
Lessons learned from using a deep tree-based
model for software defect prediction in practice

Hoa Khanh Dam
University of Wollongong

Australia
hoa@uow.edu.au

Trang Pham
Deakin University

Australia
phtra@deakin.edu.au

Shien Wee Ng
University of Wollongong

Australia
swn881@uowmail.edu.au

Truyen Tran
Deakin University

Australia
truyen.tran@deakin.edu.au

John Grundy
Monash University

Australia
john.grundy@monash.edu

Aditya Ghose
University of Wollongong

Australia
aditya@uow.edu.au

Taeksu Kim
Samsung Electronics
Republic of Korea

taeksu.kim@samsung.com

Chul-Joo Kim
Samsung Electronics
Republic of Korea

chuljoo1.kim@samsung.com

Abstract—Defects are common in software systems and cause
many problems for software users. Different methods have been
developed to make early prediction about the most likely defective
modules in large codebases. Most focus on designing features (e.g.
complexity metrics) that correlate with potentially defective code.
Those approaches however do not sufficiently capture the syntax
and multiple levels of semantics of source code, a potentially
important capability for building accurate prediction models. In
this paper, we report on our experience of deploying a new
deep learning tree-based defect prediction model in practice.
This model is built upon the tree-structured Long Short Term
Memory network which directly matches with the Abstract
Syntax Tree representation of source code. We discuss a number
of lessons learned from developing the model and evaluating it
on two datasets, one from open source projects contributed by
our industry partner Samsung and the other from the public
PROMISE repository.

Index Terms—defect prediction, deep learning

I. INTRODUCTION

As software systems continue playing a critical role in all
areas of our society, software defects have significant impact
onto businesses and people’s lives. Substantial research has
gone into developing predictive models and tools which help
software engineers and testers to quickly narrow down the
most likely defective modules of a software codebase [1, 2].
Early defect prediction helps prioritize and optimize effort for
inspection and testing, especially when facing with cost and
deadline pressures. Identifying defects in software however
becomes increasingly difficult due to the significant growth of
software codebases in both size and complexity.

The growth in size and complexity of codebases has led to
the use of machine learning techniques in building defect pre-
diction models. Common machine learning techniques derive
features (i.e. predictors) from software code and feed them
to classical classifiers such as Naive Bayes, Support Vector
Machine and Random Forests. Substantial research (e.g. [3–
5]) have gone into carefully crafting features which are able
to discriminate defective code from non-defective code such
as code size, code complexity (e.g. Halstead features, McAbe,

CK features, MOOD features), code churn metrics (e.g. the
number of code lines changed), and process metrics. However,
those features do not truly reflect the syntax and semantics of
code. In addition, software metric features do not generalize
well: features that work well in a software project may not
perform well in other projects [6].

An alternative is using Natural Language Processing (NLP)
techniques to generate features from code. A common tech-
nique is using Bag-of-Words (BoW) which treats code tokens
as terms and represents a source file as term-frequencies. The
BoW approach is however unable to detect differences in the
semantics of source code due to differences in code order or
syntactic structure (e.g. x ≥ y vs. y ≥ x). Hence, recent trends
started to focus on persevering code structure information in
representing source code. However, recent work such as [7]
does not fully encode the syntactic structure of code nor the
semantics of code tokens, e.g. fails to recognize the semantic
relations between “for” and “while”.

Our industry partner, Samsung, is the leading provider of
Android platforms and has substantial software development
teams and very large codebases. Motivated by Samsung’s
defect prediction needs for these large codebases, we have
developed a new deep tree-based model for defect prediction.
The model was built upon the Long Short-Term Memory
(LSTM) [8], a powerful deep learning architecture to capture
the long context relationships in code where dependent code
elements are scattered far apart. The syntax and different levels
of semantics in source code are usually represented by tree-
based structures such as Abstract Syntax Trees (ASTs). Hence,
we adapted a tree-structured LSTM network (Tree-LSTM) [9]
in which the LSTM tree in our prediction system matches
exactly with the AST of an input source file, i.e. each AST
node corresponds to an LSTM unit in the tree-based network.

This tree-based LSTM model for source code aims to
preserve both syntactic and structural information of the pro-
grams (in terms of ASTs). Through an AST node embedding
mechanism, our representation of code tokens also aims to
preserve their semantic relations. Our prediction system takes

John Grundy
2019 International Conference on Mining Software Repositories, Montreal, Canada, 26-27 May 2019

as input a “raw” Abstract Syntax Tree representing a source
file and predict if the file is defective or clean. The features
are automatically learned through the LSTM model, thus
eliminating the need for manual feature engineering which
occupies most of the effort in traditional approaches. We
evaluated this model using real projects provided by Samsung
and the PROMISE repository. We report on the lessons we
learned from our experience in developing our new defect
prediction models in this industry context.

We firstly provide a motivating example in Section II.
Section III describes how our prediction model is built. We
describe how the model is implemented and trained (Section
IV), and evaluated (Section V). Section VI serves to discuss
the lessons learned. In Section VII, we discuss related work
before summarizing the contributions of the paper and outlines
future work in Section VIII.

II. MOTIVATING EXAMPLE

The following example illustrates the limitations when using
existing approaches for defect prediction. Figure 1 shows two
simple code listings written in Java. Both contain a while loop
in which the integer at the top of a given stack is repeatedly
removed through the pop operation. Listing 1 has a defect: if
the given stack’s size is smaller than 10, underflow exception
can occur when the stack is empty and the pop operation is
executed. Listing 2 rectifies this issue by checking if the stack
is not empty just before invoking the pop operation.

1 i n t x = 0 ;
2 i f (! s t a c k . empty ())
3 {
4 w h i l e (x < 10)
5 {
6 i n t y ;
7 y = s t a c k . pop () ;
8 x ++;
9 }

10 }

Listing 1. A.java

1 i n t x = 0 ;
2 w h i l e (x < 10)
3 {
4 i n t y ;
5 i f (! s t a c k . empty ())
6 {
7 y = s t a c k . pop () ;
8 }
9 x ++;

10 }

Listing 2. B.java

Fig. 1. A motivating example

Using existing techniques for such defect prediction [3–5,
10–12]) suffers from the following limitations.

Similar software metrics: The two code listings are iden-
tical with respect to the number of code lines, conditions,
variables, loops, and branches. Thus, they would be indis-
tinguishable if software metrics (as widely used in existing
approaches [3]) are used as features. In many other cases, two
pieces of code may have the same metrics, but they behave
differently and thus have different likelihood of defectiveness.

Similar code tokens and frequencies: Recent approaches
use the Bag-of-Word (BoW) technique to process the actual
code content and represent a source code file as a collection
of code tokens (e.g. int, x, if, etc.) associated with frequencies
(e.g. 2 for int in Listing 1). The term-frequencies are then
used as the predictors for defect prediction. However, this is
not necessarily the best presentation for code. In fact, the code

tokens and their frequencies are also identical in both code
listings. Hence, relying only on the term-frequency features
would fail to recognize that Listing 1 has a defect while the
Listing 2 does not.

The deep learning Long Short-Term Memory (LSTM)
model [8] potentially offers a powerful alternative to software
metrics and BoW in representing software code. LSTM is cur-
rently the key technology behind many recent breakthroughs in
machine translation and speech recognition [13]. The syntax
and different levels of semantics in source code are usually
represented by tree-based structures such as Abstract Syntax
Trees (ASTs). Thus a tree-structured LSTM network [9] has
the potential to learn the following properties in source code.

Syntactic and semantic structure: The two code listings
are different in their structure and thus would behave dif-
ferently. The location of the if statement makes a significant
difference in causing or removing a defect. Syntactic structure
also requires pairs of code elements to appear together, but
these dependent code elements may scatter far apart (e.g., try
and catch may be separated by many lines of code). LSTM
has been proven to be highly effective in learning such long-
term dependencies. In addition, code elements are not always
required to follow a specific order, e.g. in code listing 1, lines 5
and 6 can be swapped without changing the code’s behaviour.
A tree-based LSTM can cater for this flexibility.

Semantic code tokens: Code elements have their own
semantics. For example, in Java “for” and “while” are seman-
tically similar, e.g. the while loop in the above code listings
can be replaced with a for loop without changing the code
behaviour. Existing approaches (e.g. [7, 14]) often overlook
those semantics of code tokens. By contrast, LSTM offers the
ability to automatically learn a vector representation of code
elements that reflect their semantic.

Motivated by the above observations, we have developed a
tree-based LSTM model which aims to generate useful defect-
predicting features. In the following sections, we will discuss
how this model was built, trained and tested, and the lessons
we learned from applying it into practice.

III. MODEL BUILDING

Most existing work in large-scale software defect prediction
focuses on determining whether a source file is likely to be
defective or not. This level of granularity has become the
standard in the literature of software defect prediction [1].
Once a likely defective file is located, more precise local
defect identification mechanisms, including testing and inspec-
tion, can be used to identify specific statement-level defects.
Determining if a source file is defective can be considered
as a function predict(f) which takes as input a file f and
returns either 1 for defective and 0 for clean. We approximate
this classification function predict(x) (or also referred to as
the model) by learning from a number of examples (i.e. files
known to be defective or clean) provided in a training set.
After training, the learned function is used to automatically
determine the defectiveness of new files in the same project

LSTM LSTM

LSTM

LSTM

LSTM

			0.6
െ0.2
			0.3

0.2
0.1
0.2

0.9
0.7
0.3

AST node
embedding

x

WhileStmt

<

െ0.3
െ0.6
			0.7

			0.4
െ0.2
			0.7

BlockStmt

…
…
…
…
…
…
…
…
…
…
…

0.2
0.9
0.1

IntegerLiteralExpr

LSTM

0.1
0.7
0.8

VariableDeclarator

LSTM

0.3
0.6
0.9

PrimitiveType

LSTM

0.7
0.6
0.5

y

Classifier

Defect outcome

Prediction

Fig. 2. An example of how our tree-based LSTM model is used for defect prediction

(within-project prediction) or in a different project (cross-
project prediction).

Numerous machine learning techniques have been widely
used to learn function predict(x). Since machine learning
algorithms need input that are mathematically and compu-
tationally convenient, file x is often represented as a n-
dimensional vector where each dimension represents a feature
(or predictor). The feature vector representation of file x
affects the accuracy of a defect prediction model.

Our prediction model uses a tree-structured network of
LSTM units (Tree-LSTM) [9] to automatically learn a feature
vector representation of source file x. The key steps of our
approach (see Figure 2) is as below.

1) Parse a source code file into an Abstract Syntax Tree
(see Section III-A for details).

2) Map AST nodes to continuous-valued vectors called
embeddings (Section III-B).

3) Input the AST embeddings to a tree-based network of
LSTMs to obtain a vector representation of the whole
source file. This vector is then used by a classifier to
predict defect outcomes (Section III-C).

A. Parsing source code

We parse each source code file into an Abstract Syn-
tax Tree (AST). This process ignores comments, blank
lines, punctuation and delimiters (e.g. braces, semicolons,
and parentheses). Each node of the AST represents a con-
struct occurring in the source code. For example, the root
of the AST represents a whole source file, and its chil-
dren are all the top elements of the file such as import
and class declarations. Each class declaration node (i.e.
ClassOrInterfaceDeclaration) has multiple children

nodes which represent the fields (FieldDeclaration) or
the methods (MethodDeclaration) of the class. A method
declaration node also has multiple child nodes, representing
name, arguments, return type, and body.

WhileStmt

x

<

IntegerLiteral
Expr

BlockStmt

…………
…………

PrimitiveType

Variable
Declarator

y

while (x < 10) {
int y;
……

}

Fig. 3. An example of an Abstract Syntax Tree (AST) for a Java program

We label each tree node with its AST type (e.g.
FieldDeclaration, MethodDeclaration,
BlockStmt, and WhileStmt) or its AST name (e.g.
variable name, class name, and method name) in the case
of SimpleName nodes (see Figure 3). Constant integers, real
numbers, exponential notation, hexadecimal numbers and
strings are represented as AST nodes of their type (rather
than the actual number or string) since they are specific to
a method or class. For example, integer 10 is represented as
an IntegerLiteralExpr node (Figure 3), while string
“Hello World” is represented as a StringLiteralExpr.

The unique label names collected from all AST tree nodes
in the entire corpus are used to form a vocabulary. Following
standard practice, we also replace less popular tokens (e.g.
occurring only once in the corpus) and tokens which exist in
test sets but do not exist in the training set with a special token
〈unk〉. A fixed-size vocabulary V is constructed based on

top N popular tokens, and rare tokens are assigned to 〈unk〉.
Doing this makes our corpus compact but still provides partial
semantic information.

B. Embedding AST nodes

Each AST node is input to an LSTM unit. Since the LSTM
unit only takes input in the form of vectors, we map the label
name of each AST node into a fixed-length continuous-valued
vector. We refer to this embedding process as ast2vec.

This process makes use of an embedding matrix M ∈
Rd×|V | where d is the size of an AST node embedding
vector and |V | is the size of vocabulary V . Each AST node
label has an index in the vocabulary (i.e. encoded as one-hot
vector). The embedding matrix acts as a look-up table: an AST
node label ith is mapped to column vector ith in matrix M.
For example in Figure 2, a WhileStmt node is embedded
in vector [− 0.3,−0.6, 0.7], while IntegerLiteralExpr
is mapped to vector [0.2, 0.1, 0.2]. The embedding process
offers two benefits. First, an embedding vector has lower
dimensions than a one-hot vector (i.e. d < |V |)). Second,
in the embedding space, AST nodes that frequently appear in
similar context are close to each other. This often leads to code
elements with similar semantic being neighbours. For example,
the embeddings of WhileStmt and ForStmt would be
close to each other in the embedding space. The embedding
matrix is randomly initialized, and then is adjusted as part of
the training process, which we will discussed in Section IV.

C. Defect prediction model

Our prediction model is represented as function predict()
which takes as input a source file and returns 1 if the file is
defective and 0 otherwise (see Algorithm 1). It first parses the
source file into an Abstract Syntax Tree (line 2 in Algorithm
1). The root of the AST is fed into a Tree-LSTM unit to obtain
a vector representation hroot (line 3). This vector is fed into
to a traditional classifier to compute the probability of the file
being defective. If this probability is not smaller than 0.5, the
function returns 1. Otherwise, it returns 0 (lines 4–6).

A Tree-LSTM unit (see Figure 4) is modeled as function
t-lstm(), which takes as input an AST node t and outputs
two vectors: h (representing the hidden output state) and c
(representing the context it remembers so far in the AST). This
is done by aggregating those outputs from the descendants, i.e.
calling t-lstm() recursively on the children nodes (lines 11–
26). This function first obtains the embedding wt of the input
AST node t (using ast2vec as discussed in Section III-B). It
then obtains all the children node C(t) of node t, and each
child node k ∈ C(t) is fed into an LSTM unit to obtain the
pair of hidden output state and context vectors (hk, ck) for
each child node. These are used to compute the pair of hidden
output state and context vectors (ht, ct) for the parent node.

How information embedded in wt and (hk, ck) (for all k ∈
C(t)) flows through a Tree-LSTM unit is controlled by three
important components: an input gate (represented as it), an
output gates (ot) and a number of forget gates (one f tk for
each child node k). These components depend on the input wt

Algorithm 1 Tree-based defect prediction. Model parameters
include (Wfor, Ufor, bfor), (Win, Uin, bin), (Wce, Uce, bce),
and (Wout, Uout, bout) shared by all Tree-LSTM units.

1: function PREDICT(File f)
2: root← parseF ile2AST (f)
3: (hroot, croot)← t-lstm (root)
4: p̂← classifier (hroot)
5: if p̂ ≥ 0.5 then
6: return 1
7: else
8: return 0
9: end if

10: end function

11: function T-LSTM(ASTnode t)
12: wt ← ast2vec(getNodeName(t))
13: C(t)← getChildrenNodes(t)
14: (hk, ck)← (

#�

0 ,
#�

0)
15: for all ASTNode k ∈ C(t) do
16: (hk, ck)← t-lstm(k)
17: f tk = sigmoid (Wforwt + Uforhk + bfor)
18: end for
19: h̃←

∑
k∈C(t)

hk

20: it ← sigmoid
(
Winwt + Uinh̃+ bin

)
21: c̃t ← tanh

(
Wcewt + Uceh̃+ bce

)
22: ct = ik ∗ c̃t +

∑
k∈C(t)

f tk ∗ ck

23: ot = sigmoid
(
Woutwt + Uouth̃+ bout

)
24: ht = ot ∗ tanh (ct)
25: return (ht, ct)
26: end function

and the output state hk of the children. These correlations are
encoded in groups of parameter matrices: (Wfor, Ufor, bfor)
for the forget gates, (Win, Uin, bin) for the input gate, and
(Wout, Uout, bout) for the output gates.

A Tree-LSTM unit has a number of forget gates f tk, one for
each child node k and is computed as a sigmoid function over
wt and hk (line 17). A forget gate f tk has a value between
0 and 1, which enables the Tree-LSTM unit to selectively
include information from each child. The output from children
nodes are combined to serve as an input the the parent LSTM
unit (line 19). How much of these new information is stored in
the memory cell is controlled by two mechanisms (lines 20–
22). First, the input gate ik, represented as a sigmoid function,
decides which values will be updated. Second, a vector of new
candidate values c̃t, which will be added to the memory cell,
is created using a tanh function.

The new memory is updated by multiplying the old memory
of each child by f tk, leaving out the things we decided to
forget earlier. We sum it over all the child node and then add
this with c̃t. Finally, the output is a filtered version of the
memory, which is controlled by the output gate ot (line 23).

……………………

Input Gate

Output Gate

Forget
Gates

ct

*

σ

∑

*

tanh

tanh

σ

σ

wt

ot

itfti

ci

hi

ht

cj

hj

σ

ftj

* *

…...

hj

cj

Memory

LSTM

LSTM LSTM

Fig. 4. The internal structure of a Tree-LSTM unit

We apply tanh function to the memory (to scale the values
to be between -1 and 1) and multiply it by the output of the
sigmoid gate so that only selected parts are output (line 24).

IV. MODEL IMPLEMENTATION AND TRAINING

A. Training Tree-LSTM
We train the Tree-LSTM unit in an unsupervised manner,

i.e. not using the ground-truth defect labels. We leverage the
strong predictiveness of AST, i.e. if we know the label name of
all the children, we can predict the label name of its parent.
Using a large number of AST branches, we train the Tree-
LSTM unit through making such a prediction. For example,
the parent of “<” and ”VariableDeclarator” is “WhileStmt”,
while the parent of “x” and “IntegerLiteralExpr” is “<” (see
Figure 5). Specifically, each AST node wt has a set of children
C(t), and each ck ∈ C(t) has an output state hk. We can
predict the label name of the parent node using all its children
hidden states through the softmax function.

LSTM

LSTM LSTM

LSTMLSTM LSTM LSTM

Mean Mean

Mean

WhileStmt

<

x IntegerLiteralExpr

<

VariableDeclarator

VariableDeclarator

PrimitiveType y

WhileStmt

Fig. 5. Training Tree-LSTM by predicting the label name of a parent node
from its children nodes

Let θ be the set of all parameters in the LSTM unit,
which includes the embedding matrix M and weight ma-

trices (Wfor, Ufor, bfor), (Win, Uin, bin), (Wce, Uce, bce), and
(Wout, Uout, bout). These parameters are initialized randomly
and then learned through a training process. Training involves
three main steps: (i) input an AST branch in the training data
to the LSTM units to obtain a prediction for the label name
of the parent node in that branch; (ii) compare the difference
δ between the predicted outcome and the actual outcome; (iii)
adjusting the values of the model parameters such that the
difference δ is minimized. This process is done iteratively for
all files in the training data.

To measure the quality of a specific set of values for the
model parameters, we define a loss function L(θ) which is
based on the difference δ between the predicted outcome
and the actual outcome. A setting of the model parameters
θ that produces a correct prediction (e.g. the label name of
a parent node is correctly predicted) would have a very low
loss L. Hence, learning is achieved through the optimization
process of finding the set of parameters θ that minimizes
the loss function. We use the popular cross-entropy loss
which measures the information-theoretical distance empirical
distribution of the true outcome and the softmax distribution
computed by the model.

Since every component in the model is differentiable, we
employ the widely-used stochastic gradient descent to per-
form optimization. The optimization process is done through
backpropagation: the model parameters θ are updated in the
opposite direction of the gradient of the loss function L(θ). A
learning rate η is used to control how fast or slow we will
move towards the optimal parameters. We used RMSprop,
an adaptive stochastic gradient method, and implemented
dropout [15] into our model, an effective mechanism to prevent
overfitting in neural networks.

We implemented the model in Theano [16] and Keras [17]
frameworks, running in Python. Theano supports automatic
differentiation of the loss function and a host of powerful
adaptive gradient descent methods. Keras is a wrapper making
model building much easier. We use the standard learning
rate of 0.02, and smoothing hyper-parameters: ρ = 0.99,
and ε = 1e − 7. The model parameters are updated in a
stochastic fashion, i.e. after every mini-batch of size 50. We
use |V | = 5, 000 most frequent tokens for the vocabulary. We
use dropout rate of 0.5 at the hidden output of LSTM layer.
These parameter settings are the standard ones used in the
literature. We experimented with different embedding sizes:
32, 64 and 128. We employed Noise-Contrastive Estimation
[18] to compute the softmax function since it has a fixed
time complexity regardless of the vocabulary size. We also
run multiple epoches against a validation set to choose the
best model. We use perplexity, a common intrinsic evaluation
metric based on the log-loss, as a criterion for choosing the
best model and early stopping.

B. Training defect prediction model

The above process enables us to automatically generate
features for all the source files in the training set. These files
with their features and labels (i.e. defective or clean) are then

used to train machine learning classifiers by learning from a
number of examples (i.e. files known to be defective or clean)
provided in a training set. We tried two alternative classifiers:
Logistic Regression and Random Forests. Logistic Regression
uses the logistic function (also called the sigmoid function)
to approximate the probability of a source file being defective
given its AST feature vector representation. Random Forests
(RFs) is a randomized ensemble method which combines the
estimates from many decision trees to make a prediction.

V. EXPERIMENTS

We describe a number of experiments conducted to evaluate
our defect prediction model using both industrial and bench-
mark examples, and feedback from Samsung engineers.

A. Experimental design and datasets

Static analysis tools have been routinely used by many
software companies as part of the software quality assurance
process. Most of them are designed to be used after the code
is fully completed and run in batch mode since running those
tools against an entire codebase often takes a long time. Using
a defect prediction model does not require a full completion
of the code, enabling early identification of defective modules
in a codebase, e.g. before other analyses are applied. Those
modules then receive priority attention when subsequently
static analysis, testing, and manual inspection are applied to
locate the defects. Defect prediction models are therefore able
to help prioritize effort and optimize inspection and testing
costs.

We thus design two experiment settings to evaluate our
approach. In the first experiment, we evaluate if our prediction
model correctly identifies the modules which contain defects
discovered by a static analysis tool. This experiment uses
the dataset containing open source projects contributed by
Samsung and the source files were labelled using reports
from a static analysis tool used at Samsung. Since static
analysis tools may generate false-positive alerts, we have also
conducted a second experiment using the PROMISE dataset
[19] where the files were labelled using information from bug
reports and code patches. We now describe these two datasets
in more details.

1) Open source projects contributed by Samsung: There
are many open source projects contributed by Samsung Elec-
tronics such as Tizen, an open source operating system. Tizen
runs on a wide range of Samsung devices including smart-
phones, tablets, in-vehicle infotainment devices, smart TVs,
smart cameras, smart watches, and smart home appliances.
We collected potential defects from those open source projects.
To identify defective files, we employed a static analysis tool1

used by Samsung that has specific support for target projects.
This tool scans the source code of those projects and generates
a report describing all the potential defects (i.e. warnings) that
it can discover.

There are different types and severity levels of warnings
reported by the tool. In this study, we focused on critical

1Name is not revealed due to non-disclosure agreement.

resource leakage warnings (e.g. a handle was created but lost
without releasing it). We used this information to label files
as defective or clean: a file is considered defective if the tool
reported at least one resource leakage warning associated
with that file. We built up a dataset of 8,118 files written
in C, 2,887 of which (35.6%) are labelled as defective and
5,231 (64.4%) labelled as clean.

2) PROMISE dataset: We also used a dataset for defect
prediction which is publicly available from the PROMISE data
repository [19]. To facilitate comparison, we selected the same
10 Java projects and release versions from this dataset as in [7].
These projects cover a diversity of application domains such as
XML parser, text editor, enterprise integration framework, and
text search engine library (see Table I). The provided dataset
only contained the project names, their release versions, and
the file names and their defective labels. It did not have the
source code for the files, which is needed for our study. Using
the provided file names and version numbers, we then retrieved
the relevant source files from the code repository of each
application.

TABLE I
DATASET STATISTICS

App #Versions #Files Mean files Mean LOC Mean defective % Defective

lucene 3 750 250 47091 145 57.18
synapse 3 635 211 30442 54 23.60
xerces 2 891 445 132934 70 15.72
camel 3 2379 793 81183 183 24.54
xalan 2 1438 719 256625 248 33.53
ivy 2 593 296 44288 28 9.00
ant 3 1383 461 123452 96 19.88
jedit 3 853 284 94696 81 28.85
poi 3 1053 351 87611 223 63.14
log4j 2 223 111 16979 35 32.07

When processing the CSV spreadsheets provided with the
PROMISE dataset, we have found that there were entries for
inner classes. Since inner classes are included in an AST
of their parent, we removed those entries from our dataset.
We also removed entries for source files written in Scalar
and entries that we could not retrieve the corresponding
source files. In total, 264 entries were removed from the CSV
spreadsheet. Table I provides some descriptive statistics.

B. Performance measures

Reporting the average of precision/recall across the two
classes (defective and clean) is likely to overestimate the true
performance, since our dataset is imbalanced (i.e. the number
of defective files are small). More importantly, predicting
defective files is of more of interest than predicting clean files.
Hence, our evaluation focuses on the defective class.

A confusion matrix is used to store the correct and incorrect
decisions made by a prediction model. The values stored in
the confusion matrix are used to compute the widely-used
Precision, Recall, and F-measure of the defective class. In
addition, we also use the Area Under the ROC Curve (AUC) to
evaluate the degree of discrimination achieved by the model.
The value of AUC is ranged from 0 to 1 and random prediction

has AUC of 0.5. The advantage of AUC is that it is insensitive
to decision threshold like precision and recall.

C. Results

1) Within-project prediction: This experiment2 used data
from the same project for both training and testing but training
and testing files are non-overlapping. For the Samsung dataset,
we could not trace back which project a source file belonged
to, and thus we treated all the source files in the dataset as
belonging to a single project. We employed cross-fold valida-
tion and divided the files in this dataset into ten folds, each of
which have the approximately same ratio between defective
files and clean files (also known as stratified sampling). Each
fold is used as the test set and the remaining folds are used
for training. As a result, we built ten different prediction
models and the performance indicators are averaged out of
the ten folds. We also tested with two different classifiers:
Random Forests and Logistic Regression. Figure 6 shows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F‐measure Precision Recall AUC

Random Forests

Logistic Regression

Fig. 6. Predictive performance of our approach for the Samsung dataset

the predictive performance of our approach for the Samsung
dataset. The predictive model which uses Random Forests
(RF) as the classifier produced an impressive result with all
four performance indicators (F-measure, Precision, Recall and
AUC) being well above 0.9. Using Logistic Regression (LR)
achieved very high recall, but at the same time it appeared to
produce many false positives, and thus its precision is much
lower than the precision produced by RF. Both classifiers
achieved an AUC well above the 0.5 threshold (0.98 for RF
and 0.60 for RF), suggesting that our approach is significantly
better than random prediction.

For the PROMISE dataset, since it contains different ver-
sions of the same applications, we followed the setting in
Wang et. al. [7] and used two consecutive versions of each
project for training and testing. Specifically, the source code
of an older version is used to training the model and the later
version is used for testing the model. In total, we conducted 16
sets of experiments exactly as in Wang et. al.. We also tested
with Random Forests and Logistic Regression as the classifier,

2All experiments were run on Intel(R) Xeon(R) CPU E5-2670 0 @ 2.6GHz.
There machine has two CPUs, each has 8 physical cores or 16 threads, with
a RAM of 128GB.

and observed a different result (compared to the result for
the Samsung dataset): using LR produced better predictive
performance than using RF. This can be explained by the fact
that the PROMISE dataset has small number of data points,
which fits better with LR.

Figure 7 shows the results from using LR as the classifier.
Our prediction model produced an average AUC of 0.6, well
above the random prediction threshold. More importantly,
it achieved a very good recall of 0.86 (averaging across
16 cases), which is 23% improvement over Wang et. al.’s
approach. However, our approach has lower precision, leading
to a deduction in F-measure (17%) compared against Wang et.
al.’s approach. High recall is preferable in predicting defects
since the cost of missing defects is much higher than having
false positives.

2) Cross-project prediction: Predicting defects in new
projects is often difficult due to lack of training data. One
common technique to address this problem is training a model
using data from a (source) project, and applying it to the new
(target) project. We conducted this experiment by selecting one
version from a project in our PROMISE dataset as the source
project (e.g. ant 1.6) and one version from another project as
the target project (e.g. camel 1.4). Figure 8 summarizes the
results in cross-project prediction for the twenty-two pairs of
source and target Java projects.

Our approach again achieved very high recall, with an
average of 0.8 across 22 cases in cross-project prediction.
There are 15 cases where the recall was above 0.8. The average
F-measure is however 0.5, due to the low precision as seen
in within-project prediction. However, the average AUC is
still well above the 0.5 threshold, demonstrating the overall
effectiveness of our approach in predicting defects.

D. Feedback from Samsung engineers

The good performance of our defect prediction tool on the
Samsung projects was well received by its engineers. The
recommended defect-containing files generally corresponded
well to the defective parts of the codebase. The software
engineers found having a tool to locate likely defective files
in a large codebase very helpful in narrowing down detailed
code analysis, prioritising warnings to view, prioritising and
focusing whitebox inspections, and complimenting their exist-
ing toolset.

A major concern expressed was the “black box” nature
of the recommendation. As our tool uses deep learning it
produces a set of likely defective files but no explanation about
what the defects are nor precise locations of defects for larger
files. Some source code files may have many hundreds to thou-
sands lines of code. Hence, without a sufficient explanation,
the software engineers found it difficult to understand why
the prediction model suggests that a particular source file is
defective or clean. Thus, they hesitated to trust the model’s
predictions, especially when the predictions were different
from their expectation, e.g. flagging files that they expected to
be “clean”. Understanding the reasons why the model predicts
a file is defective would also help the software engineers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ant‐1.6 ant‐1.7 camel‐1.4 camel‐1.6 ivy‐2.0 jedit‐4.0 jedit‐4.1 log4j‐1.1 lucene‐2.2 lucene‐2.4 poi‐2.5 poi‐3.0 synapse‐1.1 synapse‐1.2 xalan‐2.5 xerces‐1.3

ant‐1.5 ant‐1.6 camel‐1.2 camel‐1.4 ivy‐1.4 jedit‐3.2 jedit‐4.0 log4j‐1.0 lucene‐2.0 lucene‐2.2 poi‐1.5 poi‐2.5 synapse‐1.0 synapse‐1.1 xalan‐2.4 xerces‐1.2

F‐measure

Precision

Recall

AUC

Fig. 7. Predictive performance of our approach for the PROMISE dataset (within-project prediction). The X-axis has pairs of training (lower version) and
testing data (the newer version) in each project. For example, in the first pair our model was trained using version 1.5 of Apache Ant project and tested using
its version 1.6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ca
m
el
‐1
.4

ca
m
el
‐1
.4

an
t‐
1.
6

an
t‐
1.
6

jE
di
t‐
4.
1

jE
di
t‐
4.
1

lo
g4
j‐1

.1

lo
g4
j‐1

.1

xa
la
n‐
2.
5

xa
la
n‐
2.
5

lu
ce
ne

‐2
.2

lu
ce
ne

‐2
.2

xe
rc
es
‐1
.3

xe
rc
es
‐1
.3

iv
y‐
2.
0

iv
y‐
2.
0

sy
na
ps
e‐
1.
1

sy
na
ps
e‐
1.
1

sy
na
ps
e‐
1.
2

sy
na
ps
e‐
1.
2

po
i‐3

.0

po
i‐3

.0

ant‐1.6 jEdit‐4.1 camel‐
1.4

poi‐3.0 camel‐
1.4

log4j‐1.1 jEdit‐4.1 lucene‐
2.2

lucene‐
2.2

xerces‐
1.3

xalan‐2.5 log4j‐1.1 xalan‐2.5 ivy‐2.0 xerces‐
1.3

synapse‐
1.2

ivy‐1.4 poi‐2.5 ivy‐2.0 poi‐3.0 synapse‐
1.2

ant‐1.6

F‐measure

Precision

Recall

AUC

Fig. 8. Predictive performance of our approach for the PROMISE dataset (cross-project prediction). The X-axis has pairs of training (source project) and
testing data (target project). For example, in the first pair our model was trained using version 1.6 of Apache Ant project and tested using version 1.4 of the
Camel project.

generate fixes. The overall feedback was that merely flagging
a file as defective is often not sufficiently useful. In Section
VI, we will discuss this and the other lessons learned in more
details.

E. Threats to validity
We mitigated construct validity concerns by evaluating our

approach not just only on Samsung datasets but also on
a publicly available dataset (the PROMISE dataset). Both
datasets contains real projects. The PROMISE dataset did
not unfortunately contain the source files. However, we have
carefully used the information (e.g. application details, version
numbers and date) provided with the dataset to retrieve the
relevant source files from the code repository of those appli-
cations. We tried to minimize threats to conclusion validity by
using standard performance measures for defect prediction. We

however acknowledge that a number of statistical tests can be
applied to verify the statistical significance of our conclusions,
which we plan to do in our future work.

With regard to internal validity, the Samsung dataset we
used contains defective labels which were derived from warn-
ings provided by a static analysis tool used internally at
Samsung. We acknowledge that those warnings may contain
false positives, and thus future work would involve investigat-
ing those warnings and confirming their validity. In addition,
we did not have the source code to replicate Wang et. al.’s
experiments [7], and thus had to rely on the results they
reported to make a comparison with our approach. In terms
of external validity, we have considered a large number
of applications which differ significantly in programming
language, size, complexity, domain, popularity and revision

history. We however acknowledge that our data set may not
be representative of all kinds of software applications, and
further investigation is need to confirm our findings for other
types of applications.

VI. LESSONS LEARNED

The development of defect prediction models in the context
with our industry partner has provided us with valuable
experiences and insight. In this section, we will discuss the
key lessons that we have learned and also propose potential
solutions that are useful for future research in this area.

A. Lesson #1: Explainability

Although the predictive performance of our model is high
(especially for the Samsung dataset), we found that the
software engineers were still reluctant to adopt our defect
prediction model into their day-to-day work. The major reason
was the limited explainability in our model. One potential
solution is predicting at a more fine-grained level. For ex-
ample, predicting if a line of code or several lines of code are
defective. Software engineers may then find it easier to inspect
a line of code (compared to a source file) and form their
own understanding of the model’s predictions. Our current
model can be extended to operate at this fine-grained level
of granularity. For example, a line of code can be parsed into
an AST, which can be input into function t-lstm(ASTnode t) in
Algorithm 1 to derive features for defect prediction. In a simi-
lar manner, our model can also be extended to support Just-In-
Time (JIT) quality assurance by performing predictions at the
change level (e.g. commits). The JIT defect prediction model
can be invoked as soon as the software engineers commit their
code, which helps them identify the defects early. To do so,
we need to train the model with a new dataset where code
lines are labelled as defective or clean. Accurate prediction
at the code line level is however challenging since defects
usually arise from interactions between multiple sometimes
highly distributed code statements.

Another solution is keeping the prediction at the file level
and designing new architectures that self-explain decision
making at each step. For example, a popular strategy in neural
networks is using attention [20] where model components
compete to contribute to an outcome. This mechanism can
be implemented into our tree-based LSTM network so that
“attention” can be distributed from the parent node to the
children nodes, and to their own children and so on. This
mechanism enables our model to locate the parts (e.g. code
lines) in a source file that are likely the cause of a defect.
This helps understand and diagnose exactly what the model is
considering and to what degree for specific defects.

Alternatively, we might employ an interpretable model to
explain the behaviours of the complex neural network using
an interpretable model. LIME [21] can be used to derive an
explanation about a data instance locally. For example, given
the input AST in Figure 3, we can locally change it by (e.g.)
removing a node, and observe the behaviour of the network. If
behaviour changes, we can infer a node is a relevant feature.

B. Lesson #2: Training time

Once our model has been trained, it can quickly generate
the features (in the order of milliseconds). If all the source
files in a codebase have been parsed into ASTs, the trained
model can be fairly fast in making predictions and is able to
scale to large codebases. The bottleneck is training the Tree-
LSTM model (see Section IV-A) which may take a long time,
from a few hours to a few days, depending on the number
of ASTs in the training set, the size of those ASTs, and
a number of hyper-parameters such as the vocabulary size
and the embedding vector size. Local learners such as those
proposed in [22] may help reduce training time, but they
still rely on vector representations of source code which are
obtained from other means (including deep learning methods
like our model). Although model training is done offline, it is
important to beware of the long training time in using deep
learning methods, especially if fine tuning a model (e.g. hyper-
parameter optimization) requires many repeated training runs.

C. Lesson #3: Vocabulary

We have followed traditional NLP approaches and fixed the
size of the vocabulary (see section III-A). A fixed-size vocab-
ulary V is constructed based on the top number of popular
tokens. Code tokens outside the vocabulary are assigned a
special 〈unk〉 token. This technique is effective in NLP since
new words outside a defined vocabulary is rarely found. This
technique however does not seem to work well with source
code. Although the keywords and operators are finite with
respect to each programming language, new identifier names
(e.g. variables) are constantly introduced by the developers.
This leads to a large number of unique tokens. A small vocab-
ulary size has adverse impact on the predictive performance of
the model. Increasing the size of the vocabulary will increase
the model training time and computational resources since the
models need to tune the parameters for each word.

There are a few solutions which can be adopted here. First,
we can develop a character-level model, which is increasingly
popular in NLP to handle text with rare words (such as proper
names and scientific names). Since the number of characters
are small, the vocabulary size will be small. Second, rather
than replacing the tokens outside the vocabulary with 〈unk〉,
we can replace it with some other meaningful in-vocabulary
tokens (e.g. the type of the identifier). The third solution is to
rename variables using certain rules, e.g. var1-context2, where
var1 can be “first temporary variable of type int”, context2
can be “within a for-loop”. Doing this will convert all variable
names into a fixed set of name-templates. The fourth solution
is describing the variables in terms of the descriptors of the
contexts in which they occur, then performing clustering to
assign the variable to the nearest cluster ID. A combination
of these techniques are also applicable.

D. Lesson #4: Tree size

A challenge is the high degree of variation in the number
of children per parent in ASTs. While most of the nodes has
around 2–5 children, some may have up to 200 children nodes.

This results in an excessive computing resources since we need
to pre-define the tensor size (which depends on the maximum
number of children) to effectively exploit the capacity of GPU.
We therefore convert the ASTs to binary trees to create a better
balance tree. Doing this however results in an increase in the
number of tree nodes (300 nodes per tree on average) and our
model does not scale well with the number of tree nodes. Our
future work will investigate how to overcome this issue.

E. Lesson #5: End-to-end model

Our current model has two separate steps: learning the
features representing source code files then using these to build
a classifier (e.g. Random Forests) for defect prediction. An
alternative approach is building an end-to-end model where the
two steps can be done at the same time. This can be achieved
by substituting the final classifier (see Figure 2) with a simple
feedforward neural network. In that setting, the whole system
is trained in an end-to-end manner, i.e. defective outcomes
are used to train the LSTM models. We have experimented
this approach, however its predictive performance was worse
than the current model and it took even more time for train-
ing. We have found that end-to-end training usually requires
significantly large amounts of labelled data and this may not
be suitable for defect prediction where the labelled data is
relatively limited.

F. Lesson #6: Heterogeneity of codebases

We also learned from this project that codebases are some-
times heterogenous, e.g. some parts of the codebase were
written in C, while others were written in C++. As long as
we can parse a source code file into an AST, it can be input
into our model, regardless of which programming language it
was written in. This has been demonstrated in our evaluation
on two different datasets containing applications in C and Java.

VII. RELATED WORK

A. Defect prediction

Defect prediction is a very active area in software ana-
lytics. Since defect prediction is a broad area, we highlight
some of the major work here, and refer the readers to other
comprehensive reviews (e.g. [2, 23]) for more details. Code
metrics were commonly used as features for building defect
prediction models (e.g. [3]). Various other metrics have also
been employed such as change-related metrics [10], developer-
related metrics [4], organization metrics [12], and change
process metrics [5].

Recently, a number of approaches (e.g. [7, 14]) have lever-
aged a deep learning model called Deep Belief Network
(DBN) [24] to automatically learn features for defect pre-
diction and have demonstrated an improvement in predictive
performance. In fact, according to the evaluation reported by
Wang et. al. [7] their DBN approach outperformed both the
software metrics and Bag-of-Word approaches. DBN however
does not naturally capture the sequential order and long-
term dependencies in source code. The work in [25] also
builds a vector representation of code from ASTs for bug

detection. Unlike our tree-based LSTM model, the classical
neural network that they used does not however maintain the
structure of the ASTs.

Recent approaches have attempted to predict defects at more
fine-grained levels such as method level (e.g. [26]) or line level
(e.g. [27]). Our approach can be extend to operate at those at
those finer level of granularity since it is technically able to
learn features at the code token level and from any arbitrary
ASTs. To do this study, we would need to develop new datasets
which contain methods and codelines with defect labels, which
we leave for future work.

B. Deep learning in code modeling
Deep learning has been emerged as a effective alternative

for code modelling (see [28] for an extensive review). Recent
work (e.g. [29]) have used recurrent neural networks (RNN) to
model source code and use this modeling to perform various
software engineering tasks such as detecting code clones (e.g.
[30]). Classical LSTM models (not Tree-LSTM) have also
been used for code modelling [31] and vulnerability prediction
[32]. Convolutional Neural Networks (CNN) [33], another
well-known deep learning architecture, has also been adapted
for bug localization [34]. Deep learning-based machine trans-
lation models (e.g. RNN Encoder–Decoder) have been used
for querying API usage sequences [35] and fixing common
errors in C programs [36]. Previous work (e.g. [37–40]) have
transformed software code into ASTs and program graphs to
learn representations. Unlike our approach, their models do
not use a tree-structured LSTM which directly matches with
the AST representation of source code.

VIII. CONCLUSIONS AND FUTURE WORK

We have reported our experience in developing and applying
new deep learning tree-based model which takes as input
an Abstract Syntax Tree (AST) representing a source file, a
common representation for source code, and predict if the file
is defective or clean. Our prediction system is built upon Long
Short-Term Memory (LSTM) architecture to capture the long-
term dependencies which often exist between code elements.
Our use of the tree-structured LSTM network (Tree-LSTM)
naturally matches the AST representation to capture the syntax
and different levels of semantics in source code.

An evaluation on two different datasets provided by Sam-
sung and the PROMISE repository and feedback from Sam-
sung engineers provided us with a number of lessons to
improve the explainability, scalability and usefulness of our
approach in future work. We also plan to apply this approach
to other types of applications (e.g. Web) and programming
languages (e.g. PHP or C++). We want to extend our ap-
proach to predict defects at method and code change levels.
In addition, we plan to explore how our approach can be
extended to predicting specific types of defects such as security
vulnerability and safety-critical hazards in code.

ACKNOWLEDGEMENT

The authors gratefully acknowledge support from Samsung
through its Global Research Outreach Program.

REFERENCES

[1] Y. Kamei and E. Shihab, “Defect prediction: Accomplishments and
future challenges,” in Leaders of Tomorrow Symposium: Future of
Software Engineering, FOSE@SANER 2016, Osaka, Japan, March 14,
2016, 2016, pp. 33–45.

[2] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical
Softw. Engg., vol. 17, no. 4-5, pp. 531–577, Aug. 2012. [Online].
Available: http://dx.doi.org/10.1007/s10664-011-9173-9

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in software
engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304,
Nov. 2012. [Online]. Available: http://dx.doi.org/10.1109/TSE.2011.103

[4] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’08/FSE-16. New York, NY, USA: ACM, 2008, pp. 2–12.
[Online]. Available: http://doi.acm.org/10.1145/1453101.1453105

[5] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 78–88. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070510

[6] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ser. ESEC/FSE
’09. New York, NY, USA: ACM, 2009, pp. 91–100.

[7] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York,
NY, USA: ACM, 2016, pp. 297–308. [Online]. Available: http:
//doi.acm.org/10.1145/2884781.2884804

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic rep-
resentations from tree-structured long short-term memory networks,”
in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics, 2015, pp. 1556–1566.

[10] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE ’08. New York,
NY, USA: ACM, 2008, pp. 181–190. [Online]. Available: http:
//doi.acm.org/10.1145/1368088.1368114

[11] N. Nagappan and T. Ball, “Use of relative code churn measures
to predict system defect density,” in Proceedings of the 27th
International Conference on Software Engineering, ser. ICSE ’05.
New York, NY, USA: ACM, 2005, pp. 284–292. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062514

[12] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality: An empirical case study,” in Proceedings
of the 30th International Conference on Software Engineering, ser.
ICSE ’08. New York, NY, USA: ACM, 2008, pp. 521–530. [Online].
Available: http://doi.acm.org/10.1145/1368088.1368160

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[14] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning
for just-in-time defect prediction,” in Proceedings of the 2015 IEEE
International Conference on Software Quality, Reliability and Security,
ser. QRS ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 17–26. [Online]. Available: http://dx.doi.org/10.1109/QRS.2015.14

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[16] Theano, “Theano,” http://deeplearning.net/software/theano/, Accessed
on 01 May 2017.

[17] Keras, “Keras: Deep Learning library for Theano and TensorFlow,”
https://keras.io/, Accessed on 01 May 2017.

[18] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image

statistics,” Journal of Machine Learning Research, vol. 13, no. Feb,
pp. 307–361, 2012.

[19] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters,
and B. Turhan, “The PROMISE Repository of empirical software
engineering data,” Jun. 2012. [Online]. Available: http://promisedata.
googlecode.com

[20] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” ICLR, 2015.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust
you?”: Explaining the predictions of any classifier,” arXiv preprint
arXiv:1602.04938, 2016.

[22] S. Majumder, N. Balaji, K. Brey, W. Fu, and T. Menzies, “500+ times
faster than deep learning: A case study exploring faster methods for
text mining stackoverflow,” in Proceedings of the 15th International
Conference on Mining Software Repositories, ser. MSR ’18. New
York, NY, USA: ACM, 2018, pp. 554–563. [Online]. Available:
http://doi.acm.org/10.1145/3196398.3196424

[23] C. Catal and B. Diri, “A systematic review of software fault prediction
studies,” Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, May 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.eswa.2008.10.027

[24] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504 – 507, 2006.

[25] M. Pradel and K. Sen, “Deep learning to find bugs,” TU Darmstadt,
Technical Report TUD-CS-2017-0295, November 2017.

[26] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug
prediction,” in Proceedings of the ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM ’12.
New York, NY, USA: ACM, 2012, pp. 171–180. [Online]. Available:
http://doi.acm.org/10.1145/2372251.2372285

[27] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and
P. Devanbu, “On the “naturalness” of buggy code,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 428–439. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884848

[28] M. Allamanis, E. T. Barr, P. T. Devanbu, and C. A. Sutton, “A
survey of machine learning for big code and naturalness,” CoRR, vol.
abs/1709.06182, 2017. [Online]. Available: http://arxiv.org/abs/1709.
06182

[29] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of the 12th
Working Conference on Mining Software Repositories, ser. MSR ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 334–345.

[30] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016, pp. 87–
98. [Online]. Available: http://doi.acm.org/10.1145/2970276.2970326

[31] H. K. Dam, T. Tran, and T. Pham, “A deep language model for
software code,” in Workshop on Naturalness of Software (NL+SE), co-
located with the 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2016.

[32] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Au-
tomatic feature learning for predicting vulnerable software components,”
IEEE Transactions on Software Engineering).

[33] Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D.
Jackel, and D. Henderson, “Advances in neural information processing
systems 2,” D. S. Touretzky, Ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1990, ch. Handwritten Digit Recognition
with a Back-propagation Network, pp. 396–404. [Online]. Available:
http://dl.acm.org/citation.cfm?id=109230.109279

[34] X. Huo, M. Li, and Z.-H. Zhou, “Learning unified features from
natural and programming languages for locating buggy source code,”
in Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016, pp. 1606–
1612. [Online]. Available: http://dl.acm.org/citation.cfm?id=3060832.
3060845

[35] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 631–642. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950334

[36] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
C language errors by deep learning,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San

Francisco, California, USA. AAAI Press, 2017, pp. 1345–1351.
[Online]. Available: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/
view/14603

[37] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building
program vector representations for deep learning,” in Proceedings of
the 8th International Conference on Knowledge Science, Engineering
and Management - Volume 9403, ser. KSEM 2015. Berlin,
Heidelberg: Springer-Verlag, 2015, pp. 547–553. [Online]. Available:
https://doi.org/10.1007/978-3-319-25159-2 49

[38] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors:
Understanding programs through embedded abstracted symbolic
traces,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 163–174. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236085

[39] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. ACM Program. Lang.,
vol. 3, no. POPL, pp. 40:1–40:29, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3290353

[40] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” CoRR, vol. abs/1711.00740, 2017.
[Online]. Available: http://arxiv.org/abs/1711.00740

