In ACM/IEEE International Conference on Software Engineering (ICSE 2015), Florence, Italy, 18-23 May 2013 © IEEE

StressCloud: A Tool for Analysing Performance and
Energy Consumption of Cloud Applications

Feifei Chen, John Grundy, Jean-Guy Schneider, Yun Yang and Qiang He
Faculty of Science, Engineering and Technology
Swinburne University of Technology
Melbourne, Australia 3122
{feifeichen, jgrundy, jschneider, yyang, ghe}@swin.edu.au

Abstract— Finding the best deployment configuration that
maximises energy efficiency while guaranteeing system
performance of cloud applications is an extremely challenging
task. It requires the evaluation of system performance and
energy consumption under a wide variety of realistic workloads
and deployment configurations. This paper demonstrates
StressCloud, an automatic performance and energy consumption
analysis tool for cloud applications in real-world cloud
environments. StressCloud supports 1) the modelling of realistic
cloud application workloads, 2) the automatic generation and
running of load tests, and 3) the profiling of system performance
and energy consumption. A demonstration video can be accessed
at: https://www.youtube.com/watch?v=014_a_CNtVQ

1. INTRODUCTION

Cloud computing is a new paradigm where users lease
cloud infrastructures and services rather than buy them outright.
However, two major challenges of the cloud model are the
huge energy consumption of large-scale cloud data centres and
the need to meet ever-increasing system performance and other
Quality of Service (QoS) requirements for the cloud
applications. High energy consumption directly contributes to
data centres’ operational costs. Currently, power consumption
contributes up to 42% of a data centre’s total operational
expense [1]. In addition, such a huge amount of power
consumption accelerates global warming [2]. On the other hand,
cloud service providers must provide their users with
satisfactory system performance, measured usually in
throughput and response time [3]. Thus, cloud service
providers must develop cloud application deployment and
management solutions that guarantee system performance and
Service Level Agreement (SLAs) at least energy consumption
possible.

However, finding such a solution is an extremely
challenging task, due to the complexity and heterogeneity of
cloud applications and deployment platforms. It requires the
evaluation of system performance and energy consumption
under various combinations of application workloads and
platform configurations. There are however numerous different
application workloads and platform configurations, even for
simple cloud applications. Manual generation of load test plans,
changes of system configurations and running of load tests are
tedious and error-prone. In addition, the collection of accurate
system performance and energy consumption data of cloud
applications relies on load tests based on a realistic user
behaviour model in a real-world cloud environment.

A lot of research effort has been devoted to building
performance evaluation tools for cloud systems [4-6]. However,
most existing approaches provide only a fairly basic model for
user behaviour: a sequence of user requests on cloud servers
arranged into repeating groups with multiple threads (to mimic
large number of cloud users) [4, 5]. In addition, only a few
cloud load test tools have taken into account the energy
consumption of data centres [6]. Moreover, most of the existing
performance evaluation tools utilise simulated cloud
environments, providing only approximations of cloud system
performance [4, 6]. The key limitation of simulation-based
modelling is that test results may be significantly inaccurate
because of the imperfection in the assumptions, input data,
work tasks, energy usage and performance in the simulation
environment [7]. None of the existing performance evaluation
tools can analyse both system performance and energy
consumption at the same time in real-word cloud environments.

This paper demonstrates StressCloud, a novel performance
and energy consumption analysis tool for cloud applications in
real-world cloud environments. StressCloud offers the
following features: (1) the ability to model realistic cloud
application workloads at varying levels of details; (2) the
ability to model cloud application deployment configurations at
varying levels of details; (3) automatic generation of detailed
load test plans; (4) support for automatic running of load tests;
and (5) automatic monitoring, profiling and analysis of system
performance and energy consumption.

II. OVERVIEW OF STRESSCLOUD

Fig.1 shows how StressCloud is used to perform load tests
to profile the performance and energy consumption of a cloud
application. First, the performance engineer defines the cloud
application workload model (box 1). The workload model is
composed of a set of tasks modelling the target cloud
application behaviour. Based on the major type of resource
consumed by a task, we categorise runtime tasks into three
types: computation-intensive, data-intensive and
communication-intensive [8]. A “composite task” is used to
represent tasks made up of different kinds of behaviour. This
model is then further augmented by the performance engineer
with transition probabilities and properties between tasks. We
have developed a collection of cloud services configured by
these application workload models in order to provide a
realistic target application for energy and performance data
collection. These services respond to user requests by

jgrundy
In ACM/IEEE International Conference on Software Engineering (ICSE 2015), Florence, Italy, 18-23 May 2013 © IEEE

performing tasks defined in the workload model. This allows
for what-if energy consumption and system performance
analysis of planned systems and for modelling the re-
engineering of existing systems. For each task, a stochastic
form chart [9] is created to specify detailed user requests and
required responses from the cloud system. StressCloud can also
be used to stress-test existing cloud applications by specifying
which deployed cloud services to invoke and the parameter
data sent to the deployed application services.

O QO Performance Engineer

Model Cloud
System Workloa

odel Clou StressCloud

Architecture

Workload
Model

Cloud System
Architecture
Model

n Stored Results

Test Results

Generate Load

Test Scripts

eploy Load Tes
Services

Fig.1. StressCloud Performance and Energy Data Profiling Process.

A cloud system architecture model is defined to specify the
elements in the target cloud system (box 2). Our cloud
architecture model includes all available resources in the target
cloud system and their detailed configurations. Resources of
different types can be specified by different resource locations,
such as physical servers and virtual machines. After mapping
the tasks defined in the user workload model to corresponding
resources in the cloud system architecture model, workload
deployment scripts are generated (box 3). Based on the
deployment scripts, load test services are uploaded and
deployed to the virtual machines in the target cloud system
(box 4). These load test services have been developed based on
our previous research that incorporated CPU, RAM and data-
intensive tasks, and supported service-to-service
communication-intensive tasks [8]. Load test scripts are then
automatically generated based on the workload model (box 5).
Next, the specified load tests are performed automatically on
the target cloud system in accordance with the load test scripts
(box 6). The performance and energy consumption data of the
target cloud system are collected (box 7) and then visualised
using a variety of charts (box 8).

III. EXAMPLE USAGE

StressCloud is realised as a set of Eclipse IDE plug-ins. A
set of editors are used to support diagrammatic modelling of
workloads and deployment platforms. Three key diagram types
are used, i.e., the high-level workload model of the cloud
application, low-level workload model of each task and the
cloud platform architecture model. Diagrammatic editors are
instantiated for editing these models using the Eclipse
Graphical Modelling Framework. We illustrate the usage of

key functions of StressCloud using a reference Java application
JPetStore [10] as an example.

Workload Modelling. To model the workload of JPetStore, a
high-level workload model using an extended stochastic form
chart needs to be defined first. An example is shown in Fig.2.
In this example, the client (represented by top left icon) is
modelled with a set of requests (represented by large icons with
sub-request containers) linked to transitions (represented by
arrowed lines) with probability annotations. The start and end
circle icons define a state-chart-style model for the workload.
This example specifies that the the user selects a task (Signin,
GetProduct, Getlndex, GetHelp, GetCategory, GetCart,
CreateNewAccount, GetProductDetail, or CheckOuf) with
different probabilities after the workload starts.

Each task in the workload model is a call to a service in the
cloud application. Each such service is modelled as either a call
to an existing deployed cloud application service or one or
more “basic” types of service tasks (i.e., data-intensive,
computation-intensive or communication-intensive). These task
types are used to model a target cloud application’s services. A
complex cloud application is thus built up of services
comprised of a mix of different types of tasks and different
workloads using these tasks.

Each workload task may comprise of sub-tasks that allow us
to define in detail what the task does. We again use the
probability-based stochastic form chart formalism to model
these sub-tasks. Fig.3 shows an example of three JPetStore sub-

task models, (a) a communication-intensive sub-task
(modelling a client-to-server or service-to-service
communication); (b) a computation-intensive sub-task

(modelling the information processing on a server node); and (c)
a data-intensive sub-task (modelling database or file processing
on a data storage server node). StressCloud allows the
performance engineer to specify a range of information about
each sub-task, as shown in the right parts of Fig.3.

Cloud Architecture Modelling. After defining the detailed
workload of a target cloud application, the performance
engineer must define the deployment platform for running the
application. An example of such a cloud architecture model is
shown in Fig4. A cloud platform comprises physical server
hosts, virtual machines and networks. Virtual machines have
many configuration parameters, e.g., the virtual memory size
and the number of CPU cores, deployed application software
services such as web servers, database servers, etc. Physical
hosts and networks have various characteristics, e.g., the server
type, the number of CPU cores, the amount of physical
memory, the virtual machine hypervisor type, the bandwidth,
etc. Fig.4 (a) shows a high-level model of the cloud platform
architecture for running JPetStore in our example performance
and energy analysis tests. This is a data centre with one
physical host and three virtual machine groups on which
different tasks will be hosted. Various configuration parameters
are shown. Fig.4 (b) shows performance engineer specifying a
particular virtual machine configuration for the physical host
machine and its hypervisor, in this case a VMWare hypervisor.

Fig.2. A JPetStore High-level Workload Model in StressCloud.

Communication Intensive Task _Computation-Intensive Task _Data-Intensive Task _ A ——
r W Tifroperty

(b)‘ u (C) l| Action Repeat Time
» 1! Computation Action Data
M lI Computation Action Node Type
L Computation Action Type
(1] \ Incoming Tran:
: Outcoming Transition

CPUResult) y INSERTResult I' Request Delay Time

ntOS 4/5 (32-bit

"

numo!

Windows XP Profess.

1tOS 4/5 (32-bit),nur

g5t Windows XP Pro
ast Windows XP

Windows XP
Windows Sei

OST) wind
.OSType:Ubuntu Linux (64-bit).nur

Jalue
i=amani123

Property
Access Password

Access User Name

Cache Of Physical Processor
Cloud Element ID

Cloud Element Name
Frequency Of Physical Processor
Frequency Of RAM

o
PhysicalServer
2.799999615E9
1900.0

Server Service Address
b RS SN S

Host Access Password

U= https://136.1
=

“=amanil23

_User Workload Element Name
rapEty

<RepeatTine>1,0</RepeatTime>
<Sub_CommunciationIntensiveTask TaskID="0" TaskNameg
h\.

Source Page List

State

Target Page List

User Workload Element ID

Computation Page Node Type
Computation Service Result
Delay Max

Delay Min

Incoming Transition
Outcoming Transition

Page Data

Page Data Type

Source Action List

State

Target Action List

User Workload Element ID

User Workload Element Name L

</ParentTask>
<Path Patth-"D"

ifationTaskAction ActionID=

Value

< Transition Task Work Load 0
< Transition Task Work Load 0

= ACTION_RESULT_PAGE

“= cpuresult

5000.0

*110.0

< Transition Task Work Load
< Transition Task Work Load
#=cpuresult

cpuresult

<ParentTask TaskID:

<CommunicationTaskType>MODE!

StartPage">
efSTART_PAGE</PageNodeType>
t>start</ServiceResult>
00, 0</DelayMax>

0" ActionName="GET">

‘ionNodeType>REQUEST_ACTION</Act ionNodeType>

DataAmount>40. 0</DataAmount>

Efyperihrescivg ek true <InitialTaskNunber>38</Initia TaskNunbgr>

Incoming Connection </GenerallserClient>

Number Of Physical Processor 14 <StartPoint StartPointID="0" StartPoint="s

Number Of Virtual Machine 114 <IsStartState>false</IsStartState>

Number Of VM Group a3 </StartPoint>

Outcomming Connection <ConpositionalTask TaskID="0" TaskNan

Processor Additional Description = null <TransitProbabilityFronPriorPage>1, g

RAM Additional Description = null <TaskResourceLocat lonohttp://136. 186.6..220:8080</ TaskRe

Host Access Username wor File:
Host Service Location
Incoming Connection
Number Of Task Allocated
Number Of Virtual Processor
os Typ

Outcomming Connection

oot
‘= https://136.186.6.60/sdk

(b)

P
RAM Additional Description
Size Of RAM

Size Of Storage

Type Of Virtual Processor
VM Group 1D

_ VM Running Status

Fig.4. An Example Cloud ;X;chltecture Modelled in StressCloud.

</ConpositionalTask>
<EndPoint EndPoint

</EndPoint>
Ypath

\JPetStore_mix\GET.xml</WorkloadModelFile>

8" EndPoint="End">
<IsTerninateState>false</IsTerninateState>

<PacketSize>40.0</PacketSize>
<ActionData>url</ActionData>
<DataType>TEXT</DataType>
<ActionState>false</ActionState>
<TransitProbabilityFronPriorPage>1.8</TransitProbabi

onmunicationTaskAction>

| <ComnunicationTaskPage PageID=

| <TaskType>MODELLED_APPLICATION</TaskType> |

] <RepeatTime>1,0</RepeatTine>| '

I <ResourcelLocation>http://136.186.6.220:8080</Resourcelocat,

[<Nunber0fVM>1</Nunber0f\M>

| <WMTypeRequired>SMALL</WMTypeRequired>

H </Sub_CommunciationIntens iveTask>

1

1

1

1

!

PageName="GETResult">

<PageNodeType>ACTION_RESULT_PAGE</PageNodeType>
<ServiceResult>GETResult</ServiceResult>
<DelayMax>10. 0</DelayMax>
<DelayMin>0.0</DelayMin>
<PageData>TEXT</PageData>
<PageDataType>TEXT</PageDataType>
<PageState>false</PageState>

! </CommunicationTaskPage>

<ComnunicationTaskAction ActionI
ActionName=’

Flg 5. Example Load Test Scrlpts

Deployment Plan Generation. The model of the cloud
platform is used to generate automated configuration scripts in
order to configure the platform for load test runs. The
generated scripts are uploaded to the target physical and virtual
machines and executed to configure them.

Load Test Plan Generation. After generating the service
configuration scripts and deploying the services, the
performance engineer uses StressCloud to generate the load test
plans. Fig. 5 shows an example of generated load test scripts
and configurations. The load test model (a) is used to
synthesise a test script that will be run on a client machine (b).
This script models the state machine that describes the
sequence of tasks, the transitions between tasks, the
probabilities that each task will be carried out, the iterations of
each task, and the workload. Each task in the workload model
is modelled either by a call to a deployed real-world cloud
application service, or as in this example, a model of that
service (c). The service model is a set of data-, computation-
and communication-intensive sub-tasks. Each task’s sub-model
includes the parameters of the services involved in the task
service model. These parameters specify, for example, the
number of iterations for storing, computing, sending and
receiving activities in the services, the amount of data to store,
process, send and receive in each activity; the type of activity,
such as insert, update, delete, select on database; the number of
cores to use in processing, etc.

Test Running and Results Visualisation. Once the load
test scripts are generated, they are uploaded to one or more
machines acting as “clients” and run. The performance
engineer may ask to run hundreds or thousands of instances of
such clients simultaneously. Clients running the load tests can
be hosted on the same or different physical machine, depending
on machine availability. Different types and numbers of
workload tests can be run simultaneously.

]'g Data plot (LiveGraph) ST R ‘ |2/ Data plot (LiveGraph)

=

(a) ® N\

[J g [& / \

|
|
{
|
! \

%) Data series settings (LiveGraph)

2] Dota seres settings (GveGraph) (@] (ole
nNr
Show all Hide all Toggle all > Show all Hide all Toggle all >

Show Show, Label Colour__| Transform.. Transform .|
o 1 i ¥]_|Host Power Consumplion(Walls) | MESSSS Actual value 1

) Fié.6. Vi;ﬁalisedtmf’:r“vformance (a) and Energy Data (b).
The results of the load tests are periodically collected and
visualised in an interactive manner for the performance
engineer. Fig.6 shows an example of the JPetStore deployment
models and workload models under stress tests. Various
physical machine performance metrics can be collected (a).
The energy consumption of physical servers and routers are
also collected (b) using PowerNode [11]. Different collection
intervals and parameters can be set. Results can be saved for
post-hoc analysis, and comparative analysis of different

workloads and deployment configurations.

7]
1
1
1
1
1
1l

IV. DISCUSSION AND SUMMARY

StressCloud is a novel tool for analysing the performance
and energy consumption of cloud applications in real-world
cloud environments. StressCloud supports the modelling of
realistic cloud application workloads, automatic deployment of
load test services, automatic generation and running of load
tests, and automatic profiling of the performance and energy
consumption of cloud applications. We evaluated its
effectiveness by reproducing previous load test results
manually obtained in a real cloud environment [8]. With the
same workload and cloud architecture models, we observed
consistent energy consumption and system performance
variations. In addition, manually completing the whole process
took 2 months of full-time work while with StressCloud it only
took 1.5 weeks. With the support of StressCloud, performance
engineers are able to collect and analyse the performance and
energy consumption of cloud applications in realistic cloud
environments in an efficient and effective manner.

ACKNOWLEDGMENT

We thank Professor Ryszard Kowalczyk for providing the
facilities of Swinburne Energy Research Lab. This research is
supported by the Australian Research Council under Discovery
Project DP110101340 and NICTA Swinburne Software
Innovation Lab.

REFERENCES

[1] Hamilto, J.: ‘Cooperative expendable micro-slice servers (CEMS): low
cost, low power servers for internet-scale services’. in. the 4th Biennial
Conference on Innovative Data Systems Research, Asilomar, California,
USA, 2009, pp. 1-8.

[2] Lee, Y.C., and Zomaya, A.Y.: ‘Energy efficient utilization of resources
in cloud computing systems’, The Journal of Supercomputing, 2012, 60,
(2), pp. 268-280.

[3] Wang, Y.A., Huang, C., Li, J., and Ross, K.W.: ‘Estimating the
Performance of Hypothetical Cloud Service Deployments: A
Measurement-Based Approach’. in. the 30th IEEE International
Conference on Computer Communications, Shanghai, China, 2011, pp.
2372-2380.

[4] Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., and Buyya,
R.: ‘CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms’, Software - Practice and Experience, 2011, 41, (1), pp. 23-50.

[5] Kamra, M., and Manna, R.: ‘Performance of Cloud-Based Scalability
and Load with an Automation Testing Tool in Virtual World’. in. /EEE
the 8th World Congress on Services, Honolulu,USA, 2012, pp. 57-64.

[6] Kliazovich, D., Bouvry, P., and Khan, S.U.: ‘GreenCloud: a packet-level
simulator of energy-aware cloud computing data centers’, The Journal of
Supercomputing, 2012, 62, (3), pp. 1263-1283.

[71 Grundy, J., Cai, Y., and Liu, A.: ‘SoftArch/MTE: Generating Distributed
System Test-beds from High-level Software Architecture Descriptions’,
Automated Software Engineering(ASE), 2005, 12, (1), pp. 5-39.

[8] Chen, F., Grundy, J., Yang, Y., Schneider, J.-G., and He, Q.
‘Experimental Analysis of Task-based Energy Consumption in Cloud
Computing Systems’. in. the 4th ACM/SPEC International Conference
on Performance Engineering, Prague, Czech Republic, 2013, pp. 295-
306.

[9] Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., and Weber, G.:
‘Realistic Load Testing of Web Applications’. in. the 10th European
Conference on Software Maintenance and Reengineering, Bari, Italy,
2006, pp. 70-81.

[10] http:/java.sun.com/developer/releases/petstore/, accessed January 28,
2015

[11] http://www.greenwavereality.com/, accessed January 28, 2015

