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Abstract. The majority of requirements formalisation techniques oper-
ate on textual requirements as input. To establish and verify the reliabil-
ity and coverage of such techniques, a large set of textual requirements
with diverse structures and formats is required. However, such techniques
are typically evaluated on only a few manually curated requirements that
do not provide enough coverage of the targeted structures. Motivated
by this problem, we introduce a Component-oriented synthetic textual
requirements generator (CORG) that can generate large numbers of syn-
thesised diverse-structure textual requirements, along with key compo-
nents breakdowns. CORG utilises a controlled random-selection (CRS)
strategy throughout the backtracking-based generation. We evaluate the
coverage, diversity, performance and correctness of CORG. The eval-
uation results show that CORG can generate comprehensive diverse-
structure combinations in reasonable time without being affected by the
size of the produced requirements.

Keywords: Requirements engineering · Text generation

1 Introduction

Several requirements formalisation and extraction techniques [9, 26, 27] rely on
textual requirements. The reliability of such techniques is critical, as they rep-
resent the foundation for the remaining requirements engineering and analysis
tasks (e.g. 3C quality issues detection [26]). However, the evaluation of such
techniques is typically limited to a curated set of few requirements [9, 27]. The
main drawbacks of this evaluation approach are:-
– Structure-biased requirements: In this case, few of the targeted structures

are covered and essential ones required for an exhaustive evaluation may be
missed [9]
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supported by ARC Laureate Fellowship FL190100035.
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– Small number of requirements: The number of requirements used in evalu-
ation is, in many cases, relatively small. This is because real-world require-
ments are typically confidential and not published making them hard to
obtain, and manually developed ones require a considerable amount of time
and effort to develop.

An example of such limitations is present in the evaluation of the requirements
formalisation approach described in [9]. This approach accepts textual require-
ments incorporating events, conditions and actions. However, the evaluation was
performed on requirements with event-action and condition-action formats as in-
dicated in Fig.1: part I, in addition to some manually adjusted requirements from
the (If A Then B) format to the (B If A) format as in Fig.1: part II. However, re-
quirements holding the popular event-condition-action behavioural requirements
format [24] are completely missed (i.e., not used in any order) as shown in Fig.1:
part III.

Requirements
I

II

III

Condition

Action
Trigger

Factual rule

Curated 
Formats

Manually 
Synthesized

Missed 
Formats

Req1:   If the  regulator mode equals INIT,  the output regulator status shall be set to Init .
Req2:   If the regulator mode equals NORMAL, the output regulator status shall be set to Status_On .
Req3: When Reset equals True, the regulator mode shall be set to INIT.
Req4: The regulator mode shall be initialized to INIT.

Req5: The Monitor_Init_Timeout shall be set to True, if the Monitor Status equals False.
Req6: The output regulator status shall be set to Init, If the  regulator mode equals INIT 

Req6: When Reset equals True, If the  regulator mode equals INIT , the Monitor Status shall be set to True.
Req7: When Reset equals True, the Monitor Status shall be set to True, If the  regulator mode equals INIT.

.

.

..

..

.

..

Fig. 1: Curated, synthesised and missed requirements samples by Gosh et al., [9]

In this paper, we tackle the problem of the utilisation of incomplete test data
sets for the evaluation of formalisation techniques, by proposing a component-
oriented synthetic textual requirements generator "CORG". It can be used to
automatically generate comprehensive combinations of structurally-diverse syn-
thesised textual requirements. In line with achieving such goal, all the generated
requirements are expected to be equally useful for this problem without a need
for a human analyst to assess their semantics. This is because formalisation
techniques are insensitive to the semantics of the input requirements (i.e., their
underlying analysis depends mainly on the requirements’ grammatical syntax to
be transformed into a corresponding formal notation [9, 26]). In addition, what
enables a reliable evaluation of such techniques, is the co-existence of diverse
structures within a combinatorially complete set of requirements.

We also propose the output layout of the synthesised requirements and the
corresponding formal grammar. CORG adheres to this grammar during the gen-
eration process to produce requirements in the target output layout. The gram-
mar and layout are based on a Requirement Capturing Model (RCM) [28]. RCM
is a reference model that incorporates the key properties (i.e., the key compo-
nents and sub-components) that may exist in a system requirement sentence. It
extends popular requirements expression formats (e.g., EARS [17], etc).
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We evaluated the capabilities of CORG in generating: (1) a complete set of
the possible combinations of requirement’s properties, (2) diverse structures, (3)
correct requirements, and (4) realistic requirements. In addition to evaluating
the generation time.

2 Background

RCM [28] is a semi-formal representation model that aggregates the behavioural
NL-requirements components defined in literature and provides their respective
sub-components and arguments breakdown. It supports a wide range of require-
ments because the model adapts to any permutation of its components.

RCM supports four requirements component types (i.e, Fig.1 shows samples):
– Action: expresses the tasks performed by the system .
– Trigger: represents events that implicitly fire actions within the system cycle.
– Condition: stands for specific constraints that should be satisfied and explic-

itly checked by the system for an action to occur.
– Conditional scope: represents the governing conditions required for either

checking the preconditions (triggers and conditions) called "preconditional
scope" or performing the action(s) "called action scope".

Sub-component types associated with the above components:
– valid-time: the period of time for a component to be valid (e.g., the inhibitor

shall transition to [True] for at most 1 seconds).
– pre-elapsed-time: the consumed time –from a reference point– before a com-

ponent starts (e.g., within 2 seconds the IDC transitions to [True]).
– in-between-time: the time between two consecutive repetitions of an event

(e.g., the signal turns to [true] every 2 seconds).
– hidden-constraint: a constraint held for only one argument (i.e., system en-

tity) within the component (e.g., the entry whose index exceeds 2 shall be
incremented, the underlined text is held for the bold text).

Table 1 shows the possible sub-components of each component type.

Table 1: Sub-components association with each component type
hhhhhhhhhhhhhhSub-Components

Components PreConditional-Scope Action-Scope Condition Trigger Action

Hidden Constraint 3 3 3 3 3

Valid-time 3 3 3 3 3

Pre-elapsed-time 3 3

In-between-time 3 3

3 CORG Formal Grammar

We designed the output layout (targeting RCM) for the generated requirements,
components, sub-components, and arguments breakdowns as follows:-
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Listing 1.1: Generated Requirements Output Layout
req(reqText, CompList).
CompList::= [comp(SubCompList, compText),...]
SubCompList::= [subComp(Type, BreakDowns, subCompText), ...]
Type::= trig|cond|precondScope|actScope|act|hidden|v-time|pre-time|in-time
BreakDowns::= TimeInfo|RelClause|SubClause|Clause
TimeInfo::= [prePosition, quanitfication, value, unit, Nil]
RelClause::= [relNoun, relPronoun, subj, verb, [complement1, complement2,...] ]
SubClause::= [Nil, head, subj, verb, [complement1,complement2,...]]
Clause::= [Nil, Nil, subj, verb, [complement1,complement2,...]]

"name()" indicates composite entity, "[]" is list representation, and "Nil"
means an empty item in the list. "req()" is a composite entity representing a
requirement sentence, "reqText" is the text of the generated sentence, and "Com-
pList" is a list of component entities each represented in "comp()". "compText"
holds component text, and "SubCompList" is a list of sub-components entities
each represented in "subComp()". "Type" is the (sub)component type, "sub-
CompText" is the sub-Component text, and "BreakDowns" is a TimeInfo, Rel-
Clause, SubClause, or Clause according to the sub-component’s type (all of them
are lists of 5 items storing the sub-component arguments, where each item has a
specific role based on its position in the list). "TimeInfo" represents breakdowns
of time-related RCM subcomponents (i.e., valid-time, pre-elapsed-time and in-
between-time). "RelClause", "SubClause", and "Clause" represent the break-
downs of the RCM hidden constraint sub-component, condition/trigger/condional-
Scope, and action component respectively.

Then, we developed a formal grammar to govern the generation process in
line with the output layout. We only support present, future, imperative tenses
and active/passive voices with correct syntax according to the English grammar.
We define the formal grammar of the supported structures as follows:-

Listing 1.2: CORG Formal Grammar
<Sentence> ::= <Subclause>*.<Clause>.<Subclause>*
<Subclause> ::= Subordinator.<clause>
<Clause> ::= [<Subject>].[<RelClause>].<Predicate>.<TimeInfo>*
<RelClause> ::= HiddenConstHead.[Property].<Predicate>
<Subject> ::= <NounPh>
<NounPh> ::= Noun.<Modifier>*
<Modifier> ::= Preposition.<NounPh>
<Predicate> ::= [Modality].<MainVerb>.<Complement>+
<MainVerb> ::= Verb |(be).Verb.(ed)
<Complement> ::= [Preposition].(Noun|SystemValue)
Modality ::= "shall"|"will"|...
Subordinator ::= ConditionHead|TriggerHead|ScopeHead
ConditionHead ::= "if"|"provided that"|...
TriggerHead ::= "when"|"once"|"whenever"|...
ScopeHead ::= "after"|"before"|"until"|"while"|...
HiddenConstHead ::= "whose"|"that"
<TimeInfo> ::= TimePreposition. [QuantifyingRel]. Value. Unit
TimePreposition ::= Valid-Time-Prep|Pre-elapsed-Time-Prep|In-Time-Prep
Valid-Time-Prep ::= "for"|"up to"|...
Pre-elapsed-Time-Prep ::= "within"|"in"|"after"|...
In-Between-Time-Prep ::= "every"|...
QuantifyingRel ::= "less than"|"less than or equal"|"at most"|...
Value ::= Number
Unit ::= "seconds"|"minuets"|"milliseconds"|...
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where, "*" indicates the presence of zero or more items, "+ means one or
more, "." means the composition of different items, "..." means other words in
the input dictionary, "< >" means non-terminal, and "[ ]" means optional item.
Nouns, Verbs, Properties, SystemValues and Prepositions are not further de-
composed (terminals) and are fetched from the input dictionary. The proposed
grammar allows temporal operators through the element subordinator. A re-
quirement sentence consists of at least one clause. A clause consists of at least
a main predicate expressing the core meaning of the sentence, and optionally
a subordinator -conditional or temporal conditional head– can be attached to
extend the meaning as a subordinating clause.

4 CORG

CORG takes as input: (1) a dictionary of the domain lexical words and verb
frames, and (2) size of requirements to be generated. It then utilises backtracking
(a well-known approach previously adopted in textual generation [20]) through
the built-in backward chaining inference engine of the Prolog programming lan-
guage (a descriptive logic programming language consisting of a set of definite
clauses (facts and rules) correlated to artificial intelligence and computational
linguistics [22]).

Backtracking is typically a depth first search (DFS) mechanism, in which, an
arbitrary decision is made at each choice-point. When a dead-end is reached, the
inference engine backtracks to the last decision-point that can have a different
path, makes a different choice, then proceeds from there. It can iterate over all
the possible arrangements of a search space and provide all combinations and
permutations [11]. However, it exploits all the possible permutations of the com-
bination at hand before transitioning to the next combination. CORG performs
a controlled random selection CRS (i.e., based on Prolog equi-distributed ran-
doms [16]) at specific choice-points. This mitigates the exploitation pattern of
DFS, and ensures combinations comprehensiveness and diversity maintenance
even at small generation sizes while preventing structurally broken combina-
tion(s) (e.g., a requirement without an action is in-correct).

For each element in the (sub-)components set, CRS assigns a 0 or 1 ran-
dom number to decide its inclusion/exclusion in the current combination. The
combination is then rearranged to allow permutations and maintain generation
diversity. The underlying equi-distribution allows CRS to produce a different
combination at each call (i.e., ensures the coverage of the possible combinations
whenever the generation size exceeds the combinations count). The generation
then goes through Java APIs, SimpleNLG [8], and Stanford-NLP [15] as in Fig.2.

Text generation typically consists of five main tasks: content determination,
textual structuring, sentence aggregation, lexicalisation, realization [7]. These
tasks are applied differently according to the nature of the addressed problem.
The underlying text generation approach adopted by CORG has been widely
used in addressing a similar problem (i.e. sentence generation for quality test-
ing and reliability evaluation) where several attempts have been carried out to
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Java

Prolog

SimplinNLP
API

(1) Content 
Determination

Generated 
Requirements

(2) Textual 
Structuring

(3) Sentence 
Aggregation

(4) 
Lexicalisiation

(5) 
Realisation

(6) 
Checking

noun(1,'the regulator mode’).
noun(2,'the Monitor_Timeout').
noun(3,'the Monitor Status’).

.

.
vFrame(1,'set',['to’,’v']).
vFrame(2,'equal', ['to’,’v']).
vFrame(3,'turn', ['to',’n’]).

.

.
value('True’).
value('False’).
value('NORMAL’).

.

.
property(‘Status’).

Input DictionaryID

StanfordNLP
API

CORG Formal 
Grammar

Requirement
Meta-model

Fig. 2: CORG Framework

generate textual sentences to test programming languages compilers [14,23,29],
and regular expressions [25,30]. We also add a checking task to ensure fault free
generation. The first four tasks are implemented with Prolog and the remaining
two are implemented with Java as in Fig.2. CORG follows the proposed for-
mal grammar and generates requirements in the proposed format. The six tasks
are described in the following subsections and supported with a step by step
generation example in Fig.3.

0 1 0 1 0

Trigger Condition actionPre-conditional 
Scope

Action-conditional 
Scope

Main     Hidden     Valid Time    in-between Main    Hidden     Valid Time      In-between     Pre-elapsed      
1 0              1 0 1.        0 0                  0                1

[move [the window] up]          [within][at least][2]]milliseconds]    [When] [The button] [be [On]] [for][][3][milliseconds]

Subject 
plain noun

Verb phrase
Be “value”

Verb phrase
Move “NP” up

plain noun

[move [NP] up]                 [Prep][QR][value][Unit] [Head] [Subj] [be [Value]] [Prep][QR][Value][Unit]

(1.1) Comp 
selection

(1.2) Sub- Comp 
selection

(3) Sentence 
Aggregation

(4) Lexicalisation 

move the window up within at least 2 milliseconds when the button be On for 3 milliseconds

Main pre-elapsed-time Main valid-time

the window shall be moved up within at least 2 milliseconds when the button is  On for 3 milliseconds

(2) Textual 
Structuring

Generated 
components

(5) Realization 

(6) Requirement checking

(S (NP (DT the) (NN window) ) (VP (MD shall) (VP (VB be) (VP (VBN moved) (PRT (RP up) ) (PP (IN within) (NP (QP (IN at)
(JJS least) (CD 2) ) (NNS milliseconds) ) ) (SBAR (WHADVP (WRB when) ) (S (NP (DT the) (NN button) ) (VP (VBZ is) (PP
(IN On) (PP (IN for) (NP (CD 3) (NNS milliseconds) ) ) ) ) ) ) ) ) ) (. .) )

(1) Content Determination

[  
comp( [subComp( [trig] ,[],[when],[the button],[be],[ON] ,when the button is ON ), subComp( [v-time],[for],[],[3],[milliseconds],[], 

for 3 milliseconds) ],  when the button is  ON for 3 milliseconds ),
comp( [subComp( [Act] ,[],[],[the window],[move],[] , the window shall be moved up), subComp( [pre_time],[within],[at 
least],[2],[milliseconds],[] , within at least 2 milliseconds)], the window shall be moved up within at least 2 milliseconds).  

]

the window shall be moved up within at least 2 milliseconds when the button is  ON for 3 milliseconds(7.1) Req Text
(7.2) Req Breakdowns

(7) Generated Requirement

TimePhrase TimePhrase

action Trigger

The requirement sentence is correct  since the parsing tree labeled as ”S” indicating a sentence. 

Fig. 3: Step by step CORG generation example.
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4.1 Content determination

This task determines which components and sub-components will be included
in the generated requirement R. It consists of two levels, the selection(s) made
at each level lead(s) to different choices in the next level(s). At the first level,
CRS is applied on the components set: Preconditional scope, condition, trigger,
action scope except the mandatory action component as in Fig.3.1.1. In the
second level, CRS is applied on the sub-comoponents set: different for each
chosen component in the previous level as in Fig.3.1.2 (i.e., Table.1 for sub-
components association). Eventually, the count and types of components and
sub-components contributing in the generated requirement are identified. This
task embodies the first four lines of the formal grammar and the CompList, and
SubCompList in the output layout of the generated requirements.

Components and sub-components available for selection can be controlled
before the generation process through CORG settings. This allows for adaptation
into different domains and usage scenarios (e.g., CIRCE [1] uses only event-
condition-action ECA components).

4.2 Textual structuring

Listing 1.3: Random Reordering Algo-
rithm
OutComps = ϕ
While(InComps 6= ϕ){

CrrComp = InComps.removeFirst()
Len = OutComp.length()
RandomIdx = getRandom(0, Len+1)
OutComp.insertAt(RandomIdx, CrrComp)

}

This task determines the order
of the components within the sen-
tence and the sub-components within
the component. Alternative arrange-
ment/permutation can be achieved
through the random reordering tech-
nique. The approach takes one ele-
ment (of a given combination) at a
time and inserts it at a random free
position in the new version as indicated in Algo.1.3. Similar to CRS, the ran-
dom reordering is capable of providing a different permutation at each call (i.e.,
which ensures the comprehensiveness of the permutations for the same combina-
tion in large enough sizes and maintains diversity in small sizes). Fig.3.2 shows
the reordered components after applying random reordering.

4.3 Sentence Aggregation

This task selects the grammatical structures to apply on an individual compo-
nent. By the end of this task, the outlined formal grammar clauses in Task1
shall be assigned a complete random grammatical structure as in Fig.3.3. A
clause may include up to four different types of parts (i.e., Subject, RelClause,
Predicate and TimeInfo as in Grammar 1.2). Each part has more than one valid
structure. Table 2 lists the alternative structures of each part conforming to the
proposed formal grammar, where NounSize and VFrameSize indicate the count
of distinct nouns and verb-frames in the dictionary respectively. In addition, it
highlights how these structures are used to select a new random structure.
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Table 2: Alternative structure for clause’s breakdowns Controlled in CORG

Type Grammatical Rules Pseudo Type Grammatical Rules Pseudo

Subject

if nominalCount = 1 then
ID ← getRandom(1,NounSize)
Noun ← getNominal(ID)
return Noun

else
Prep ← getCompositionPrep()
Noun ← Prep + getNomi-
nal(nominalCount -1)
return Noun

end if

Predicate

Dictionary selection: the grammatical frames of
each verb stored in the dictionary

ID ← getRandom(1,VFrameSize)
VFrame ← selectFrame(ID)
return VFrame

TimeInfo

if Type = ValidTime then
Prep ← getRandVTimePrep()

else if Type = PreElapsed then
Prep ← getRandPreTimePrep()

else if Type = InTime then
Prep ← getRandInTimePrep()

end if
QR ← getRandQantRel()
Val ← getRandValue()
Unit ← getRandUnit()
TI ← aggregat(Prep,QR,Val,Unit)
return TI

RelClause

if Type = OnProperty then
RelP ← getPropRelPronoun()
Prop ← getRandProperty()

else if Type = OnNoun then
RelP ← getNounRelPronoun()
Property ← ϕ

end if
VFrame ← getVerbFrame()
RVF ← realizeFrame(VFrame)
RC ← aggregat(RelP,Prop,RVF)
return RC

4.4 Lexicalisation

In this task, the chosen grammatical rules in the previous task are populated
with randomly selected lexical words conforming to the grammatical roles as in
Fig.3.4. These words are fetched from the dictionary. Table 3 lists the structures
(each has a grammatical role) in the dictionary with descriptions. Each structure
instance has an "Id" to allow random selection from the same structure type
(i.e, a random number is generated to fetch the lexical word whose id equals
the generated number and whose structure (grammatical role) is regulated by
the syntactic rules as indicated in Table.2). By the end of this task, the sub-
components’ breakdowns in the output layout shall be complete.

Table 3: Dictionary Metamodel

Structure Description Example
noun(ID, Noun) Nominal Noun noun(1,’the car’)

vFrame(ID,Verb,ArgList)

verb-frame representing the predicate structure. -
*ArrgList: expresses the verb associated: arguments
notations and prepositions in order within the frame
*Arg-notations: (’v’ → sys-value) and (’n’ → noun)

vFrame(1, ’set’, [’to’,’v’])

property(ID, Property) Property for nominal nouns used in relative clauses property(1, ’door’)
sysValue(ID, Value) domain values for nominal nouns or properties sysValue(1,’[Locked]’)

4.5 Realisation

The generated components for each requirement require tense adjustment as
per the English grammar. This task considers adjusting the tense of each com-
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ponent (each expressed by a clause). In this task, all components’ types are
assigned to the present tense except actions (future tense), as shown in Algo.1.4.

Listing 1.4: Tense Adjustment
If(Comp.Type = "act")

Voice = get random voice
If(Voice = "Active"}

adjustToImperative(Comp)
Else

adjustToPassiveFuture(Comp)
Else

adjustToActivePresent(Comp)

For diversity, we put the action in the
imperative form using active and pas-
sive voices randomly. Fig.3.5 shows
an example of the components after
tense adjustment. We adjust the tense
using SimpleNLG. First, we prepare
the subject, verb and complement of
the current component. Then we feed
them to the SimpleNLG realiser along
side other grammatical flags (e.g., tense(in both levels), voice, person). Finally,
we readjust the affected parts in the requirement and their breakdowns.

4.6 Requirements Checking

In the generated requirement a "," is appended to all the components (except
the last one). Depending on the generated components, random re-ordering may
cause grammatical errors because of the incorrect punctuation. We use Stan-
fordNLP to detect ungrammatical sentences by analysing the output of the parse
tree. The parse tree represents the syntactic structure of the given string accord-
ing to a specific context-free-grammar. A requirement sentence whose obtained
parsing tree is labeled with an "s" (i.e., sentence) is correct [21]. Fig. 4 shows two
parsing tree (a) and (b) of the same requirement (with different punctuation),
tree in (b) is grammatically correct while the other one in (a) is incorrect. (a)
can be corrected by removing incorrect comma(s) as in (b). In general it is not
recommended to depend on the output of the parse tree alone in such checking.
However, in our case it is effective because the realisation task ensures the cor-
rectness of each component. According to Fig.3.6, the generated requirement in
the tracing example is correct.

(a)
“when the button is pressed, move x up, if the door is open”

(FRAG 
(S (SBAR (WHADVP (WRB when)) 

(S  (NP (DT the) (NN button)) (VP (VBZ is) (ADJP (JJ pressed))))) (, ,)
(VP (VB move) 

(NP (NN x)) (PRT (RP up)) (, ,) 
(SBAR (IN if) 

(S (NP (DT the) (NN door)) (VP (VBZ is) (ADJP   (JJ open)))))))))

(b)
“when the button is pressed, move x up if the door is open”

(S
(SBAR (WHADVP  (WRB  when)) 

(S (NP  (DT  the)  (NN  button)) (VP  (VBZ  is) (VP  (VBN  pressed) ) ) ) ) (, ,)
(VP  (VB  move) 

(NP  (NNS  x)) (PRT  (RP  up)) 
(SBAR  (IN  if)

(S  (NP  (DT  the)  (NN  door))  (VP  (VBZ  is) (ADJP  (JJ  open) ) ) ) ) ) ) ) ) 

Fig. 4: Parsing trees of (the same requirement sentence with different punctuation)

5 Evaluation

In this section, we evaluate CORG 3 using assessment criteria (coverage and time
performance metrics) that have proven effective in evaluating text generation in

3CORG Source Code: https://github.com/ABC-7/CORG/tree/main/CORG

https://github.com/ABC-7/CORG/tree/main/CORG
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several approaches [14,25,30]. We conducted five experiments to evaluate CORG
on such metrics in addition to assessing diversity, correctness, and realisticness:
– Coverage: Does CORG provide comprehensive combinations of the compo-

nents and sub-components according to RCM?
– Time Performance: How does the requirements size affect CORG’s genera-

tion time?
– Diversity: Is CORG capable of providing all the possible arrangements of

each combination?
– Correctness: Does CORG correctly generate requirements as expected?
– Realisticness: Can CORG generate semantically sound requirements
The dictionary4 used in the generation contains 16 nominal nouns, 7 verb

frames, 4 values and one property (i.e., obtained from requirements used in [9]).

5.1 Generation Coverage

In this experiment, we generated 500 unique requirements 4 since the possible
combinations of components and sub-components are 448 (i.e., calculated using
nCr). The basis of our evaluation is the correct combinations of the possible
power set of components and sub-components that can constitute one require-
ment. We evaluate the coverage on two levels.

First level tests the coverage of the possible correct components combina-
tions. Fig.5.(a) shows a Venn-diagram highlighting in dark the correct combi-
nations of components among all the possible combinations (i.e., a requirement
without action is incorrect). Fig. 5.(b) shows the percentage of each components
combination within the generated requirements. It can be seen that, the gener-
ated requirements cover all the correct combinations and do not incorporate any
incorrect combinations (e.g., a requirement with no action).

[A,C,D,E]
6%

[A,B,C]
6%

[A,B,D,E]
6%

[A,B,C,D,E]
7%

[A,B,C,D]
7%

[A,C,E]
6%

[A,E]
7%[A,C]

6%
[A,D,E]

6%

[A,C,D]
7%

[A,B]
6%

[A,D]
6%

[A,B,E]
6%

[A]
6%

[A,D,E]
5%

[A,B,C,E]
6%

[A,B,C,D,E]

A:Action, 
B:Pre-Conditional Scope,   
C:Trigger,
D: Condition, 
E: Action-Scope

(a) (b)

Fig. 5: (a) Venn-diagram for components combination (correct combinations high-
lighted in dark gray). (b) Components combinations percentages in generated require-
ments

4Dictionary and Generated-requirements:https://github.com/ABC-7/CORG/tree/
main/Experiment

https://github.com/ABC-7/CORG/tree/main/Experiment
https://github.com/ABC-7/CORG/tree/main/Experiment
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In the second level, we evaluate the coverage of the sub-components of each
individual component. Fig. 6 shows the ability of CORG to cover the generation
of the possible sub-components combinations (i.e., where, the action has 24 = 16
possible combinations of its associated sub-components, condition and trigger
have 23 = 8, and the other components have 22 = 4 combinations). Each column
shows the percentages corresponding to each combination of the sub-components
for the intended component within the entire requirements. It can be seen that,
no combination is missed.
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Fig. 6: The possible sub-components combinations coverage

5.2 Time Performance
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Fig. 7: CORG avg. Generation Time

We evaluated CORG generation time
(on Prolog) for unique and redundant
requirements on ten different data-set
sizes. We measured the average time
of five samples for each data-set size
in both (unique and redundant data-
sets). Fig. 7 shows that CORG gener-
ates up-to 10000 unique requirements
in around seven seconds and around
one second for the redundant require-
ments. Unique data-set generation requires more time since more time is required
to eliminate and replace redundant generation attempts with unique ones. The
unique generation time depends on the dictionary size (larger dictionary sizes
guarantee less generation time especially for larger data-set sizes).
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5.3 Diversity Evaluation

The textual structuring step in section 4.2 is responsible for maintaining struc-
ture diversity within the generated requirements (i.e., by getting different per-
mutation each time for the given combination). To assess diversity, we set an
experiment to generate all requirements holding one combination, then assess
diversity (i.e., permutations) within the generated requirement. The presumed
combination is a requirement with condition, trigger and action components (i.e,
any generated requirement would have the three components). This combina-
tion has six permutations: {(Cond,Act,Trig), (Cond,Trig,Act), (Trig,Act,Cond),
(Trig,Cond,Act), (Act,Trig,Cond), (Act,Cond,Trig)}. Finally, we informed CORG
to generate just 10 requirements with this setting. Fig. 8 shows that, the six ar-
rangements are generated in the first seven requirements (i.e., the remaining re-
quirements have repeated arrangements). It is worth noting that, this displayed
output is before the tense adjustment step.

Fig. 8: 10 generated requirements for the combination (condition, trigger, action) high-
lighting the corresponding complete six permutations

5.4 Correctness Evaluation

We feed the 500 requirements generated in the coverage experiment to an au-
tomated NLP-based requirements extraction approach [28]. Then, we automat-
ically compared the generated breakdowns (i.e, components, sub-components
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and, arguments) to the extracted ones5 through string matching. The experi-
ment shows that all requirements are generated correctly as expected. The used
extraction approach depends mainly on StanfordNLP typed dependency which
has a percentage of error [28]. To provide the extraction with fully correct inter-
pretations, the sub-components text of each generated sentence are addressed
apart by StanfordNLP and their corresponding typed dependencies are aggre-
gated. Finally, the aggregated typed dependencies are used in the extraction.

5.5 Realisticness Evaluation

We evaluated the ability of CORG to generate realistic requirements (similar
to human-written ones). To achieve this, we fed the tool with the dictionary
of a group of manually-specified requirements for a target system. Then, we
used CORG to check if these requirements can be generated or not - reverse
engineering utilising the inference engine of Prolog to check if a given output
could be produced from the given input.

We conducted the experiment on a data-set of 19 requirements collected from
the literature - used in [9]. We fed CORG with (a) the requirements dataset and
(b) the system dictionary. CORG successfully constructed the breakdown of
all input requirements6. This experiment shows that a subset of the generated
requirements is both syntactically and semantically correct.

5.6 Strengths and Limitations

The key strengths of CORG are: (1) providing combinatorially complete cov-
erage for components and sub-components, (2) allowing the customisation of
components and sub-components contributing in the generation process, (3) en-
suring structure-diversity in small and large data-set sizes, (4) associating the
generated requirements with their breakdowns and (5) large number of require-
ments may be generated from a small dictionary with very few details (i.e., just
lexical words and verb frames). It is also worth noting that CORG can be eas-
ily enhanced to ensure the generation of semantically reasonable requirements
by adding association rules to the input dictionary to only allow certain lexical
words and verb frames to be selected together.

The main limitation of CORG is that the generated requirements are not all
semantically reasonable because the concrete system relations are not considered
in the dictionary. However, this does not affect the effectiveness of the generated
requirements in enabling a reliable evaluation of the formalisation approaches
because such approaches are only affected by the syntax of the input.

5Extraction-Output:https://github.com/ABC-7/CORG/blob/main/
Extractionlog.xml

6Input-requirements, Used-dictionary, and Resulting-breakdowns for realisticness
experiment: https://github.com/ABC-7/CORG/tree/main/ValidationExperiement

https://github.com/ABC-7/CORG/blob/main/Extractionlog.xml
https://github.com/ABC-7/CORG/blob/main/Extractionlog.xml
https://github.com/ABC-7/CORG/tree/main/ValidationExperiement
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6 Related Work

We cover the related work from three perspectives:
(a) sentence generation from lexical words: data driven textual gen-

eration is a widely used text generation approach (HALogen [13], Nitrogen [12]
and FERGUS [2]. These approaches adopt a two-stage architecture. In the first
stage, a forest of the possible expressions is constructed. In the second stage, the
expressions are selected using a probabilistic model. In contrast, CORG applies
CRS instead of the forest construction to save generation time. GENERATE [10]
randomly generates sentences using a small set of English phrases, syntactic rules
and transformation rules to form valid sentences. As input, it takes a dictionary
containing both the nouns and verbs (semantically coded to assure that invalid
sentences such as "The building smoked a cigar" will not be produced). The
dictionary consists of twenty verbs and twenty nouns. For flexibility, CORG
supports dictionaries with or without semantics.

(b) Requirements generation: most approaches generate textual require-
ments from software engineering models [19]. In [18], NL requirements are gen-
erated from UML class diagrams. This approach uses a rule set in conjunction
with a linguistic ontology to express the components of the diagram. Alterna-
tively, the approach presented in [4] relied on system domain-specific grammar
to provide description and information regarding specific requirements technical
terms. In [5] the Semantics of Business Vocabulary and Business Rules (SBVR)
was used as an intermediate representation for transforming UML into con-
strained natural language. Similarly, CORG uses a defined grammar for the
generated requirements controlled by a set of rules. However, the content of the
generated requirement(s) is syntactically correct but not limited by a specific
system since no relations are enforced in the dictionary. Other approaches gen-
erate creative requirements (i.e., more useful and novel requirements) for the
sustainability of software systems. Bhowmik et al. [3] propose a framework to
obtain creative requirements by making unfamiliar connections between familiar
possibilities of requirements. In [6], a novel framework generates creative require-
ments utilising NLP and ML techniques for both novel and existing software.
The framework reuses requirements from similar software in the application do-
main and leverages the concept of requirement boilerplate to generate candidate
creative requirements. Such approaches include a manual checking process to dis-
card useless outcome. Similarly, CORG eliminates useless requirements –syntax
oriented– through an automatic checking process.

(c) Text generation for evaluation: several attempts [14, 23, 29] have
been carried out to generate sentences to test the parsing of programming lan-
guages compilers. In addition, textual strings are generated in [25,30] to evaluate
regular expressions. The main feature of these techniques is that the generated
text must obey to the formal grammar of the compiler/regular expression. Sim-
ilarly, requirements generated by CORG follow a formal grammar for describing
systems behavior. We share with such approaches the goals and metrics of the
generated text (i.e., combinations coverage for robust evaluation and generation
performance).
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7 Conclusion

In this paper, we introduced CORG; a synthetic requirements generator that
can produce all the possible combinations and diverse structures with respect to
the RCM set of key requirements properties. First, we defined a formal grammar
for the generated requirements. Then, we employed the backtracking technique
with a controlled random-selection to ensure combinatorial comprehensiveness
and maintain diversity in small data-sets. Evaluation results show that CORG is
able to generate comprehensive combinations with diverse structures regardless
of the size of the generated requirements. In the future, we aim to investigate
CORG capabilities in: (1) generating requirements in other languages, (2) fil-
tering semantically unreasonable requirements utilising both human vetting and
dictionary rules (which can be useful for generating creative requirements).
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