
Software Engineering for Multi-tenancy Computing
Challenges and Implications

Jia Ru, John Grundy
School of Software and Electrical Engineering

Swinburne University of Technology
Melbourne, Australia

{rjia, jgrundy}@swin.edu.au

Jacky Keung
Department of Computer Science

City University of Hong Kong
Hong Kong SAR

Jacky.Keung@cityu.edu.hk

ABSTRACT
Multi-tenancy is a cloud computing phenomenon. Multiple
instances of an application occupy and share resources from
a large pool, allowing different users to have their own ver-
sion of the same application running and coexisting on the
same hardware but in isolated virtual spaces. In this posi-
tion paper we survey the current landscape of multi-tenancy,
laying out the challenges and complexity of software en-
gineering where multi-tenancy issues are involved. Multi-
tenancy allows cloud service providers to better utilise com-
puting resources, supporting the development of more flexi-
ble services to customers based on economy of scale, reduc-
ing overheads and infrastructural costs. Nevertheless, there
are major challenges in migration from single tenant applica-
tions to multi-tenancy. These have not been fully explored in
research or practice to date. In particular, the reengineering
effort of multi-tenancy in Software-as-a-Service cloud appli-
cations requires many complex and important aspects that
should be taken into consideration, such as security, scala-
bility, scheduling, data isolation, etc. Our study emphasizes
scheduling policies and cloud provisioning and deployment
with regards to multi-tenancy issues. We employ CloudSim
and MapReduce in our experiments to simulate and anal-
yse multi-tenancy models, scenarios, performance, scalabil-
ity, scheduling and reliability on cloud platforms.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and mod-
eling; C.2.4 [Distributed Systems]: Cloud Computing;
D.2.8 [Software Engineering]: Metrics

General Terms
Performance, Measurement, Software Development, Cloud
Computing

Keywords
Multi-tenancy, Scheduling policies, Cloud computing, Re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
InnoSWDev’14 , November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11 ...$15.00.

source allocation, Software development, SaaS

1. INTRODUCTION
Cloud computing is a new software system technology that

enables dynamic and elastic resource allocation on consoli-
dated physical computing resources using a combination of
techniques from parallel computing, distributed computing,
and platform virtualization technologies [30] [31]. Software
engineering for cloud-based systems is a very new domain of
research and practice requiring careful consideration of its
characteristics with respect to traditional software develop-
ment paradigms [30].

Cloud computing enables resource sharing but different
kinds of resources reflect different levels of dynamic behaviour
and a diversity of user demands. This makes resource man-
agement very complex. To make full use of the cloud’s
scalability and elasticity for cloud service providers, multi-
tenancy is a key cloud characteristic that enables sharing
the same service instance, computational resources, storage,
etc among different tenants [6] [3]. In the multi-tenancy
model, data and resources are deployed in the same cloud,
controlled and distinguished via labeling for the unique iden-
tification of resources owned by individual users [34].

Use of multi-tenancy for cloud applications can help ser-
vice providers lower costs through economical scalability,
improve resource utilization through sharing hardware re-
sources, improve ease of maintenance, as well as reduce ser-
vice customization time [2]. In a multi-tenancy environment,
new clients can access the same software, and thus scaling
has fewer infrastructure implication for vendors [22]. Mean-
while, the Software as a Service (SaaS) model allows all the
tenants (clients) to share compute and data infrastructure,
reducing operational costs. This obviates the need to add
applications and more hardware to data centers [22]. In ad-
dition, application deployment is much easier for the service
provider, since only one service instance of the application
needs to be deployed [6].

Due to the advantages of multi-tenancy, migrating single
tenant applications to multi-tenancy has recently become a
major focus for enterprises [7]. However, effectively realiz-
ing multi-tenancy requires the SaaS applications to capture,
process and store data of different tenants in the same appli-
cation instance, which involves the changing of SaaS tech-
nology and refining as well as developing the multi-tenancy
technologies with regard to different factors [1].

The aim of our work reported here is to present the current
state-of-art in engineering and developing multi-tenancy cloud
applications, and to identify some significant factors and key

aspects that influence and restrict the development of such
multi-tenancy technologies and solutions. The rest of paper
is organized as follows: Section 2 presents the background of
multi-tenancy on clouds and some of the major challenges
faced. Section 3 surveys some key related work. Section
4 describes our set of experimental platforms and tools we
are using to better understand multi-tenancy implications
on the software engineering of cloud applications. Section
5 presents our future work in this area and Section 6 sum-
marises our conclusions to date.

2. LITERATURE REVIEW

2.1 Cloud computing architecture
Cloud computing is defined as ”a model for enabling con-

venient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or ser-
vice provider interaction”, by The National Institute of
Standards and Technology (NIST), which provides 3
service delivery models shown in Figure 1 [27].

Software as a Service (SaaS): provides a fully func-
tional software system ready-to-use for its end-users, offer-
ing e.g. a variety of business process management, anal-
ysis and customer relationship management (CRM) tools.
Most Software cloud services hosted on the cloud architec-
ture are web-based applications that can be accessed by dif-
ferent client devices via a thin client interface with limited
configurations. Salesforce.com is such a well-known SaaS
exemplar.

Platform as a Service (PaaS): provides the develop-
ment platforms hosted on top of computing infrastructure,
where the applications and services can be set up, deployed
and controlled. These provide much less hosting environ-
ment configuration and maintenance, compared to having
to install these platforms or tools on local enterprise ma-
chines. Google App Engine is a well-known PaaS exemplar.

Infrastructure as a Service (IaaS): offers cloud ap-
plication developers on-demand virtual machines to deploy
their software, including data and compute platforms. Ama-
zon Elastic Compute Cloud is the most well-known IaaS ex-
emplar.

	

Application

Business applications,
Web services, Multimedia

Platform

Software framework (Java/Python/.Net),

Storage (DB/File)

Infrastructure

Computation (VM) storage (block)

Hardware

CPU, Memory, Disk, Bandwidth

Resource management at different services Examples

Google Apps,

Facebook, YouTube,

Saleforce.com

Microsoft Azure,

Google AppEngine,
Amazon SimpleDB/S3

Amazon EC2,

Flexiscale,

GoGrid

Data centers

Software as a

Service (SaaS)

Users	

Platform as a
Service (PaaS)

Infrastructure as a
Service (IaaS)

Figure 1: 3 main services delivery models [36]

2.2 Multi-tenancy implications
Multi-tenancy is a specific characteristic of cloud applica-

tions that can change the underlying economics of applica-
tions through sharing infrastructure, platform and services.
It enables each cloud application ”tenant”, each with their
own customers, processes and data, to obtain a single appli-
cation instance [35]. A good definition of multi-tenancy [4]
is ”Multi-tenancy refers to the architectural principle, where
a single instance of the software runs on a software-as-a-
service (SaaS) vendor’s servers, serving multiple client orga-
nizations (tenants). Multi-tenancy is contrasted to a multi-
instance architecture where separate software instances (or
hardware and software systems) are set up for different client
organizations. With a multi-tenant architecture, a software
application is designed to virtually partition its data and con-
figuration so that each client organization works with a cus-
tomized virtual application instance. [32]”.

2.2.1 Multi-tenancy-aware Cloud Applications
Multi-tenancy-aware applications can be defined as follow,

they are suggested by Bezemer et al. [7] [5]:
”A multi-tenant application lets customers (tenants)

share the same hardware resources, by offering them one
shared application and database instance, while allowing them
to configure the application to fit their needs as if it runs on
a dedicated environment.”

A multi-tenant application looks and behaves as tenants
and similar to that of a single-tenant application, but in
reality multiple tenants share the same cloud application
services, platform and infrastructure.

To achieve multi-tenancy awareness, sophisticated multi-
tenancy supports are required to be incorporated into the
entire development and maintenance lifecycle of such ap-
plications [28]. The supports can be conveniently classi-
fied into two phases, they are the development phase and
the deployment phase [28]. In the development phase, the
multi-tenancy support is realized though high-degree config-
uration for different tenants. In the deployment phase, the
service instances will be introduced and deployed in the tar-
get cloud infrastructure according to different multi-tenancy
requirements of the applications [28].

To fully utilize the economy of scale offered by multi-
tenancy cloud computing, services are usually hosted using
multi-tenancy models (patterns) [24]. In service based appli-
cations, service multi-tenancy patterns can be classified into
three main categories characterising the degree of customis-
ability; the level of data isolation; the ease deployment and
update; the scalability of the whole system; and so on [28]:

Single instance service: A service is the same for all
the tenants, and if updating the application, the service will
be only updated once for all the tenants. A single instance
service can be adopted to deploy once and have the same
behavior for all the tenants. It does not need special con-
sideration regarding multi-tenancy. All the data used in the
service is shared by all of the tenants, since the single in-
stance service does not differ between the tenants. [28]

Single configurable instance service: A service has
some specific tenant behavior. This means that a single ser-
vice has different behavior for different tenants according to
configuration parameters that describe processes and data
used by an SaaS application to support specific tenant be-
havior [18]. It is difficult to update parts related to a specific
tenant configuration, since all the tenants use the same in-

stance of a service and it needs to redeploy the configured
service for each tenant. [28]

Multiple instances service: The service varies from one
tenant to another, and an application needs specific tenant
behavior for a service. Multiple instances services can be
used to realize specific tenant behavior and each tenant or
each group of tenants adopt their own service to achieve
their own specific behavior. Each tenant is served by its own
instance and it may result in load unbalance on a service. [28]

Compared with the multi-instance model, multi-tenancy
customizes a single instance based on multiple requirements
of different tenants. In comparison to the much more com-
mon multi-instance model, each tenant has their own virtu-
alized instance of the application [7] [6] [16].

2.3 Achievement of multi-tenancy
In a multi-tenancy cloud, multiple vendors can use the

same infrastructure to access and utilize an application. Fig-
ure 2 presents the overview of such multi-tenancy cloud ar-
chitectures. Multi-tenancy at the datacenter layer can be
a service provider renting datacenter space, and supplying
servers, routers, etc, that supports multiple customer soft-
ware requests [29]. Multi-tenancy at the infrastructure layer
can be achieved through software stacks, where one stack be-
longs to a specific customer. Compared to datacenter-layer
multi-tenancy, this infrastructure layer multi-tenancy saves
costs because these stacks are deployed in accordance with
actual customer accounts [29]. Implementation of multi-
tenancy at the cloud application service layer requires archi-
tectural implementations at both the software layer and the
infrastructure layer. Modifications are required to existing
multi-instance software architectures, including a variety of
multi-tenant patterns being used throughout the application
layer [29].

There are 3 common methods used to achieve multi-tenancy
in cloud applications [29]:

Database: this uses database configuration with data iso-
lation provided at the application layer. Design of different
aspects of the application is used to automatically modify
their different behaviors for different tenants at runtime.

Virtualization: this uses software to create application
hosting environments which can provide logical boundaries
between each tenant, especially for IaaS. In addition, it can
run multiple copies of server operating systems within one
physical machine and share physical hardware.

Physical Separation: this depends on deploying each
tenant with their own specific hardware resources. For in-
stance, assigning separate physical servers to different ten-
ants, or giving a significant section of a datacenter to a large
client [35] [12].

2.4 Challenges of multi-tenancy
Multi-tenancy can help service providers to operate, cus-

tomize, maintain, and upgrade a single instance [2]. Multi-
tenancy has benefits but a number of major challenges are
introduced. For example, all the tenants share the same
resources so a failure caused by one tenant may adversely
influence the others. Multi-tenancy data is stored in the
same server, and it will introduce new requirements for data
management, scalability, security, privacy, integrity and per-
formance measures than in single-tenant based software [7].

2.4.1 Data management

	

Application	 layer	 (SaaS)	

Infrastructure	 layer	 (IaaS)	

Multi	
tenants	

gain	
instance	

install	
instance	

	

Data	 center	 layer	

Master	 table	

write

Tenant	 1	 Tenant	 2	 Tenant	 n	 …	 …	

Separate	
database	
(DB)	

Shared	 DB	
separate	
scheme	

Shared	 DB	
shared	
scheme	

read	 read	 read	

Figure 2: Multi-tenancy architecture overview [35]

Service providers need to design and implement a specific
class, and create an object of the class, which serves the re-
quirements of multiple users efficiently. Design of such SaaS
applications can address some multi-tenancy issues, such as
data security, data separation, data security isolation and
customized applications to minimize the hard binding of
runtime computing resources [12] [35]. Data architecture
is an area where the optimal degree of isolation for a SaaS
application can change based on technical and business con-
siderations [16]. There are 3 approaches to managing multi-
tenant data’s isolation and sharing, lying at different loca-
tions [16]:

Separate Databases: store different tenants’ data in sep-
arate databases. Computing resources and applications are
shared among all the tenants on a server, however each ten-
ant has its own data which keeps logically isolated from data
belonging to all other tenants. Metadata is associated with
each database with the correct tenant, and database secu-
rity prevents any tenant from accidentally or maliciously
accessing other tenants data [16]. This maximises flexibility
and reduces data integrity, security and scaling issues, but
complicates implementation and deployment.

Shared Database, Separate Schemas: house multiple
tenants in the same database, with each tenant having their
specific tables which are grouped into a schema for the ten-
ant [16].

Shared Database, Shared Schema: utilize the same
database and the same tables to host multiple tenants’ data
[16]. This minimises configuration but reduces flexibility and
introduces data integrity, security and potentially scaling
issues.

2.4.2 Security
Multi-tenancy has different possible deployment models

from a separate instance for each tenant to a single instance
for all multiple tenants. However, it requires the SaaS ap-
plication to handle multi-tenancy and tenant data and pro-
cess isolation themselves or hand the task of processing and

storage over third parties. This introduces new security and
privacy issues not presented in single tenant, multi-instance
applications. There is a requirement to build adequate se-
curity measures into every aspect of the SaaS application,
and for every IaaS virtual service. We present these security
issues that rely on three underlying patterns: [16] [1].

Filtering: Use an intermediary layer between a tenant
and a data source acting as a sieve, which enables the tenant
not know about the existence of other tenants and makes it
appear to the tenant as if the tenant’s data is the only data
in the shared database.

Permissions: Use access control lists (ACLs) to deter-
mine data rights (who can access data in the application)
and data processing models (what data operation is allowed).

Encryption and Obfuscation: Obscure critical data
and/or processing of each tenant, in order to keep it in-
accessible to unauthorized parties.

2.4.3 QoS - Performance
A multi-tenant SaaS provides multiple end users with the

same functionality but with potentially different quality-of-
service (QoS) values, such as response time, throughput,
reliability, availability, scalability, reusability, efficiency ser-
vice period, least resource cost, etc [21] [11] [25].

Reusability: It measures whether functionalities provided
by services are common to the requirements defined by ser-
vice consumers [25].

Availability: It measures the ratio of the total time to the
time which a SaaS service is capable of being operable [25].

Scalability: It measures the ability to handle or readily
enlarge the growing resources [25].

Reliability: It measures the ability of multi-tenants to
keep operating with specified level of performance over time
or the reliability of the services themselves [25].

To realize negotiation between service providers and ten-
ants, service level agreements (SLAs) are used to config-
ure service resources according to different service require-
ments [11]. Different tenants may have very different SLA
requirements that need to be met by the same shared cloud
application.

2.4.4 Maintenance
The multi-tenancy deployment can dramatically reduce

the number of application and database instances that need
to be configured and updated, especially if there are many
tenants for the same application. In addition, end users
don’t need to pay expensive maintenance fees to keep their
software up to date. New features and updates are often
included with a SaaS subscription and are rolled out by
the vendor [22]. However, introducing multi-tenancy into
a software system will increase its complexity, sometimes
dramatically, and it will influence the maintenance process.
Therefore hardware deployment and scheduling should con-
sider whether the increased benefits outweigh the increased
maintenance costs [6].

2.4.5 Scalability
Since all the tenants share data and application services,

scalability is distinguishably significant for SaaS [6] [16].
Databases can be scaled up by strengthening a larger server
with more powerful processors, more memory, etc and scaled
out by partitioning a database onto multiple servers. Devel-
oping a scaling strategy should differentiate between scaling

applications (increasing the total workload the application
can accommodate) and scaling data (increasing capacity for
storing and working with data). Replication and partition-
ing are two core tools to realize scalability. However multi-
tenancy scaling has many more constraints than single ten-
ant, multi-instance applications. These include the require-
ment of placing all data for one tenant on the same server
to improve the speed of utilizing database queries. [6] [16].

2.4.6 Scheduling and resource provisioning
Multi-tenancy can scale up and down computing resources,

as well as allocate resources according to actual usage, which
is most widely used for SaaS applications. The scheduling
strategies used in multi-tenancy cloud then become impor-
tant, which directly influence the runtime performance of
software applications. Eventually, scheduling policies should
effectively improve the number of completed transactions,
increase profit of service party, reduce cost which is un-
dertaken by service party when accepting applications and
guarantee QoS (Quality of Service) demand of clients [30].

For example, the priority scheduling of multi-tenancy-
aware applications can achieve two goals [11] through pro-
cessing different resources’ requests according to their SLA
levels: (1) The tenants with high priority of QoS will be
queued prior to the ones of low priority; (2) Under the
guarantee of service quality of tenants in high priority, the
scheduling policies prevents the influence on low tenants. As
another example, scheduling approaches focusing on multi-
tenant, instance-intensive workflows should consider another
three aspects: (1) the quality of service experience (QoSE)
of tenants in different SLA, (2) mean execution time of mul-
tiple workflow instances and (3) save the execution cost for
service providers [13].

Resource provisioning of new tenants is based on selec-
tion from a catalogue released by the cloud vendor to solve
peak load and data expectations among multi-tenants [17].
Before resource provisioning, the calculation of resource re-
quirements (such as CPU, storage, etc) for the multi-tenancy
in a shared application instance is needed. This must satisfy
some constraints (such as response time, availability, busi-
ness transaction rate, database request rate, etc) and min-
imise cost, but without violating Service Level Agreement
(SLA) requirements. This is a very complex task to perform
and to engineer software applications to support [23].

3. RELATED WORK
Even though SaaS attracts much attention in both re-

search community and IT industries, possible solutions to
provide multi-tenancy support are still under investigation.
For example, the SMURF framework [1] helps service providers
reengineer their legacy applications in multi-tenancy envi-
ronments and automates system updating. The MDSE@R
model [2] supports capturing, enforcing, and verifying dif-
ferent tenants’ and service providers’ security requirements
at runtime without modifying the underlying application.
MSSOptimiser [21] is a QoS driven approach to support
service selection for multi-tenancy SaaS. This helps service
developers select appropriate services to compose an opti-
mal SaaS that meets different QoS requirements of multiple
stakeholders.

An SLA-based scheduling algorithm [11] guarantees ser-
vice quality of tenants and improves the system performance

using request load as the measure of resource utilization. A
scheduling algorithm for multi-tenancy workflow instances
proposed in [13] improves the quality of service (QoS) for
tenants and saves the execution cost of workflows. A Ten-
ancy Requirements Model (TRM) presented in [17] based
on mapping of functional and non-functional tenancy re-
quirements with appropriate resources, their parameters,
and health monitoring policy allows dynamic re-provisioning
for existing tenants based on either changing tenancy re-
quirements or health grading predictions. A multi-tenancy
placement tool for application deployment using a minimum
number of servers is proposed in [23]. A framework with a
set of multi-tenancy common services proposed in [18]helps
people design and implement a high quality native multi-
tenant application. However, to date none of these provide
a wide ranging and effective multi-tenancy solution for com-
plex cloud applications.

4. EXPERIMENTAL TOOLS
Multi-tenancy is a relatively new concept in cloud comput-

ing. We review three significant tools that are being used to
model, understand and deploy such approaches. Cloudsim
can simulate multi-tenancy environments to enable fast ex-
perimental simulation and verification of proposed ideas be-
fore deploying the approaches on real cloud platform. Hadoop
provides a platform to realise MapReduce-style implementa-
tions. StressCloud is a tool to model cloud application data,
compute and communication characteristics and cloud load
models, and generate real virtual machine provisioning and
deployment testbeds.

4.1 Cloudsim
CloudSim is an extensible simulation platform which en-

ables seamless modeling, simulation, and experimentation
of emerging Cloud computing infrastructures and manage-
ment services [8]. It is a toolkit for simulation of differ-
ent cloud scenarios, such as multi-tenancy, heterogeneous
resources and communication environments. We are usung
it to build a range of multi-tenant and multi-instance cloud
scenarios [26]. The CloudSim architecture contains 4 layers:
SimJava, GridSim, CloudSim and User code [8]. Figure 3
illustrates the layered implementation of the CloudSim soft-
ware framework and architectural components.

At the lowest layer is the SimJava discrete event simula-
tion engine that implements the core functionalities required
for higher-level simulation frameworks. The next layer is
GridSim, a toolkit that supports high level software compo-
nents for modeling multiple Grid infrastructures [8] [9]. The
Simulation layer provides support for modeling and simu-
lation of virtualized Cloud-based data center environments
including dedicated management interfaces for VMs, mem-
ory, storage, and bandwidth [8] [9]. The top-most User Code
layer exposes configuration related functionalities for hosts,
applications, VMs, their application types, scheduling poli-
cies, etc [8] [9].

4.2 Hadoop MapReduce
Hadoop is an open source implementation of Google MapRe-

duce, which allows for multiple-tenants to securely share a
large cluster such that their applications are allocated re-
sources in a timely manner [33]. Hadoop architecture mainly
contains 4 components: Client, JobTracker, TaskTracker
and Hadoop Distributed File System (HDFS). MapReduce

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

 User code

Cloud Scenario User Requirements Application Configuration … …

User or Datacenter Broker

Simulation

Specification

Scheduling

Policy

 CloudSim

VMGridlet Virtual Machine

VMGridlet Execution VM Management

VM Provisioning CPU Allocation Memory Allocation

Storage Allocation Bandwidth Allocation

Host Datacenter

User Interface

Structure

Virtual Machine

Service

Cloud Service

Cloud

Resource

 GridSim

Data Sets Reservation

Grid Information Service

Resource Allocation Job Description

Replica Manager Workload Trace

Resource Traffic Generator … … Network

Grid Service

Core Elements

 SimJava

Events Handing Simulation Entities … … Timing
Discrete Event

Simulation

Figure 3: Layered CloudSim architecture [8] [9]

system partitions input data and schedules the execution of
programs in clusters of commodity machines. Users specify
a map function that processes a key/value pair to generate
a set of intermediate key/value pairs, and a reduce func-
tion that merges all intermediate values associated with the
same intermediate key. The functional model with user-
specified map and reduce operations allows us to parallelize
large computations easily and to use re-execution as the pri-
mary mechanism for fault tolerance [15] [14]. To achieve
multi-tenancy, the Fair Scheduler or Capacity Scheduler can
provide SLAs and guaranteed resource availability to tenants
appropriately [33].

Capacity Scheduler: It is designed to run Hadoop Map-
Reduce as a shared, multi-tenant cluster in an operator-
friendly manner while maximizing the throughput and the
utilization of the cluster while running Map-Reduce appli-
cations. It allows sharing a large cluster while giving each
queue a minimum capacity guarantee. When a task is sub-
mitted, it is put into a queue. Each queue gets some Task-
Tracker resources based on configuration to process Map
and Reduce operations. Available resources can be dynam-
ically allocated to the queues with heavy workloads. In a
queue, tasks can be operated according to their different
priorities. High-level priority task will be executed first,
but Capacity Scheduler does not support preempting pri-
ority. Comprehensive set of limits are provided to prevent
a single job, user and queue from monpolizing resources of
the queue or the cluster as a whole to ensure that the sys-
tem, particularly the JobTracker, isn’t overwhelmed by too
many tasks or jobs. Sharing clusters across organizations
necessitates strong support for multi-tenancy since each or-
ganization must be guaranteed capacity and safe-guards to
ensure the shared cluster is impervious to single rouge job or

user. Nevertheless, this scheduling policy cannot automati-
cally set up configuration of queues and also cannot choose
queues by itself [19].

Fair Scheduler: It supports classification of tasks and
allocates different types of resources to the various types
of tasks in order to improve performance quality. The fair
scheduler organizes jobs into pools, divides resources fairly
between these pools and also allows assigning guaranteed
minimum shares to pools. By default, there is a separate
pool for each user, so that each user gets an equal share of the
cluster. It allows assigning guaranteed minimum shares to
pools, which is useful for ensuring that certain users, groups
or production applications always get sufficient resources.
When a pool contains jobs, it gets at least its minimum
share, but when the pool does not need its full guaranteed
share, the excess is split between other pools. It is also pos-
sible to set a job’s pool based on a configurable attribute,
such as user name and unix group. Within each pool, jobs
can be scheduled using either fair sharing or FIFO schedul-
ing [33]. However, this scheduling policy does not consider
actual workload of the task nodes and it results in workload
unbalance. At runtime, the actual workload of a task node
is determined by resource consumption of the running tasks
rather than number of those [20].

4.3 StressCloud
StressCloud [10] is a new performance profiling and energy

consumption analysis tool for cloud applications. It sup-
ports users to generate cloud application services comprised
of data, computing and communication tasks to realize load
test and automatically deploy these load test services. It
can model realistic cloud application workloads and stress
test applications generated from models or real, deployed
applications. As StressCloud can deploy and run cloud ser-
vices in a real cloud deployment environment, its use results
in more precise and realistic estimation of cloud application
performance and behavior. StressCloud currently supports
VMware as the cloud platform hypervisor. Cloud services
are composed of composite tasks which relate to various
types of cloud resources, such as data storage (Hard Disk),
CPU, RAM, and network devices. In a multi-tenant environ-
ment, since each tenant has their own requirements and spe-
cific behaviors, the tasks of different tenants are very com-
plex and composite, which results in the unbalanced and di-
versity workload. However, StressCloud can generate these
kinds of composite tasks as well as form a workload model
based on transition probabilities and properties between dif-
ferent types of tasks. A set of services are developed to
model the target applications. Multi-tenancy configuration
and customization can be realized through using services
in SOA-based applications [28]. StressCloud allows these
services to take the user requests in order to execute tasks
defined in the workload model and send the corresponding
responses. For each task, a stochastic form chart is built
to describe the detailed user requests and required response
from the cloud services [10]. The tasks can be classified
as computation-intensive tasks, data-intensive tasks, and
communication-intensive tasks and StressCloud can model
all of these and mix different task types according to differ-
ent services: [10] (1) Computation-intensive tasks: It mainly
cost CPU and RAM resources, so it can be divided into
CPU-intensive tasks and memory-intensive tasks. (2) Data-
intensive tasks: It is local and global I/O bound in com-

mon, requires to process large volumes of data, and spend
most time on moving and manipulating data in databases
and files. (3) Communication-intensive tasks: In a cloud
application, it usually generates a large number of network
transactions between cloud user devices and cloud systems.

In a cloud computing system, scheduling is the act of dis-
patching these tasks to a pool of resources providing high
processing capability to achieve some optimized objectives,
such as minimize cost, reduce turnaround time, etc, or to
achieve required QoS levels as specified in a SLA. There-
fore, StessCloud is a significantly useful tool to model dif-
ferent task scheduling schemes and run these in a real cloud
deployment environment. This can help us to test different
scheduling policy effects and efficiency for multiple tenants.

5. DISCUSSION
In the multi-tenancy cloud environment, adopting an ap-

propriate scheduling policy and optimizing scheduling mech-
anisms to improve the performance and utilization of re-
sources as well as guarantee QoS of services according to
different requirements of tenants are of a significant research
area [30]. Each tenant has its own QoS requirements for pro-
cessing tasks, such as processing time, processing cost and
processing priority. However, current scheduling supports
for multi-tenancy are very limited or overly simplistic (one-
size-fits-all). Therefore, we are interested in investigating a
dynamic scheduling model to improve the efficiency of the
entire system for multi-tenant cloud applications, allowing
tailoring of schedulers to different tenant SLAs.

Figure 5 presents an overview of this. Here, each schedul-
ing parameter is regarded as one component/module. There
are several aspects to consider:

(1) how to realize initialization: According to our hy-
pothesis, we will build a scheduling model and configure
different scheduling schemes. How to define/describe these
schemes is a key first goal.

(2) how to find the relationship between parameters:
There are many parameters in scheduling mechanisms and
how to find the relationship between all these parameters
(such as resource utilization-based, priority-based, performance-
based, cost-based, etc.) as well as balance them is necessary,
since all these parameters are not independent. For exam-
ple, the overall cost will effect the profit directly. Taking
into account of the priority, the task with high-priority is
processed first, but this may reduce the entire performance.
Considering the QoS parameter, choosing a suitable schedul-
ing policy maximises system performance but cost may be
increased. Changing one parameter will influence other pa-
rameters. Consequently, it is very complex to find a thresh-
old or key value to balance these parameters.

(3) how to improve efficiency: Based on the differ-
ent scheduling schemes, how to choose a suitable parameter
as main focus to improve the efficiency is a challenge. We
need to define the thresholds to determine which schemes
corresponding to which parameters. Furthermore, in a fixed
scheduling scheme, we need to find out which parameter
should be considered first, which parameter is most impor-
tant and what is the weight of this parameter. In the ini-
tial phase, to reduce the complexity, one scheduling scenario
will only consider one or two parameters. In the final phase,
many more parameters will be considered in one scheme,
and the weight of each parameter will be calculated.

(4) how to build in scheduling approaches for each

component: In scheduling mechanisms, there exists numer-
ous of algorithms even if only considering one parameter.
Therefore, how to choose suitable algorithms building in
each component and how many algorithms being selected
in one component is another key. Additionally, a more com-
plicated multi-tenancy scheduling model may not only focus
on tasks, but also may consider hardware resource provision-
ing (from the virtual machine layer), data placement, and
business process models.

In Figure 5, tasks generated by StressCloud will be ran-
domly labeled by user 1, user 2 ... user n, respectively.
Firstly, each user will only add at most one parameter to
consider, such as deadline (related to completion time), re-
sponse time (which means the task with the less response
time constraint has the higher priority), cost and availability.
The first 2 parameters obey a normal distribution. Avail-
ability can be set manually using timelines and periods of
unavailability. Some users need 24/7 availability and some
VMs will be put into an availability pool. When consider-
ing cost, a user may choose not consider completion time.
When all the machines are not busy their request will be
processed. In addition, the tasks with hard deadline con-
straints should be ordered in a queue. Some VMs should
be put into a deadline pool and these tasks are deployed to
this pool. From the resource provisioning perspective, CPU
and memory usage should be monitored. When some VM’s
usage is lower than a pre-defined threshold, the VM will be
shut down untill all the current tasks are finished. If the us-
age of each VM is higher than the threshold, a new VM will
be spooled up and added. The VMs availability in the pool
will never be stopped and under the worst condition, when
there are almost no new tasks coming and no unfinished
tasks, at least 2 VMs are kept live.

In summary, all these aspects are highly dependent. To
reduce complexity, we will build our model considering one
aspect at a time. For example, the main objective of the
scheduling model is to minimize the completion time shown
in Figure 4. There are 4 modules in the model: cost-focus
(minimize the cost), priority-focus (minimize waiting time),
QoS-focus (satisfy all the QoS attributes), and minimized
completion time-focus. All the tenants submit their tasks
to the scheduling broker (the core of scheduling model to
manage/control other modules, and deploy tasks to the vir-
tual machines), which needs to meet not only the funda-
mental QoS requirements but also their own specific re-
quirements (cost-focus, priority-focus, minimized comple-
tion time-focus, etc). Therefore, we need to calculate a fi-
nal weight value for each task based on these requirements,
in order to rank all the submitted tasks according to their
weight values to determine optimal task execution sequence.
Therefore, for the first layer, we need to choose a suitable
algorithm to calculate the multi-dimensionality QoS value.
For the second layer, we justify the first task execution order
through launching different adaptive algorithms to different
specific requirements, combining these to a matrix and mul-
tiplying to the first execution sequence. Finally, according
to the final execution order, we choose priority scheduling to
allocate the tasks to the virtual machines. Importantly, the
adaptability is considerate factor, since different types tasks
will be loaded. In the initial phase, we will not consider the
difference of task types.

In the initial phase, through investigating different schedul-
ing polices, a task scheduling algorithm has been proposed

	 	

	

Scheduling	 broker	

Tenant	 1	

Submit	 tasks	

Tenant	 2	 Tenant	 3	 Tenant	 n	 …	 …	

QoS	 requirements	 (response	 time,	 throughput,	
reliability,	 availability,	 scalability,	 etc)	

Calculate	 the	 weight	 value	

Choose	 a	 suitable	 and	 adaptive	
algorithm	 for	 calculating	 multi	

attributes	 of	 QoS	
??	

First	 layer	
Output:	 execution	 sequence	 based	

on	 the	 1st	 QoS	 weight	 value	 	

Rank	 tasks	

Rank	 adjustment	

Cost	 focus	 Completion	
time	 focus	

Priority	
focus	

Specific	 requirements	

Choose	 a	 suitable	 and	 adaptive	 algorithm	
for	 each	 component	 and	 makes	 these	 3	
requirement	 algorithm	 in	 a	 matrix	 to	

calculate	 the	 2nd	 weight	 values	 for	 each	 task	 	

Re-‐Rank:	 Multiply	
the	 matrix	 to	 the	
1st	 weight	 values	 	 	

??	

Second	
layer	

Output:	 final	 execution	 sequence	
based	 on	 the	 2nd	 weight	 value	 s	

VM	 1	 VM	 3	 VM	 4	 VM	 5	 VM	 2	 …	 …	

Assign	 tasks	 to	 VMs	 based	 on	
the	 final	 execution	 sequence	 	 Choose	 priority	 scheduling	 algorithm	

??	
Scalability:	
up	 and	

down	 VMs	 	

Adaptability:	
different	
task	 types	 	

??	

Figure 4: Implementation of scheduling model

that integrates with task grouping, prioritization (bandwidth-
aware) and SJF (Shortest-Job-First) [30]. The proposed al-
gorithm has been simulated on the Cloudsim platform that
only considers the tasks themselves without taking into ac-
count of multi-users, or the multi-instancy issue. It aims to
effectively minimize task’s waiting time and processing time
as well as to reduce tasks’ processing cost through effective
utilization of cloud resources available.

Compared with traditional grouping-based scheduling al-
gorithms, our proposed algorithm and model is suitable for
both very lightweight jobs and the tasks with random and
unpredictable processing requirements. It also considers the
communication and transmission rate of resources to reduce
the transmission latency. Meanwhile, it could achieve op-
timum resource utilization and minimum overhead, as well
as reduced influence of bandwidth bottleneck in communi-
cations. Figure 6 shows the main parts of our proposed al-
gorithm. This involves sorting jobs (step 1); identifying and
organising resources (step 2); analysing jobs and resources
(steps 3, 4); and grouping tasks and resource allocation (step
5); and scheduling activities (step 6).

Figure 7 shows the total processing time of different num-
ber of tasks from some of our preliminary analysis of possi-
ble algorithms. Figure 8 presents the average waiting time
of different number of tasks. In comparison with existing
task grouping algorithms, our preliminary scheduling results
show that the proposed algorithm waiting time significantly
decreased over 30% and processing time decreased by 7.25%.
This algorithm reduces makespan greatly on the simulation
platform, so from a cloud provider respective, ordered tasks

	 	 	

data	 placement	 -‐	 involved	 	

	

	

How	 to	 base	 on	 multi	 tenants	
rather	 than	 normal	 users	 	

Multi-‐tenancy	 based	 scheduling	 model	 	

Differentinate	
scheduling	 scheme	 	

Load	 into	 the	
scheduling	 model	

How	 to	 define	
these	 schemes	

	 Component:	
Profit	 focus	

	 	

	 Component:	
QoS	 focus	

	 	

	 Component:	
Cost	 focus	

	 	

	 Component:	
Priority	 focus	

	 	

Relationship	

find	 the	 relationship	 between	
them;	 how	 to	 balance	 them;	 how	
to	 find	 the	 key	 value	 to	 confirm	
tasks	 (schemes)	 belong	 which	

components	 	

Transform	 threshold	
or	 scripts	

What	 contents	 or	 elements	 in	
each	 component,	 even	 if	 only	

cost	 focus,	 exist	 many	
approaches,	 we	 cannot	

consider	 all	 the	 scheduling	
algorithms,	 how	 to	 select	 	 	

Other	 parameters	
can	 be	 added	 in	 the	
system	 model	 	 	 	

	 Virtual	 machine	
module	

	 	

Tasks	
Perspective	

Maybe	 relate	 to	
resource	 provisioning,	
on	 the	 opposite,	 based	
on	 the	 difference	 of	

tasks,	 provide	 different	
resources	 	 	 	

	 Servers	 on	
physical	 layer	
(Infrastructure)	

	 	

Application	
	 models	 	

Generate	
different	 tasks	

Different	 tasks	 with	 different	 requirements	
to	 form	 different	 service	 requests	 and	 send	
to	 the	 broker	 of	 scheduling	 model,	 and	

later	 deploy	 the	 corresponding	 component	

To	 deploy	 the	 tasks	 to	
the	 VMs,	 maybe	 relate	
to	 process	 modeling	 	

To	 deploy	 the	 tasks	 to	
the	 VMs,	 maybe	 relate	
to	 data	 placement	 	 	

Multi-‐tenancy	 aware	
Single	 instance	 	
Single	 configurable	 instance	
Multi	 instance	

Launch	 	

The	 completion	 time	
of	 a	 task	 varies	 based	
on	 the	 performance	
of	 an	 instance	

maybe	 relate	 to	
workflow	 issue	 	

scheduling	 (policies)	 -‐	 focus	 	

process	 model	 -‐	 involved	 	 resource	 provisioning	 -‐	
involved	

	 multi-‐tenant	 	

	

Resource	
Perspective	 	

Figure 5: An overview picture of our key future work

of different tenants can be grouped using this algorithm and
sent to the virtual machines in our real cloud.

Good modelling, analysis, simulation and testing tool sup-
port is needed. This allows engineers to specify multi-tenant
cloud application scheduling, provisioning, task, workload,
and QoS models. These provide models allowing engineers
to reason about appropriate strategies for different tenant
requirements. We plan to extend StressCloud to incorpo-
rate richer QoS requirement specifications, multi-tenant re-
quirements, schedulers and provisioning specifications. We
plan to extend its code generation to support these in target
application load and executable model generation.

6. CONCLUSION
Multi-tenancy is a new software architectural pattern with

a single instance of applications (or customizing the data and
configuration) running on service provider’s infrastructure.
However, the architecture of multi-tenancy and the cus-
tomization requirements attract several research challenges,
such as the possibility of sharing hardwares resource at a
lower cost, utilization of shared application and database to
ease the maintenance efforts required, and to provide a high-
level configuration to customize a specific workflow instance
of the applications to end users, etc. [7] To realize multi-

Algorithm	 Combination	 	

SJF	 (Shortest-‐First-‐Job)	 scheduling	

	
	

Step.3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Step.5	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 S Step.4

	 	 	 	 	 	 	 	
	 	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	
	

	
	 	 	 	 	 	 	
1st	 scheduling	 procedure-‐ordering	 	 	 	 	 	 	 	 2nd	 scheduling	 procedure-‐	 proposed	 job	 grouping 	
	
	

USER	 JOBS	

Total	 number	 of	 jobs	

Mean	 MI	 of	 a	 job	

MI	 deviation	 percentage	

Overhead	 process	 time	

Priority	 of	 jobs	

Sort	 jobs	 in	

a	 list	

According	 to	

specific	 priority	

Step.1	
Job	 MI	

Granularity	 Size

 Resource	 MIPS
 Capability-‐Total	 MI

Cloud	 Resource	 0	 Cloud	 Resource	 1	 …	 …	 Cloud	 Resource	 N	

Job	 Group	 0	 Job	 Group	 1	 …	 …	 Job	 Group	 N	 Step.2	
Cloud	 Resource	 ID	

Cloud	 Resource	 0	

Cloud	 Resource	 1	

…	 …	

Cloud	 Resource	 N	

Priority	 &	 character	

of	 Resources	

Sort	 Resources	

in	 a	 list	
Grouped	 jobs	 list	 Cloud	 resources	 list	

Step.6	

Cloud	 resource	

characteristic	

Figure 6: Flow chart of proposed algorithm [30]

	

	
	

	
	

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	
8000	
9000	
10000	

7000	 6000	 5000	 4000	 3000	 2000	 1000	 av
er

ag
e

w
ai

tin
g

tim
e

(u
ni

t:
 se

co
nd

)

 No. of cloudlets(tasks) granularity size= 10 seconds

average waiting time
Task grouping

Grouping with SJF

Grouping with SJF and bandwidth

Group on processing capability-aware

Group on tasks' length-aware

Group on processing capability and
tasks' length-aware
Task grouping

Grouping with SJF

Grouping with SJF and bandwidth

0	

5000	

10000	

15000	

20000	

25000	

7000	 6000	 5000	 4000	 3000	 2000	 1000	

to
ta
l	 p
ro
ce
ss
in
g	
ti
m
e	
(u
ni
t:	
se
co
nd
)	

No.	 of	 cloudlets	
granularity	 size=	 10	 seconds	 	

	

total	 processing	 time	

task	 grouping	 Grouping	 with	 SJF	 Grouping	 with	 SJF	 and	 bandwidth	

Figure 7: Total processing time with different number of
tasks

tenancy efficiently, some significant parameters must be con-
sidered, such as scalability, data management, maintenance,
security, and scheduling implications just to name a few.
In this study, we have provided a comprehensive overview
of key research trends and future directions in an emerg-
ing area of software engineering in the cloud environment.
We are working on building a generic scheduling model that
will deal with multi-tenancy issues, with considerations of
QoS constraints and resource provisioning capabilities. The
response time, deadline and availability as 3 important ele-
ments will be first considered in the current research.

7. REFERENCES
[1] M. Almorsy, J. Grundy, and A. S. Ibrahim. Smurf:

Supporting multi-tenancy using re-aspects framework.

	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	
8000	
9000	

7000	 6000	 5000	 4000	 3000	 2000	 1000	 av
er
ag
e	
w
ai
ti
ng
	 ti
m
e	
(u
ni
t:	
se
co
nd
)	 	

 	 	 No.	 of	 cloudlets(tasks)	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 granularity	 size=	 10	 seconds	 	

average	 waiting	 time	 	 	

Task	 grouping	 Grouping	 with	 SJF	 Grouping	 with	 SJF	 and	 bandwidth	

0	
500	
1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	

7000	 6000	 5000	 4000	 3000	 2000	 1000	

av
er

ag
e

w
ai

tin
g

tim
e

(u
ni

t:
 se

co
nd

)

 No. of cloudlets(tasks) granularity size= 20 seconds

average waiting time
Task grouping

Grouping with SJF

Grouping with SJF and bandwidth

Group on processing capability-aware

Group on tasks' length-aware

Group on processing capability and tasks'
length-aware
Task grouping

Grouping with SJF

Grouping with SJF and bandwidth

Figure 8: Average waiting time with different number of
tasks

In Engineering of Complex Computer Systems
(ICECCS), pages 361–370. IEEE, 2012.

[2] M. Almorsy, J. Grundy, and A. S. Ibrahim.
Adaptable, model-driven security engineering for saas
cloud-based applications. Automated Software
Engineering, pages 1–38, 2013.

[3] M. Almorsy, J. Grundy, and I. Müller. An analysis of
the cloud computing security problem. In the proc. of
the 2010 Asia Pacific Cloud Workshop, Colocated with
APSEC2010, Australia, 2010.

[4] D. Banks, J. Erickson, and M. Rhodes. Multi-tenancy
in cloud-based collaboration services. Information
Systems Journal, 2009.

[5] C.-P. Bezemer and A. Zaidman. Challenges of
reengineering into multi-tenant saas applications.

[6] C.-P. Bezemer and A. Zaidman. Multi-tenant saas
applications: maintenance dream or nightmare? In
Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution
(IWPSE), pages 88–92. ACM, 2010.

[7] C.-P. Bezemer, A. Zaidman, B. Platzbeecker,
T. Hurkmans, and A. t Hart. Enabling multi-tenancy:
An industrial experience report. In Software
Maintenance (ICSM), pages 1–8. IEEE, 2010.

[8] R. Calheiros, R. Ranjan, C. De Rose, and R. Buyya.
Cloudsim: A novel framework for modeling and
simulation of cloud computing infrastructures and
services. arXiv preprint arXiv:0903.2525, 2009.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
De Rose, and R. Buyya. Cloudsim: a toolkit for
modeling and simulation of cloud computing
environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience,
41(1):23–50, 2011.

[10] F. Chen, J. Grundy, J.-G. Schneider, Y. Yang, and
Q. He. Automated analysis of performance and energy
consumption for cloud applications. In Proceedings of
the 5th ACM/SPEC international conference on
Performance engineering, pages 39–50. ACM, 2014.

[11] X. Cheng, Y. Shi, and Q. Li. A multi-tenant oriented
performance monitoring, detecting and scheduling
architecture based on sla. In Pervasive Computing
(JCPC), 2009 Joint Conferences on, pages 599–604.
IEEE, 2009.

[12] F. Chong. Multi-tenancy and virtualization. In
http://blogs.msdn.com/b/fred chong/archive/2006/
10/23/multi-tenancy-and-virtualization.aspx, 2006.

[13] L. Cui, T. Zhang, G. Xu, and D. Yuan. A scheduling
algorithm for multi-tenants instance-intensive
workflows. Applied Mathematics & Information
Sciences, 7, 2013.

[14] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[15] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud
computing and grid computing 360-degree compared.
In Grid Computing Environments Workshop, 2008.
GCE’08, pages 1–10. IEEE, 2008.

[16] G. C. Frederick Chong and R. Wolter. Multi-tenant
data architecture. In http://msdn.microsoft.com/en-
us/library/aa479086.aspx.

[17] A. Gohad, K. Ponnalagu, and N. C. Narendra. Model
driven provisioning in multi-tenant clouds. In Global
Conference (SRII), Annual, pages 11–20. IEEE, 2012.

[18] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and
B. Gao. A framework for native multi-tenancy
application development and management. In
E-Commerce Technology and the 4th International
Conference on Enterprise Computing, E-Commerce
and E-Services, pages 551–558. IEEE, 2007.

[19] Hadoop. Capacity scheduler. In
http://hadoop.apache.org/docs/r2.2.0/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html.

[20] Hadoop. Fair scheduler. In
http://hadoop.apache.org/docs/r2.2.0/hadoop-
yarn/hadoop-yarn-site/CapacityScheduler.html.

[21] Q. He, J. Han, Y. Yang, J. Grundy, and H. Jin.
Qos-driven service selection for multi-tenant saas. In
Cloud computing (cloud), pages 566–573. IEEE, 2012.

[22] F. H. Judith Hurwitz, Marcia Kaufman and D. Kirsch.
Multi-tenancy and its benefits in a saas cloud
computing environment. In
http://www.dummies.com/how-
to/content/multitenancy-and-its-benefits-in-a-saas-
cloud-comp.html.

[23] T. Kwok and A. Mohindra. Resource calculations with
constraints, and placement of tenants and instances
for multi-tenant saas applications. In Service-Oriented
Computing, ICSOC, pages 633–648. Springer, 2008.

[24] T. Kwok, T. Nguyen, and L. Lam. A software as a
service with multi-tenancy support for an electronic
contract management application. In Services
Computing, 2008. SCC’08. IEEE International
Conference on, volume 2, pages 179–186. IEEE, 2008.

[25] J. Y. Lee, J. W. Lee, S. D. Kim, et al. A quality
model for evaluating software-as-a-service in cloud
computing. In Software Engineering Research,
Management and Applications, SERA. 7th ACIS
International Conference, pages 261–266. IEEE, 2009.

[26] R. Malhotra and P. Jain. Study and comparison of
various cloud simulators available in the cloud
computing. International Journal, 3(9), 2013.

[27] P. Mell and T. Grance. The nist definition of cloud
computing (draft). NIST special publication,
800(145):7, 2011.

[28] R. Mietzner, T. Unger, R. Titze, and F. Leymann.
Combining different multi-tenancy patterns in
service-oriented applications. In Enterprise Distributed
Object Computing Conference, 2009. EDOC’09. IEEE
International, pages 131–140. IEEE, 2009.

[29] J. Petersson. Best practices for cloud computing
multi-tenancy. In
http://www.ibm.com/developerworks/cloud/library/cl-
multitenantcloud/.

[30] J. Ru and J. Keung. An empirical investigation on the
simulation of priority and shortest-job-first scheduling
for cloud-based software systems. In Software
Engineering Conference (ASWEC), 2013 22nd
Australian, pages 78–87. IEEE, 2013.

[31] S. Selvarani and G. Sadhasivam. Improved cost-based
algorithm for task scheduling in cloud computing. In
Computational Intelligence and Computing Research
(ICCIC), IEEE International Conference on, 2010.

[32] B. Warfield. Multitenancy can have a 16:1 cost
advantage over single-tenant. 2007.

[33] T. White. Hadoop: The definitive guide. O’Reilly
Media, 2012.

[34] K. Wood and M. Anderson. Understanding the
complexity surrounding multitenancy in cloud
computing. In e-Business Engineering (ICEBE), 8th
Conference on, pages 119–124. IEEE, 2011.

[35] L.-J. Zhang, J. Fiaidhi, I. Bojanova, and J. Zhang.
Enforcing multitenancy for cloud computing
environments. IT professional, 14(1):0016–18, 2012.

[36] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research challenges.
Journal of Internet Services and Applications,
1(1):7–18, 2010.

