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ABSTRACT 
Cloud computing delivers IT solutions as a utility to users. One 
consequence of this model is that large cloud data centres 
consume large amounts of energy and produce significant carbon 
footprints. A common objective of cloud providers is to develop 
resource provisioning and management solutions that minimise 
energy consumption while guaranteeing Service Level 
Agreements (SLAs). In order to achieve this objective, a thorough 
understanding of energy consumption patterns in complex cloud 
systems is imperative. We have developed an energy consumption 
model for cloud computing systems. To operationalise this model, 
we have conducted extensive experiments to profile the energy 
consumption in cloud computing systems based on three types of 
tasks: computation-intensive, data-intensive and communication-
intensive tasks. We collected fine-grained energy consumption 
and performance data with varying system configurations and 
workloads. Our experimental results show the correlation 
coefficients of energy consumption, system configuration and 
workload, as well as system performance in cloud systems. These 
results can be used for designing energy consumption monitors, 
and static or dynamic system-level energy consumption 
optimisation strategies for green cloud computing systems.  

Categories and Subject Descriptors 
C.4 [Computer System Organization]: Performance of Systems; 
K.4.1 [Public Policy Issues]: Use/abuse of power; B.8.2 
[Performance Analysis and Design Aids] 

General Terms 
Measurement, Performance, Experimentation 

Keywords 
Cloud computing, green cloud, energy consumption, performance 
analysis, energy efficiency. 

1. INTRODUCTION 
Cloud computing is a new and promising computing paradigm 
which delivers computing as a utility [1]. It provides rented 
services for computation, application software, and data storage 

via the Internet. Key advantages for consumers include flexible 
scaling on demand to their computing and data storage needs 
without the traditional and potentially large upfront investment in 
computing infrastructure. Over the last few years many large-
scale data centres have been built due to the massive growth in 
demand for high performance cloud data and computational 
services. As cloud computing becomes more widespread, 
increasing data storage and computation needs raise the energy 
consumed by large cloud infrastructures. Thus, energy 
consumption has become a critical concern in designing modern 
cloud systems.  

Firstly, a common economic objective of cloud providers is to 
minimise their total operational costs. High energy consumption 
directly contributes to operational costs, especially as energy unit 
costs continue to rise significantly. A utility provider in Virgina 
estimates that in 2012, 10% of all the energy it supplies to 
northern Virgina will be consumed by data centres [2]. Power 
consumption currently contributes up to 42% of a data centre’s 
monthly expenses [3]. Secondly, due to the need to respond on-
demand to customer load, many data centres consume electricity 
produced by “brown” generation facilities, such as coal. Thirdly, 
cloud system performance must not be jeopardised while 
minimising cloud system energy consumption. Therefore, energy 
consumption, as well as its impact on cloud system performance, 
operational cost and the environment, have become critical issues 
in green cloud computing systems [4].  

Many efforts have been made to improve the energy efficiency of 
cloud systems. Some simple techniques provide basic energy 
management for servers in cloud systems, for example, turning on 
and off servers, putting them to sleep or using Dynamic 
Voltage/Frequency Scaling (DVFS) [5] to adjust servers’ power 
states. DVFS adjusts CPU power (consequently the performance 
level) according to the workload. However, the scope of DVFS 
optimisation is limited to CPUs. Another approach for improving 
energy efficiency is to adopt virtualisation techniques to obtain 
better resource isolation and reduce infrastructure energy 
consumption through resource consolidation and live migration 
[6]. Based on virtualisation techniques, several energy-aware 
resource allocation policies and scheduling algorithms have been 
proposed to optimise energy consumption in cloud systems [7]. 
However, energy consumption and performance of cloud systems 
vary drastically with different system configuration and resource 
allocation strategies, as well as the workloads and types of 
runtime tasks in cloud systems [8]. By nature, the workloads of 
cloud systems are highly variable, application-specific and can 
often not be predicted in advance. Ideally, system performance 
should not be adversely impacted while energy consumption is 
being minimised. We thus require a thorough understanding of 
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energy consumption patterns of different types of tasks in cloud 
systems, for example, data retrieval and data processing tasks. We 
also need to understand how energy consumption of such tasks 
and cloud system performance are affected by different workloads 
and system configurations, respectively.  

We proposed an energy consumption model to calculate the 
energy consumption of specific types of tasks in cloud systems, 
and to use this model to statically and/or dynamically organise 
cloud application load [9]. In our model, runtime cloud tasks are 
divided into three types: computation-intensive, data-intensive 
and communication intensive. The model identifies what factors 
determine the energy consumption of a specific task. However, 
the following major issues have yet to be addressed: 
x How do we characterise and profile the energy consumption 

of different types of tasks? 
x How do system configuration and resource allocation 

strategies affect the energy consumption?  
x What is the relationship between energy consumption and 

workload of tasks? 
x What is the relationship between energy consumption and 

cloud system performance? 

In order to address these issues, we have conducted a series of 
experiments to empirically analyse the energy consumption in 
cloud systems. Based on our experimental results, we have 
identified the correlation coefficients of energy consumption, 
system configuration, workload, and system performance in cloud 
systems. Our analytical results provide guidelines for deriving 
energy consumption models based on different types of runtime 
cloud computing tasks. In addition, our analytical results also 
provide guidelines for statically planning tasks and scheduling on 
available cloud platforms, and dynamically monitoring energy 
consumption. They may be used to support system- or 
application-level energy consumption and performance 
optimisation (or both). 

We briefly summarise the state-of-the-art of energy consumption 
models, energy-saving policies and analysis approaches in 
Section 2. In Section 3, we describe our energy consumption 
model to profile energy consumption. Our experimental energy 
consumption profiling setup and method are described in Section 
4. In Section 5, we present our experimental profiling results and 
detailed analysis. We discuss observations derived from our 
analysis in Section 6. Finally, we summarise key findings and 
discuss directions for future work in Section 7. 

2. RELATED WORK 
Energy consumption of cloud systems has become a popular 
research topic in recent years. Several efforts have been made to 
build energy consumption models for cloud systems. Jung et al. 
[10] focused on the energy consumed by physical servers. Their 
energy consumption model does not take into account the impact 
of specific workloads running in cloud systems. Mach and 
Schikuta [11] proposed a method for energy consumption 
calculation based on the number of Java Virtual Machine (JVM) 
instances. However, it is difficult to measure the actual numbers 
of JVMs because of the dynamic nature of the JVM life cycle. 
Lee and Zomaya [12] proposed an energy model of cloud tasks 
for developing energy-conscious task consolidation algorithms 
that reduce energy consumption of cloud systems. However, in 
their model it is assumed that the relation between CPU utilisation 
and energy consumption is linear. This is a huge limitation 

because the utilisation of other resources such as memory and 
hard disk can also greatly influence the energy consumption.  

Energy-saving policies of cloud systems have also been 
investigated in the past few years. Liu et al. [13] described a new 
cloud infrastructure which can dynamically consolidate Virtual 
Machines (VMs) based on CPU utilisation of servers in order to 
identify idle physical servers. Identified idle physical servers can 
be turned off to save energy. Verma et al. [14] used the 
characteristics of VMs, such as cache footprint and the set of 
applications running on the VMs, to drive power-aware placement 
of VMs. VirtualPower [15] was proposed to exploit power 
management decisions of guest VMs on virtual power states. The 
virtual power states of guest VMs were considered as 
preconditions to run local and global energy management policies 
across the computation. These energy saving policies do not take 
the workload in cloud systems into consideration.  

Research efforts have also focused on profiling and analysing the 
energy consumption of cloud systems. Most existing profiling 
efforts were conducted by using energy benchmarks or closely 
monitoring the energy profiles of individual system components 
at runtime, such as CPU, cache, hard disk and memory. A 
framework has been proposed by Stoess et al [16] for energy 
optimisation and development of energy-aware operation systems 
based on the availability of energy models for each hardware 
component. Chen et al. [17] developed a linear power model that 
presents the behaviour and power consumption of individual 
hardware components of a single physical server. Joulemeter, a 
power meter for VMs [18], makes use of software components to 
monitor the resource usage of VMs and then converts the resource 
usage to energy consumption based on the power model of each 
individual hardware component. Although some of the profiling 
and analysis are conducted based on specific applications in cloud 
systems, the evaluation only includes a single type of cloud 
application. For instance, Lefèvre and Orgerie [19] evaluated 
energy efficient cloud systems on a multicore platform. They 
focused only on CPU cores and conducted their evaluation of the 
energy consumption during migration of VMs only with 
computation-intensive cloud applications.  

Some of the above work have made initial efforts in profiling the 
energy consumption and performance of cloud systems. However, 
none of them has identified the relationship between energy 
consumption and runtime tasks under different cloud system 
configurations and the correlation with cloud system 
performance. In order to address these issues, in this paper we 
present our energy consumption profiling results obtained from 
extensive experiments conducted on a cloud test-bed. Our goal is 
to investigate and characterise the impact of both system 
configurations and workload on the energy consumption and 
system performance.   

3. ENERGY CONSUMPTION MODEL 
Our energy consumption profiling and analysis is motivated by 
our existing energy consumption model proposed for cloud-wide 
energy analysis [9]. It provides a basis for characterising the 
energy consumption in cloud systems under different system 
configurations.  
In this model, the total energy consumption of a cloud workload 
is divided into a fixed part and a dynamic part. The fixed part of 
energy consumption includes the energy consumption during idle 
time and energy consumption of the cooling system, defined as 



ECFix. The dynamic energy consumption is the energy consumed 
by running tasks in the cloud system, defined as ECVar. Thus, the 
total energy consumption defined as ECTotal is formulated as: 

 Total Fix VarEC EC EC �  (1) 

Instead of individual hardware components, we set single task 
running in a cloud system as the fundamental unit for energy 
consumption calculation. All runtime tasks in cloud systems 
utilise computation, storage and communication resources. 
However, the percentage of each resource used by different types 
of tasks is significantly different. Based on the major type of 
resource consumed by the task, we characterise all cloud runtime 
tasks three types: computation-intensive, data-intensive and 
communication-intensive. For a computation-intensive task i

compt , 

1�i�n, where n is the total number of computation-intensive tasks, 
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data-intensive tasks, the energy consumption of i
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dataEC t . For a communication-intensive task i
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k is the total number of communication-intensive tasks, the 
energy consumption of i

comt is defined as ( )i
comEC t . Due to 

scheduling and other overheads, which is denoted as ECsche, the 
total energy consumption of two tasks is usually not the sum of 
the energy individually consumed by the tasks. In our model, the 
total energy consumption is defined as: 
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For each task, its energy consumption is dependent on the task 
workload. The factors related to workload influence energy 
consumption of the task directly and largely. In our model, the 
parameters of a task taken into account in the calculation of the 
energy consumption include: number of processes for the task, 
defined as PT; the size of data to be processed, defined as DS; and 
the size of data to be transmitted, defined as DT. In addition, 
system configurations, such as hardware of the physical server 
and the scale of the configured VMs, have significant impact on 
energy consumption. Hence, the energy consumed by each task is 
determined by the task parameters and the system configuration, 
denoted as C. Thus, the energy consumption of each type of task 
are defined as: 

 � �( ) , , ,i i i i i
compcomp comp comp comp compEC t f PT DS DT C    (3) 

 � �( , , ,)i i i i i
datadata data data data dataEC t f PT DS DT C  (4) 

 � �( , , ,)i i i i i
comcom com com com comEC t f PT DS DT C  (5) 

In order to determine the energy consumption model of a cloud 
system, it is essential to specify the factors that have impact on 
the energy consumption of each type of tasks.  

4. EXPERIMENTAL SETUP 
Our energy consumption profiling and analysis were performed 
based using the energy consumption model described in Section 3. 
Based on the energy consumption profiling results, the impact of 
the factors indicated in equations (3)-(5) on the energy 
consumption of different tasks will be verified. Our objective was 
to collect data and analyse the correlation coefficients of energy 
consumption, system configuration, workload, and system 

performance. The analysis result will be adopted to refine and 
formalise our energy consumption model, used to support 
predictive analysis of workload energy consumption, and used to 
support static and dynamic optimisation of energy usage.  
We profiled the energy consumption by creating heterogeneous 
Virtual Machines in a cloud system and running computation-
intensive tasks, data-intensive tasks and communication-intensive 
tasks, respectively. For each type of task, we also profiled the 
energy consumption and system performance with various task 
parameters, that is, the number of processes, the size of data to be 
processed, the size of data to be transmitted, and task workload. 
We introduce the experimental setup in this section.  

4.1 Testbed 
SwinCloud is a private cloud that provides a common 
computational infrastructure to researchers at Swinburne 
University of Technology. Our experiments were conducted in 
SwinCloud as we have detailed knowledge of the cloud hardware, 
networking, operating system versions, and other application 
software. SwinCloud was experimented in the Energy Research 
Lab (ERL) at Swinburne University of Technology. This lab 
focuses on energy-related research and development. Using the 
extensive and sensitive power monitoring facilities provided by 
this lab, we could precisely monitor the power consumption of the 
SwinCloud server and network devices, including network cards, 
switches and routers. The power consumption measurement was 
realised and managed using PowerNode, a power usage profiling 
equipment developed by GreenWave Reality 1 . It supports 
measurement of both immediate and average power consumption. 
Collected power readings were reported to the GreenWave 
Gateway, which is used for creating a mesh-based Home Area 
Network (HAN). The GreenWave Gateway then sent the data to 
the GreenWave Reality data centre, where the information could 
be viewed and analysed. 

A cloud computing system is composed of multiple servers. The 
energy consumption of the cloud system includes the energy 
consumed by individual servers and the scheduling and 
communication overhead across different servers. In this paper, 
we focus on the energy consumption of individual servers as it is 
the predominant part [20]. Furthermore, the cross-server 
scheduling and communication overhead of one cloud system can 
be significantly different from the other, depending on the 
scheduling mechanism adopted by the cloud systems and the 
distribution of the constituent servers.  Thus, we conducted our 
experiments by measuring energy consumption of tasks running 
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Table 1. Specifications of HP Z400 
Basic Specification Notes 

Number of Cores 4  

Number of 
Threads 2 Intel Hyper-Threading 

Technology 

CPU Frequency 2.8GHz Fixed CPU Frequency 

Memory 10GB Memory Speed 1333 MHz

Hard Drive 1TB 7200 RTM 
SATA  

Network Interface Intel e1000 Gb  



on a single discrete server. We left research to determine the 
energy consumption incurred by cross-server scheduling for 
future work. Moreover, we did not adopt any existing energy-
saving policies in our experiments such as DVFS [5] or 
VirtualPower [15], in order to be able to isolate the factors 
causing unexpected energy consumption.  Our experimental set 
up can however be reused to include these options enabled. 
A type of the servers currently deployed in SwinCloud is HP 
Z400. Table 1 lists the specifications of the HP Z400. The Virtual 
Machine Manager (VMM) utilised for VM management is 
VMware ESX 4.1 and the operating systems running on the 
virtual machines are either Window Server 2008 or Windows XP 
Professional.  
Figure 1 presents the energy profiling framework for different 
tasks used in our experiments. For computation-intensive tasks 
and data-intensive tasks, stand-alone applications were deployed. 
For communication-intensive tasks, a Web Application was 
deployed. The user requests were sent to the Web server through 
the router from a client PC. The major energy consumption of 
computation-intensive tasks was introduced by the computation of 
the deployed application. For data-intensive tasks and 
communication-intensive tasks, the energy consumption of the 
deployed application caused by computation is minimal. The 
major energy consumption of data-intensive tasks is introduced 
by reading/writing data in data storage. For communication-
intensive tasks, the major energy consumption includes the energy 
consumed to send user request, the energy consumed to 
serialise/deserialise data and the energy consumed to process user 
requests. In order to focus on the communication aspects, the 
workload applied for communication-intensive tasks in our 
experiments was arranged to minimize load on sender/receiver so 
almost all energy is the encoding and decoding overhead.  

In the experiments, all VMs were assigned with 2GB, 4GB, 6GB 
or 8GB memory. The number of virtual CPUs (vCPUs) of each 
VM varied from 1 to 4 in steps of 1. The number of vCPUs 
corresponded to the number of physical cores assigned to the VM. 
The configuration of VMs in different scales is presented in Table 
2. System configurations related to specific task types will be 
introduced in Sections 5.1, 5.2 and 5.3, respectively. 

4.2 Profiling Method  
The energy consumption result of a task equals the difference of 
average power consumption between the server with and without 
workload multiplied by the execution time of the task. We firstly 
retrieved the average power consumption measured by 
PowerNode with no hosted application workload in the cloud 
system as our idle state benchmark. Then, we retrieved the 
average power consumption measured by PowerNode during the 
running time of each task. Finally, we multiplied the average 
power consumption by the execution time of the task to obtain the 
energy consumption of the task. 

As discussed in Section 3, the task parameters, including the 
number of processes, the size of data to be processed, the size of 
data to be transmitted, have impact on the task energy 
consumption and system performance based on the energy 
consumption model. These task parameters determine the 
workload of a single task. In addition, the number of running 
tasks determines the overall workload in the cloud system. Energy 
consumption is highly influenced by the workloads in the cloud 
system as higher workloads consume more resources that leads to 
higher energy consumption. Moreover, system configurations, 
such as the number and scale of the configured VMs, also impact 
energy consumption significantly. As such, we took the cloud 
system workload and system configuration as inputs of our 
experiments. We set energy consumption and system performance 
as outputs of our experiments. We selected the throughput of the 
system as the profiled system performance measure. This is 
because throughput is often a key performance parameter 
monitored in cloud systems. It has the advantage of reflecting 
resource usage accurately [21]. For computation-intensive tasks, 
throughput is defined as the number of computation tasks 
completed per hour. For data-intensive tasks, throughput is 
defined as the amount of data transferred per second. For 
communication-intensive tasks, throughput is defined as the total 
number of user interactions requested and completed successfully 
per second. 

4.3 Test Case Design 
Again, we used three types of tasks: computation-intensive, data-
intensive and communication-intensive tasks. We designed and 
conducted three series of experiments, described as follows: 
1. Computation-intensive tasks: The major resources 
consumed by computation-intensive tasks are the CPU cores. In 
order to make sure the computation workload would be 
distributed to all available CPU cores, an application which 
calculates Fibonacci sequence has been developed and parallelism 
has been applied to the application. We deployed multiple 
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Figure 1. Energy profiling Framework 

Table 2. Type of VM 
Virtual Machine Number of Cores RAM Hard Disk 

Small 1 2GB 80GB 

Medium 2 4GB 80GB 

Large 3 6GB 80GB 

XLarge 4 8GB 80GB 



processes to calculate Fibonacci sequences to implement 
computation-intensive tasks. Each calculation was considered as a 
computation-intensive task. As the largest number of the 
Fibonacci sequence determines the duration of each calculation 
task, we mapped this number to the workload of each 
computation-intensive task – defined as LN. As this application 
purely consumes CPU resources, the energy consumption caused 
by other resources such as memory can be eliminated. In order to 
analyse the impact of workload and cloud system configurations 
on the total energy consumption and throughput, we designed 
three sets of test cases in this series of experiments. We first ran a 
single task to calculate Fibonacci sequence and increased the LN 
of the task gradually with fixed system configuration in test set 
5.1.1 as described in Section 5.1. Then, we increased the resource 
allocated to the task while keeping LN constant. Computation-
intensive tasks mainly consume CPU resources and Hyper-
Threading (HT) technology is usually applied to improve the 
overall performance of the CPU. Thus, we measured the energy 
consumption and system performance with HT enabled and 
disabled in test set 5.1.2 as described in Section 5.1, to analyse the 
impact of HT technology on energy consumption and system 
performance. In these tests we kept the resources allocated 
constant and increased the LN of the tasks gradually and turned on 
and off HT. In test set 5.1.3 as described in Section 5.1, we ran 
multiple tasks with the same LN simultaneously and kept the 
system configuration and resource allocation constant to analyse 
the scheduling overhead.  
2. Data-intensive tasks:  As a data-intensive task mainly 
consumes the storage resources in cloud systems, we ran IOzone 
benchmark2 in our tests, a disk and file system benchmarking 
application. Using IOzone, we generated a large number of I/O 
operations and stressed the disk I/O as required. Each run of 
IOzone benchmark was considered as a data-intensive task. The 
total amount of data read/writer determined the workload of a task. 
In each task, we set the read and write ratio to 50% - 50%. The 
parameters of a data-intensive task to be changed include the 
process number and the size of the data record. We set the size of 
the data record to be transferred at 4K, 8K and 64K bytes as our 
basic test suite. 4K is the memory page size, 8K is what Microsoft 
Windows uses for network transfers, and 64K is the typical record 
size that Windows uses when applications try to transfer blocks of 
data bigger than 64K [22]. We also tested a few very large data 
records, including 8MB and 16MB data records. A total of five 
sets of tests were designed and run in this series of experiments. 
Test set 5.2.1 as described in Section 5.2 aimed to reveal the 
impact of workload on energy consumption and system 
throughput while keeping the task parameters and system 
configuration constant. The purpose of test set 5.2.2 as described 
in Section 5.2 was to analyse the impact of system configuration 
on energy consumption and system throughput. So we kept 
workload and task parameters constant and changed the number 
and type of virtual machines. In test set 5.2.3 as described in 
Section 5.2, we aimed to evaluate the impact of task parameters 
on energy consumption and system throughput by keeping 
workload and system configuration constant. Furthermore, we 
evaluated the impact of scheduling overhead on energy 
consumption and system throughput in test set 5.2.4 as described 
in Section 5.2. Similar to computation-intensive tasks, resource 
allocated to data-intensive tasks would affect the energy 
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consumption and system performance. Therefore, we measured 
the energy consumption and system throughput by changing the 
total resource allocation in test set 5.2.5 as described in Section 
5.2. 
3. Communication-intensive tasks: We deployed a Java Web 
Application named JPetstore 3  in SwinCloud as the 
communication-intensive application. It is a Web e-commerce 
application which has been used as a representative application 
for a transactional workload that stresses the servers and network 
devices as required in our tests. JPetstore uses a Web server to 
handle the user requests and a database server to process the 
database queries in response to the user requests. Therefore, it is a 
composite task which is composed of communication-intensive 
task, data-intensive task and a small level of computation-
intensive task. For our experiment, we used its communication 
aspects only. As mentioned in Section 4.1, we arranged the 
workload of communication-intensive task to minimize load on 
sender/receiver in order to measure the energy consumption of the 
communication aspects only of this reference application. All 
network traffic generated by customers was emulated using 
JMeter4. JMeter is a load testing tool for analysing and measuring 
the performance of variety of Web applications. Each user session 
generated by JMeter consisted of a series of sequential user 
requests, such as browsing the list of products, adding items to the 
shopping cart, checking out, and so on. Each run of JMeter was 
considered as a communication-intensive task and the number of 
user sessions generated by JMeter determined the workload of the 
task. All user sessions were started with fixed time interval in 
each test set. The time interval decreased when the number of 
user sessions increased. The parameters of a communication-
intensive task to be changed included the user request type, the 
number of requests in each user session and the packet size of 
each user request. We developed three test sets for 
communication-intensive tasks. We applied different workloads 
for each test set by mixing browsing requests or shopping requests 
in different percentages. In test set 5.3.1 as described in Section 
5.3, we fixed the task parameter and the workload and changed 
virtual machine types. In test set 5.3.2 as described in Section 5.3, 
we changed the workload of the task while fixing the task 
parameter, the system configuration and the resource allocation. 
We only changed the task parameter and kept all other factors 
constant to evaluate the impact of task parameters on energy 
consumption and system performance in test set 5.3.3 as 
described in Section 5.3.    

5. EXPERIMENTAL RESULTS 
We conducted three major sets of tests to analyse the energy 
consumption of three types of cloud-hosted application tasks in 
order to analyse the relationship between the system energy 
consumption and system performance. For each test set, we took 
cloud system workload and system configuration as inputs. 
Energy consumption of each task and the system throughput were 
the outputs of our experiments. We modified the configuration of 
SwinCloud, including the number of VMs, the hardware and 
software resources allocated to the VMs. We then measured the 
energy consumption of SwinCloud running different types of 
tasks. Each set of tests was repeated ten times to reduce 
measurement error. We analysed the impact of system 
                                                                 
3 http://java.sun.com/developer/releases/petstore/ 
4 http://jmeter.apache.org/ 



configuration, task parameters and workload on the energy 
consumption and performance of the cloud system based on the 
experimental results.    

5.1 Computation-intensive Tasks Results 
A computation-intensive task usually requires a number of 
isolated processes to perform the computation in a cloud system. 
The total energy consumption might increase with the number of 
processes since the increased overhead of scheduling will cause 
extra energy consumption. Moreover, the energy consumption of 
the cloud system is subject to change under different system 
configurations.  
We deployed multiple processes that calculate Fibonacci 
sequences to implement computation-intensive tasks. Parallelism 
was applied to make sure the computation workload would be 
distributed to all available vCPUs. As the largest number of the 
Fibonacci sequence determines the duration of each calculation 
task, we mapped this number to the workload of each 
computation-intensive task – defined as LN (see Section 4.3). In 
order to control the execution time of each task within a 
reasonable value, we set LN from 52 to 56 in the following tests. 

Test Set 5.1.1˖Keeping the number of tasks constant, while 
gradually increasing the number of active CPU cores 
allocated to the task, and the workload of the task. The total 
number of tasks was wet to one. This set of tests was run on an 
XLarge virtual machine (see Table 2 for specification details). 
The server power usage is presented in Figure 2. We observed 
increasing power consumption caused by increasing CPU usage. 
The power consumption was linear to CPU usage. The energy 
consumption per task is displayed in Figure 3. We noticed that the 
energy consumption of the task was impacted by the number of 
CPU cores allocated to the task. Moreover, the largest LN of the 
Fibonacci sequence also affected the energy consumption. As 
shown in Figure 3, the energy consumption of each task increased 
with the workload of the task. Moreover, the energy consumption 
of each task decreased dramatically as the number of cores 
allocated to the task increased. This is because the execution time 
of a task will decrease as more computation resources are 
allocated to the task. However, the increase in average energy 
usage rate caused by extra CPU cores is not as much as the 
execution time of the task. Therefore, the energy consumption 
will decrease accordingly. In addition, we observed a slight 
turning point of the energy consumption when the number of 
cores allocated to the task reaches three. For instance, when we 
set the largest number of the Fibonacci sequence LN to 56, the 
energy consumption with four cores allocated increased 4% 
compared to energy consumption with three cores. This shows 
that the overhead of scheduling an extra core can cancel out the 
task running time saved and will also cause more energy 
consumption. Therefore, the energy consumption as a function of 
number of cores is highly nonlinear, with a minimum at three. In 
addition, we observe that most of the reduction of energy 
consumption is in the changing from one core to two cores, and 
then it does not change much any more. The system throughput is 
presented in Figure 4. As expected, the more resources allocated 
to the task the better the system throughput obtained. This result 
shows that, for computation-intensive tasks, the system 
throughput rises with the number of allocated cores and the 
increase of system throughput is nonlinear. Together with the 
results of Figure 3, we can conclude that energy consumption of 

computation-intensive tasks is a more complex nonlinear function 
of allocated cores and execution time. 

Test Set 5.1.2: Keeping the number of tasks and resources 
allocated constant, gradually increasing the workload of the 
task, and turning Hyper Threading on and off.  Only one task 
was running on the test-bed at one time. This set of tests was run 
on an XLarge virtual machine. The results are presented in 
Figures 5 and 6. As showed by Figure 5, with Hyper-Threading 
enabled, there is a significant increase in the energy consumption 
of the task – the Hyper-Threading causing extra power 
consumption. In the case of “LN = 56”, the extra energy 
consumption caused by Hyper-Threading is 8%. However, as 
shown in Figure 6, the extra system throughput obtained by 
enabling Hyper-Threading is not as much as expected. In cases of 
“LN = 53”, “LN = 54”and “LN = 55”, Hyper-Threading even led 
to decrease in system throughput. This suggests that Hyper-
Threading be disabled for computation-intensive tasks since there 
is little to gain form Hyper-Threading if a core’s execution 
resources are already well utilised. 
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Test Set 5.1.3: Keeping the workload of each task constant, 
and increasing the total number of tasks and number of VMs 
allocated to tasks. In this set of tests, the type of each VM was 
set to Small. Figure 7 shows the results.  The number of running 
tasks can influence the average energy consumption of a single 
task: a larger number of tasks lead to higher average energy 
consumption of individual tasks. When the total number of tasks 
increased, more consequential scheduling overhead caused extra 
energy consumption. Moreover, it is clear that the increase in 
number of VMs significantly resulted in increase in per-task 
energy consumption. For instance, in the case of 6 tasks, the per-
task energy consumption increased by 5% when we increased the 
number of VMs from one to two. As more VMs were deployed, 
the VM maintenance overhead increased as well. This caused 
more memory consumption, resulting in more power 
consumption. On the other hand, as depicted in Figure 8, the 
throughput was minimal when only one VM was configured. The 
throughput of two VMs and three VMs were at the same level. 
However, three VMs consumed 3% more energy than two VMs 
on average, as presented in Figure 7. Thus the two VMs 
configuration demonstrates higher energy efficiency than other 
configurations when there are multiple computation-intensive 
tasks running simultaneously. 

5.2 Data-intensive Tasks Results  
A data-intensive task needs to retrieve or store a large amount of 
data stored in one or more data storage servers. It requires high 
local disk I/O bandwidth in order to meet performance 
requirements. In reality the storage servers can be deployed in 
different data centres located in different geographic locations. 
However, we only consider the energy consumption in one data 
centre for the purpose of simplicity as the characteristics of data 
centres of the same service provider are often very similar.  
We focused on the correlation between the energy consumption 
and the amount of data transferred in and out of the storage 
server. To profile and analyse the energy consumption caused by 
different data sizes and system configurations, we stress the cloud 
test-bed with data-intensive tasks generated using IOzone. 
In every set of tests, we observed major spikes of energy 
consumption at the beginning and at the end of each task. They 
corresponded to the moments when disk I/O were stressed. We 
conducted five sets of tests in this series of experiments. 
Test Set 5.2.1: Keeping the total number of tasks, process 
number of each task, resources allocated and VM 

configuration constant, while increasing the total amount of 
data transferred and record size. This set of tests was 
performed on an XLarge virtual machine. Only one task was 
running on the cloud test-bed at one time and the number of 
processes was fixed at one. Therefore, the impact of scheduling 
overhead caused by multiple tasks and processes on energy 
consumption were avoided. As presented in Figure 9, server 
power consumption increased as the data record size decreased. 
However, the effect of record sizes on power consumption is 
nonlinear as displayed in Figure 9, with larger record sizes 
leading to convergence to a certain value. For instance, server 
power consumption did not change too much when we increased 
the record size from 8MB to 16MB. Smaller data record sizes led 
to generation of more overhead information for keeping track of 
where the data were located on the storage media. The overhead 
information consisted of the directory information, the space 
allocation and any other data that was not a part of the data to be 
transferred. As a result, the tasks used more computational 
resources, consuming more energy. 

The results of system energy consumption and system throughput 
are displayed in Figure 10 and Figure 11, respectively. From 
Figure 10, we see that the energy consumption increases 
proportionally to the total amount of transferred data. The per-
task energy consumption increases in a linear manner. As the total 
amount of data transferred increased, smaller record size would 
cause higher gradient when the total energy consumption 
increased because the execution time and the energy consumption 
increased simultaneously. As the record size decreased, more 
overhead information needed to be processed and stored. In 
summary, if only one process is configured to run the data-
intensive task, bigger record size is more energy-efficient. As 
shown in Figure 11, the system throughput was higher when we 
set the record size to 64K, compared to other record sizes. As 64K 
is the typical record size Windows uses when applications try to 
transfer blocks of data bigger than 64K, data is transferred most 
efficiently in this size.   
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Test Set 5.2.2: Keeping total number of tasks, process number 
per task, total amount of data transferred and resource 
allocated constant, while changing VM configurations and 
record size of the task. This set of experiments was running on 
one XLarge VM, two Medium VMs and four Small VMs 
respectively so as to fix the size of the total virtual memory and 
the total number of virtual cores allocated to the VMs. The total 
number of tasks was set to four and the number of processes 
instantiated for each task was set to one. All the tasks were 
distributed on the VMs evenly. The total amount of data to be 
transferred was 64GB. 

The system energy consumption and system throughput are 
presented in Figure 12 and Figure 13. We observed that the 
energy consumption increased and the throughput decreased as 
we changed the VM deployment from one XLarge VMs to four 
Small VMs. On one hand, VMs compete with each other for I/O 
bandwidth. On the other hand, more VMs will cause more 
read/write latency that lead to longer execution time of each task. 
As shown in Figure 12, the per-task energy consumption 
increased in a sub-linear manner. As shown in Figure 13, the best 
system throughput presented when we ran the workload on one 
XLarge VM. From these tests we conclude that running one VM 
for the entire I/O operation is most energy-efficient. 

Test Set 5.2.3: With single task, keeping the total amount of 
data transferred stable, resource allocation and VM 
configuration constant while increasing the process numbers 
for task and the record size of the task. An XLarge VM was 
deployed to run this set of tests. Only one task was running on the 
VM and it was assigned to transfer a 64GB file. As depicted in 
Figure 14, the per-task energy consumption increased with the 
number of processes. Although the power consumption of the 
server decreased slightly as the number of processes increased, as 
presented by Figure 15, multiple processes caused scheduling and 
synchronisation overhead. Thus, the total execution time of one 
data-intensive task increased accordingly. As a result, the system 
throughput decreased, as shown in Figure 16. Our conclusion is 

that running data-intensive tasks with one sequential I/O 
operation is the most energy-efficient when the total amount of 
data transferred is fixed.  

Test Set 5.2.4: With multiple tasks, fix the total amount of 
data transferred, the resource allocation and number of 
processes for each task, changing VM configuration and 
record size for each task. The total number of tasks was set to 
four and the tasks were distributed to all the VMs evenly. We 
fixed the number of processes for each task running on each 
virtual machine at four and the total amount of data to be 
transferred of all the tasks at 64GB. The system energy 
consumption and system throughput are shown in Figure 17 and 
Figure 18, respectively. As we already observed in previous tests, 
energy consumption is greatly impacted by data record size. 
Smaller record size results in more energy consumption. The 
highest throughput was approximately 30% less than the highest 
throughput we obtained in test set 5.3.2. The numbers of process 
in both test sets were the same. However, there were multiple 
tasks running simultaneously this test set while only one task was 
running in test set 5.3.2. Therefore, multiple task scheduling 
causes extra scheduling overhead. 

Test Set 5.2.5: Keeping the total number of tasks, the total 
amount of data transferred and the number of processes for 
each task constant, while changing the resources allocated, 
VM configuration and record size of each task. Only one task 
was running on the cloud test-bed at one time. We fixed the 
number of processes for the data-intensive task at one and the 
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total amount of data transferred at 64GB and scaled up the size of 
VM from Small to XLarge. These results are shown in Figure 19 
and Figure 20. Compared to computation-intensive tasks, the VM 
type did not impact the energy consumption and throughput 
significantly when the record size was fixed. Running on an 
XLarge virtual machine was most energy-efficient when the 
record size was smaller than 64K. When the record sizes were 8M 
and 16M, running the data-intensive task on a Small virtual 
machine was most energy-efficient.  

5.3 Communication-intensive Tasks Results  
A communication-intensive task requires a lot of network 
resources to transmit large amounts of data. Switches form the 
basis of the interconnection fabric of a private cloud network. 
Thus, switches, plus network cards, are the main energy 
consumers of the network resources. Traditionally, energy 
consumption of a switch depends on hardware parameters, such as 
the type of switch, the number of ports and the port transmission 
rates. However, the energy consumption may increase with the 
amount of data transferred over the network because of the data 
processing overhead. In addition, the total energy consumption 
might be impacted by network congestion because of the 
imbalance between the computation speed and the communication 
speed. The computation speed of the switch may be slower than 
the data transmission speed. We investigated this issue by 
applying different network workloads. A Cisco 2960 switch 
connected the cloud servers and client PCs. All parameters of the 
switch were set as default to avoid potential impact caused by 
switch configuration. We deployed the Web server and database 
server of JPetstore onto two different VMs to isolate the impact of 
different user requests.  
In order to reveal the impact of the network packet size, the types 
of user requests and the system configuration on the energy 

consumption of communication-intensive tasks, we conducted 
three sets of tests in this series of experiments, described as 
follows: 
Test Set 5.3.1: Keeping the total number of user requests each 
user session, the resources allocated and the VM configuration 
of the Web server constant, while changing the total number 
of user sessions and workload type. In this set of tests, each user 
session consisted of mixed browsing requests or shopping 
requests in different percentages. There are five types of mixed 
workload, as presented in Table 4. Browsing requests include 
checking home page, viewing catalogue, viewing products, 
searching products and so on. Shopping requests include checking 
out, updating shopping cart, filling order forms, ordering inquiry, 
and so on. For each type of the mixed workload, we increased the 
number of concurrent user sessions from 100 to 700 in steps of 
100. The resulting system energy consumption and system 
throughput are shown in Figures 21 and 22. 

As the number of concurrent user sessions increased, the energy 
consumption increased but the throughput decreased when we 
fixed the type of VM as presented in Figures 21 and 22. This was 
due to the increase in the number of concurrent user sessions 
causing extra scheduling overhead as each user request was 
processed. However, the decrease in throughput was not 
proportional to the increase in energy consumption. For instance, 
when running Mixed 1 on an XLarge virtual machine and after we 
changed the number of concurrent user sessions from 600 to 700, 
the system energy consumption increased by 24.7% and the 
system throughput decreased by 3.7%. In addition, we noticed 
that Mixed 1 consumed the most energy while Mixed 5 consumed 
the least energy among all five workload types, despite the type of 
VM. Meanwhile, we observed that Mixed 1 resulted in the lowest 
throughput compared to the other four types of mixed workload.  
Since Mixed 1 contained the most browsing requests and Mixed 5 
contained the most shopping requests, Mixed 1 had the most disk 
and memory access of all as opposed to Mixed 5. Thus, it took 
longer to complete requests of type Mixed 1 compared to the 
other four workload types. As a result, the energy efficiency of 
Mixed 1 was lower than the other four workload types.  

0
2500
5000
7500
10000
12500

100 200 300 400 500 600 700

En
er
gy
�

Co
ns
um

pt
io
n�
of
�

Ea
ch
�T
as
k�
in
�Jo

ul
e XLarge�VM

User�Sessions�per�second

Mixed�1
Mixed�2
Mixed�3
Mixed�4
Mixed�5

         
0

2000
4000
6000
8000

10000

100 200 300 400 500 600 700

En
er
gy
�

Co
ns
um

pt
io
n�
of
�

Ea
ch
�T
as
k�
in
�Jo

ul
e Large�VM

User�Sessions�per�second

Mixed�1
Mixed�2
Mixed�3
Mixed�4
Mixed�5

0
2000
4000
6000
8000

10000
12000

100 200 300 400 500 600 700

En
er
gy
�

Co
ns
um

pt
io
n�
of
�

Ea
ch
�T
as
k�
in
�Jo

ul
e Medium�VM

User�Sessions�per�second

Mixed�1
Mixed�2
Mixed�3
Mixed�4
Mixed�5

        

0
2000
4000
6000
8000
10000

100 200 300 400 500 600 700

En
er
gy
�

Co
ns
um

pt
io
n�
of
�

Ea
ch
�T
as
k�
in
�Jo

ul
e Small�VM

User�Sessions�per�second

Mixed�1
Mixed�2
Mixed�3
Mixed�4
Mixed�5

Figure 21. Energy Consumption per Task with Different VMs.  
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Figure 19. Energy Consumption per Task with Different 

Table 4. Mixed Workload 
 Mixed 1 Mixed 2 Mixed 3 Mixed 4 Mixed 5

Browsing 
Request 100% 80% 50% 20% 0% 

Shopping 
Request 0% 20% 50% 80% 100% 



Test Set 5.3.2: Keeping the total request number of each user 
session and the workload type constant, while changing the 
number of user sessions, the resources allocated and VM 
deployment on the Web server. The energy consumption and 
system throughput are presented in Figures 23 - 27. We observed 
that when the size of the VM deployed for the Web server 
increased from Small to Large, the system throughput increased 
while the energy consumption decreased in general. Intuitively, 
the more resources used the greater the energy consumption. 
However in this case, the smaller the instance the higher the disk 
accesses due to the thrashing of the cache, which leads to increase 
in energy consumption. Even for the Medium VM, which has two 
cores, the extra energy consumption by the additional core was 

cancelled out by the much larger added memory, reducing the 
number of accesses to the database server. Noticeably, when the 
size of the VM deployed for the Web server changed from Large 
to XLarge, the system throughput decreased and the system 
energy consumption increased in general. 
When we set the type of the VM to Large, the total capacity of the 
Web server and the database server reached the full capacity of 
the physical server. However, when we set the size of the VM for 
the Web server at XLarge, the total capacity of the Web server 
and the database server exceeded the full capacity of the host. In 
this situation, extra overhead occurred because of the scheduling 
of VMs, which caused extra energy consumption. 
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Figure 22. Throughput per Task with Different VMs. 
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Figure 26. Energy Consumption and Throughput per Task with Mixed 4 Workload Type. 
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Figure 24. Energy Consumption and Throughput per Task with Mixed 2 Workload Type. 
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Figure 23. Energy Consumption and Throughput per Task with Mixed 1 Workload Type. 
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Figure 25. Energy Consumption and Throughput per Task with Mixed 3 Workload Type. 
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Figure 27. Energy Consumption and Throughput per Task with Mixed 5 Workload Type. 



Test Set 5.3.3: Keeping the workload type, the number of user 
sessions constant, while changing the packet size, the resource 
allocation and the VM configuration. We fixed the number of 
concurrent user sessions of the workload at 300. First, we ran the 
test with only browsing requests and gradually increased the 
packet size of the browsing requests on different VM of different 
types. The packet size of each browsing request is listed in Table 
5. These packet sizes represent the majority of all the browsing 
requests of JPetstore. The packet size of request “Browsing 1” is 
the smallest while packet size of request “Browsing 3” is the 
largest. The corresponding system energy consumption and 
system throughput are presented in Figures 28 and 29. As 
demonstrated, there was a slight increase in the energy 
consumption of each task when we increased the packet size of 
the requests. Furthermore, the throughput decreased as the packet 
size increased. Bigger packet size usually leads to more 
transmission time over the network and more processing time on 
both the servers and switches. Accordingly, throughput decreases 
and energy consumption increases for each communication-
intensive task. 

6. DISCUSSION 
Based on our observations, we have derived a set of guidelines 
which can be adopted to achieve energy efficient resource 
provisioning and management for green cloud computing.  
The more resources used by a single task, the more energy it 
consumes, and the better the system performance tends to be. 
However, based on the type of the runtime task, the declining 
throughput results show that overcommitted resource allocation 
would result in significant increase in energy consumption and 
decrease in overall system performance. For instance, energy 
consumption increased by 11% on average and the overall system 
performance decreased by 4% when the resource allocation 
exceeded the full capacity of the host during the tests of 
communication-intensive tasks. In cloud systems, the resource 
allocation should dynamically adapt to the customers’ needs, 
taking both performance (and other) SLAs and energy efficiency 
needs into account. Dynamic scaling-up is needed when the peak 
workload is likely to exceed the capacity of the cloud system. 
Based on our results, it is worth finding the trade-off between the 
energy cost caused by the overcommitted resource allocation and 
the cost introduced by adding new resources in cloud systems.  

The types and workload of runtime tasks impact energy 
consumption significantly. The energy consumption of each task 
is highly coupled with the resource utilisation in cloud systems. 
Thus, it is important to predict the required resources accurately 
based on the types and workloads of runtime tasks. For some 
applications, their workload is either known or can be empirically 
determined and is relatively constant. However, due to the 
dynamic nature of many cloud applications and the demand of 
different hosting platforms, the workload of different runtime 
tasks in cloud systems can drastically change over time. The need 
to find out the workload patterns for different runtime tasks in 
cloud systems, in order to schedule them for optimal performance 
and energy consumption, has emerged.  
For a specific type of task, the various configuration parameters 
associated with the task, that is, the number of processes, the size 
of data to be processed, and the size of data to be transmitted, can 
greatly affect the task’s energy consumption. These task 
parameters, that may originally come from application 
requirements, are closely linked to system configurations. Even 
with the same resource allocation, different system configurations 
can result in different energy consumption based on our 
observation. Therefore, dynamically changing cloud systems 
configurations is needed to adapt to different tasks based on their 
various configuration parameters.   
Differing task types, task workload, task parameters, and cloud 
platform configurations can dramatically affect task throughput 
performance and energy consumption. As discussed, some of 
these effects are predictable, while others are counter-intuitive. 
Certain configurations give optimal balance of maximising 
workload vs minimising energy consumption. However, there 
may still be times that customers and/or cloud providers choose to 
prioritise one over the other, that is, to sacrifice performance to 
maximise energy efficiency further, or to sacrifice energy 
efficiency for improved performance.  

7. CONCLUSIONS AND FUTURE WORK 
Understanding cloud system energy consumption dynamics is 
valuable for developing efficient energy-aware resource 
management techniques for green cloud computing. We 
conducted a number of empirical experiments and profiled the 
energy consumption and performance with different types of 
runtime tasks on a controlled, representative cloud system. We 
treated a single task as a unit and measured the energy consumed 
by the task under various system configurations and task 
workload. The correlation of system throughput and energy 
consumption were analysed based on our experimental results. 
These results provide guidelines for developing energy 
management techniques for cloud systems that aim to reduce the 
energy consumption while achieving sufficient system 
performance to meet customer Service Level Agreements (SLAs). 
Currently, we are determining the functional shape of our energy 
consumption model based on the experimental results analysis. 
Moreover, we are running experiments including large scale 
composite workload on larger cloud platform. We compare the 
energy consumption of individual task against the energy 
consumption of composite load predicted by our model. For 
computation-intensive tasks, we are selecting CPU-intensive and 
memory-intensive applications which inherently have single 
threaded and multi threaded algorithms instead of developing a 
new application. The experiment results will be together to help 
us improve our energy consumption model.  In addition, we will 
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Figure 28. Energy Consumption per Task with Increased 

Packet Size. 
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Figure 29. Throughput per Task with Increased Packet Size.

Table 5. Browsing Request Packet Size 
 Browsing 1 Browsing 2 Browsing 3

Packet Size(KB) 3758 4190 4853 



integrate an energy cost rate and an “energy dirtiness rate” into 
our energy consumption model to factor in the costs – monetary 
and environmental – of cloud energy generated by different 
resources. This enhanced energy cost model will be investigated 
in order to minimise total energy costs while meeting system 
performance needs. 
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