around 1
second, which is still very slow for real-time applications. In experiment Sets
#1 and #2, the execution time decreases because after the experimental param-
eters exceed the above-mentioned thresholds, the available computing resources
gradually become more redundant so that more users can obtain the highest
QoS level without having to compete with each other. This generates fewer
possible options for Optimal, thus takes less time to complete.

As the complexity of the problem increases by adding more users, edge
servers, and edge server capacity, the execution time of other approaches also
increases gradually. In all experiment sets, ICSOC19 takes 0.5-1 millisecond to
solve the allocation problem. QoEUA is an iterative algorithm. The number of
iterations it takes to complete is an important indicator of its efficiency. In the
experiments, QoEUA requires 2-4 iterations, or 1-3 milliseconds of CPU time,
which is acceptable for real-time applications and services.
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5.4. Threats to Validity

Threat to construct validity. The main threat to construct validity lies in
the bias in our experimental design. To minimize any potential bias, we con-
duct experiments with different varying parameters that would directly affect
the experimental results, including the number of edge servers, the number of
users, and available computing resources (edge server capacity). The result of
each experiment set is the average of 100 executions, each with a different user
distribution, to neutralize special cases such as over-dense or over-sparse user
distributions.

Threat to external validity. A threat to external validity is the generaliz-
ability of our findings in other specific domains. We mitigate this threat by
experimenting with different numbers of users and edge servers in the same ge-
ographical area to simulate various distributions and density levels of users and
edge servers, which might be observed in different real-world scenarios. Fur-
thermore, we employ a generic QoS-QoE model in this work to improve the
generalizability.

Threat to internal validity. A threat to internal validity is whether an ex-
perimental condition makes a difference or not. To minimize this, we fix the
other experimental parameters at a neutral value while changing a parameter.
For more sophisticated scenarios where two or more parameters change simul-
taneously, the results can easily be predicted in general based on the obtained
results as we mentioned in Section 5.3.

Threat to conclusion validity. The lack of statistical tests is the biggest
threat to our conclusion validity. This has been mitigated by a comprehensive
series of experiments that cover different scenarios varying in both size and
complexity. For each set of experiments, the result is averaged over 100 runs of
the experiment.

6. Related Work

Edge computing comes with many new unique characteristics, namely lo-
cation awareness, wide-spread geographical distribution, mobility, a substantial
number of nodes, the predominant role of wireless access, the strong presence of
streaming and real-time applications, and heterogeneity. Those characteristics
allow edge computing to deliver a very broad range of new services and applica-
tions at the edge of the network, further extending the existing cloud computing
architecture.

QoE management and QoE-aware resource allocation have long been a chal-
lenge since the cloud computing era and before that [30]. Su et al. [31] propose
a game-theoretic framework for resource allocation among media cloud, brokers
and mobile social users that aims at maximizing user’s QoE and media cloud’s
profit. While having some similarity to our work, e.g. the brokers can be seen
as edge servers, there are several fundamental architectural differences. The
broker in their work acts as a proxy for transferring computation tasks between
mobile users and the cloud, whereas our edge server is where the tasks are
processed. [32] investigates the cost-QoE trade-off in the virtual machine provi-
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sioning problem in a centralized cloud, specific to the video streaming domain.
In the aforementioned works, QoE is measured by the processing, playback, and
downloading rate. We consider a more general scenario where QoE is measured
based on different required amounts of computing resources, which we call QoS
levels.

QoE-oriented architecture and resource allocation have started gaining at-
tention in the edge computing area as well. [33] proposes a novel architecture
in mobile cloud computing that integrates resource-intensive computing with
mobile applications. Their goal is to provide a new generation of personalized,
QoE-aware services. [16] and [17] tackle the application placement in edge com-
puting environments. They measure a user’s QoE based on three levels (low,
medium, and high) of access rate, required computing resources, and processing
time. The problem we are addressing, i.e., user allocation, can be seen as the
phase after their application placement phase. [34] focuses on the computation
offloading scheduling problem in mobile clouds from a networking perspective,
where energy and latency must be considered in most situations. They propose a
QoE-aware optimal and near-optimal scheduling scheme applied in time-slotted
scenarios that take into account the trade-off between mobile energy consump-
tion and latency.

Apart from the aforementioned literature, there are a number of studies of
user allocation in edge computing [19, 9, 1, 10]. [19] addresses the user mobility
where users may move from one place to another, which requires reallocating
users across edge servers. By contrast, we study a quasi-static scenario. Fur-
thermore, they do not consider the dynamics of users’ QoS and just measure
the capacity of an edge server by a fixed number of users that can be allocated
to it. If they had considered the dynamic QoS, the capacity of an edge server
would have had to be measured by the available amount of computing resources.
The authors of [9] and [10] study a quasi-static scenario but lack the consid-
eration of dynamically adjustable QoS levels and QoE, which are important
for applications and services where human plays a prominent role. Therefore,
the approaches proposed in those papers are not suitable for solving the QoE-
aware EUA problem as demonstrated in Section 5.3. The heuristic approach
proposed in [1] is most relevant to our work. Nevertheless, it is very ineffective
in resource-scarce scenarios, which are very common in edge computing. Our
proposed heuristic (QoEUA) demonstrates a significant improvement compared
to the heuristic introduced in [1].

7. Conclusion and Future Work

App users’ quality of experience (QoE) is of great importance for app vendors
where user satisfaction is taken seriously. Despite being significant, there is very
limited work in edge computing considering this aspect. Therefore, we have
identified and formally formulated the QoE-aware edge user allocation problem
with the goal of maximizing users’ overall QoE as the first step of tackling
QoE-oriented problems in edge computing. Having been proven to be NP-hard
and also experimentally illustrated, the optimal approach is not efficient once
the problem scales up. In our previous work [1], we have proposed a heuristic
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to deal with the high complexity of the problem. However, that approach is
not suitable in resource-scarce scenarios. This has led to the development of a
more effective heuristic in this paper. We also conduct extensive experiments
on a real-world dataset to evaluate the effectiveness and efficiency of our new
approach against several baseline and state-of-the-art approaches.

Given this foundation of the problem, we have identified a number of pos-
sible directions for future work with respect to QoE such as QoE-aware user
allocation in time-varying situations, user’s mobility, service migration, service
recommendation, just to name a few. In addition, the QoE model used in this
paper is a generic model and might not be very suitable in some other spe-
cific domains such as video streaming, web browsing, cloud gaming, and so
on. Therefore, a finer-grained, domain-specific QoE model with various types
of costs or network conditions could be studied next. Furthermore, QoEUA
showed a slight performance degradation when the number of users is large. A
new approach could be investigated to deal with this situation.
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Appendix A. Proof of Theorem 1

We can prove that the QoE-aware EUA problem defined in Section 3 is
NP-hard by proving that its associated decision version is NP-complete. The
decision version of QoE-aware EUA is defined as follows:

Given a set of required resources L = {w1, w2, ..., wn} and a set of server
resource capacity C = {c1, c2, ..., cm}; for each positive number Q determine
whether there exists a partition of L′ ⊆ L into C′ ⊆ C with aggregate QoE
greater than Q, such that each subset of L′ sums to at most cj ,∀cj ∈ C′, and
the constraint (1) is satisfied. By repeatedly answering the decision problem,
with all feasible combination of wi ∈ W,∀i ∈ {1, ..., n}, it is possible to find the
allocation that produces the maximum overall QoE.

First, we show that the QoE-aware EUA problem is NP. Given a solution
with m servers and n users, we can easily verify its validity in polynomial time
O(mn) – ensuring each user is allocated to at most one server, and each server
meets the condition of having its users’ total workload less than or equal to its
available resource. QoE-aware EUA is thus in NP class.

Then, we can prove that the QoE-aware EUA problem is NP-hard by re-
ducing the Partition problem, which is NP-complete [35], to a special case of
the QoE-aware EUA decision problem. The Partition problem can be defined
as follows: Given a finite sequence of non-negative integers X = (x1, x2, ..., xn),
determine whether there exists a subset S ⊆ {1, ..., n} such that

∑
i∈S xi =∑

j /∈S xj .
Each user ui can be either unallocated to any edge server, or allocated to

an edge server with an assigned QoS level wi ∈ W. For any instance X =
(x1, x2, ..., xn) of Partition, construct the following instance of the QoE-aware
problem: there are n users, where each user ui has two 2-dimensional QoS
level options, 〈xi, 0〉 and 〈0, xi〉; and a number of identical servers whose size
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is 〈C,C〉, where C =

∑n
i=1 xi
2

. Assume that all users can be served by any of

those servers. Note that 〈xi, 0〉 ≡ 〈0, xi〉 ≡ wi. Clearly, there is a solution to
QoE-aware EUA that allocates n users to two servers if and only if there is a
solution to the Partition problem. Because this special case is NP-hard, and
being NP as shown above, the general decision problem of QoE-aware EUA is
thus NP-complete. Since the optimization problem is at least as hard as the
decision problem, the QoE-aware EUA problem is NP-hard, which completes
the proof.

Appendix B. Extra experimental results

In this appendix, we present the experimental results on the percentage
of users allocated with different QoS levels in three experiment sets (Figures
B.7, B.8, and B.9). As set in Section 5.2, there are three possible QoS levels
W = {W1,W2,W3}, where W3 is the most demanding QoS level, i.e., requiring
the highest amount of computing resources among the three QoS levels, and W1

is the least demanding one. We only present the results produced by Optimal,
QoEUA, and ICSOC19 since they are the most relevant approaches which con-
sider dynamic QoS level. The other approaches just randomly pre-assign QoS
levels to users before the allocation process.

Figure B.7 depicts the percentage of unallocated users and users assigned
with QoS levels W1, W2, and W3 among all users in experiment Set #1. When
the number of users to be allocated is low at 100, there are sufficient resources to
accommodate almost all users at the highest QoS level. As the number of users
increases, Optimal tends to allocate most users with W2 since it is the most
“economical” option, i.e., highest QoE per unit of resources. Although QoEUA
does not tend to pick the most economical option, it is able to allocate more
users than Optimal (also refer to Figure 3b). Greedy, being a greedy approach,
allocates most users with the highest QoS level.

Figures B.8 and B.9 illustrate the percentage of unallocated users and users
assigned with QoS levels W1, W2, and W3 among all users in experiment Sets
#2 and #3. Their results follow the same pattern since the two varying exper-
imental parameters, i.e., number of edge servers and available server capacity,
both directly affect the amount of available resources which can be used to
serve users. When the amount of available resources is low, Optimal assigns
W2, which is the most economical option, to most users. With QoEUA, most
users get W1. As the amount of available resources increases, Optimal and
QoEUA can then start assigning higher QoS levels to the users.
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