

THE RISE AND EVOLUTION OF AGILE SOFTWARE
DEVELOPMENT

Authors: Rashina Hoda, Norsaremah Salleh, John Grundy

ABSTRACT. Agile Software Development has dominated the second half of the past
50 years of Software Engineering. Retrospectives, one of the most common
agile practices, enables reflection on past performance, discussion on
current progress, and charting forth directions for future improvement. The
burgeoning popularity of Agile as the software development model of choice
and a significant research sub-domain of software engineering demands a
retrospective of its own. In this article, we provide a historical overview of
Agile’s main focus areas and a holistic synthesis of its trends, their evolution
over the past two decades, current status, and forecast from these the likely
future of agile software development.

Rise of Agile

Originally computer software was written in an ad-hoc manner, often by those without any formal
training but with great domain knowledge and aptitude, most commonly using large-scale non-
networked machines, lacking a common set of principles and practices, and was really more akin
to a cottage industry than an engineering discipline. Subsequently - due to all the expected
problems of such an approach - software engineering was developed as a discipline to provide
engineering rigor to the profession. In the 70s, 80s and early 90s, the growth of software systems,
range of domains of applications, number of developers, advent of the world wide web, and
diverse range of challenging software engineering problems resulted in a set of principles,
methods, practices and tools to assist the engineering of such systems.

In this move to complex processes, project management, tools, process and project
measurement, documentation and other supporting practices, the human side of engineering
software by and for people was seen by many to have been, or was certainly becoming, lost in
mainstream software development. Emerging in the late 1990s in response to the then prevalent
complex methods, Agile methods offered disciplined yet light-weight processes while placing the
human effort and experience at the core of software development through its central focus on
people and interactions.2 Agile methods retain the rigor of engineering processes and best
practices while better supporting both stakeholders and software engineers to build, deploy and
maintain complex software.

Agile has now become a major software engineering discipline both in practice and research.
Formally introduced through a set of four core values and twelve principles laid out in the Agile
Manifesto,1 agile is now the mainstream software development method of choice worldwide.2

John Grundy
In IEEE Software - 50th Anniversary Issue (c) IEEE 2018

State of Agile

Agile in Practice

The latest State of Agile survey,2 the largest and longest running survey of its kind, reports 97% of
respondents’ organizations practicing agile anywhere within their organization in 2018 compared
to 84% in the first survey in 2007.3 The latest report also showed 52% having all or more than half
their teams practicing agile.

Scrum increased its prominence as the most popular agile method from 40% reported in the first
survey in 2007 to 56% on its own and 70% when combined with other methods in 2018. At the
same time, eXtreme Programming (XP) lost ground from being the second most popular method
(23%) to being used in combination with Scrum at 6%. Meanwhile, Kanban on its own (5%) and in
combination with Scrum, Scrumban (8%), replaced DSDM (8%). In another new development,
71% of organizations report planning or investing DevOps initiatives now.

Reported concerns with adoption centred around lack of up-front planning, documentation,
predictability and loss of management control in the first survey while organizational culture,
general organization resistance to change, and inadequate management support were the top
challenges reported in adopting and scaling agile in the 2018 survey.

One of the most interesting findings is that an overwhelming 84% of organizations are “still
maturing” in their agile practice, highlighting continued opportunities for agile research on the
challenges of agile adoption and practice.

Agile Research

The phenomenal growth of agile practice is mirrored by agile research becoming a significant sub-
discipline of software engineering in the last two decades and continues today. A search for
keywords “agile software development” for a period up to 2001 produces just over 13,000 results.
The same search leads to over 260,000 results in Google Scholar today (as of April 2018).

Agile research has featured prominently in premier software engineering journals including
IEEE Transactions on Software Engineering, IEEE Software, Empirical Software Engineering,
Journal of Systems and Software, Information and Software Technology, and many more. In
addition to being published in flagship software engineering conferences such as ICSE and FSE,
and numerous reputed conferences, the rise and sustained growth of agile research has been
chronicled by 19 years of the international conference on agile software development (XP) and 15
years of the North American Agile conference (Agile), two of the largest dedicated annual agile
conferences, and numerous regional agile conferences and events around the world.

We conducted a research retrospective5 in the form of tertiary study4 of 28 systematic literature
reviews and mapping studies, capturing two decades of agile research and identified ten key agile
research areas: agile adoption, methods, practices, human and social aspects, global software
engineering (GSE), usability, Capability Maturity Model (CMMi), organizational agility,
embedded systems, and software product line engineering, summarized in Figure 1.

Agile practices covered topics such as test-driven development, metrics, effort estimation, and
requirements, was the most significant research area with seven systematic reviews. Agile and
usability included the second highest number of reviews, five, and focused on topics such as
integrating user experience with agile. Given the role of HCI in maintaining a focus on engineering
for people and its synergies with agile software development, this is not surprising. This was

followed by Agile and Global Software Engineering (GSE) with four reviews in this area.

Agile education is an active and vibrant research area, not included in our study as we focus on
industrial research. Another significant agile research area is pair programming, one of the most
popular XP practices, which deserves a secondary review to collate and present the numerous
research studies under this banner.

Figure 1. Systematic Literature Reviews (SLRs) on Agile Topics 5

Sidebar: Trends in Agile Software Development

Agile Evolution
While there is little consensus among industrial reports and sources on the emergence of particular
trends in agile software development over time, the first relevant publications in each of these
areas is well documented in some of the largest publication archives and digital libraries (e.g. IEEE
and ACM) which we have used to present the emergence of trends in agile software development
timeline (Figure 2)1–4. Indicative papers charting this timeline can be found at
https://sites.google.com/view/agiletimeline.

Figure 2. The Emergence of Trends in Agile Software Development
Based on first relevant publications in IEEE and ACM digital libraries

The early days of agile saw exploration of fundamental agile concepts such as agile methods7,

agile adoption, practices, and human and social aspects, combined into the trend establishing
fundamentals (dark green elements in the timeline, Figure 2). For example, the single largest
review (with 333 papers) was on the role of communication, a human and social aspect
fundamental to agile software development. With the latest state of agile survey2 reporting 84%
organizations to be “still maturing” in agile, many of these fundamental issues continue to be
relevant in practice. Similarly, the agile research community continues to call for establishing
firmer theoretical foundations of agile research, keeping this trend very much alive.

Integrating agile software development with some of the more well-established software
engineering concepts and sub-disciplines also emerged as a trend in the early and mid-2000s. This
trend, integrating with software engineering (magenta elements in timeline, Figure 2), saw
synergies between explored between agile and; usability, requirements engineering, software
security, global software engineering, software architecture, and safety-critical systems. Other
new topics in this trend emerged over time, such as integrating agile and capability maturity
models in the late 2000s and agile and game design in early 2010s. Most of these topics have
continued to be popular and some, in particular, security and safety-critical systems, have
witnessed a strong surge in renewed interest with recent technological advancements such as
blockchain and cryptocurrencies.

Small, co-located teams, with an on-site or easily available customer, an emphasis on
programming and early testing, and frequent feedback on iterative delivery of working software
marked the original agile “sweet spot”.6 The mid 2000s saw agile step outside its comfort zone,
scaling beyond the confines of small development teams into large-scale agile, applying hybrids of
agile software development at the intra-team level and traditional planning approaches at the inter-

team level. Once again, in the mid-2010s, agile ventured beyond development to acknowledge
operations alongside development through DevOps. Continuous delivery and continuous feedback
from users to developers would seem a natural fit. However, many technical, socio-technical and
organisational challenges present themselves. When and how should customer feedback be
captured, actioned, and changes rolled out? What about software deployed across different
organisations and user groups with different requirements? And when software infrastructure
changes significantly, how is continuously deployed software effectively tested? What is the
impact of DevOps transformations on agile practices?

Another significant trend involved extending agile beyond software, its original domain, and
into related disciplines such as knowledge management and information systems in early 2000s.
Given its central focus on human and social aspects, agile has brought the complementary
disciplines of software engineering and information systems closer like never before, SE gaining
from the theoretical robustness of IS research and IS gaining from the practical relevance of SE
studies, on agile topics.

Agile also spread into closely related areas such embedded systems starting in mid-2000s and
product line engineering starting mid-2010s. Traditionally these domains have had their own
processes, practices, measurements and team cultures. Embedded systems have traditionally been
dominated by engineers using waterfall-style processes heavy on planning, documentation,
measurement, and model-driven tool support. Applying agile software development philosophies,
practices and cultures to these domains is challenging. And yet, agile has advanced into these areas
rapidly as the automotive industries become more and more software-intensive, for example, with
the advent of autonomous vehicle technologies.

Finally, in the late 2010s, we see an interest in exploring the tensions and synergies between
agile and microservices. Emerging Microservice-based architectures take software by composition
to a new level, impacting software design and deployment and raising questions such as how does
a team balance its agile practices with emerging micro-service architectures that require some level
of design-up-front?

Agile in the Future
With current advancements in technologies such as internet-of-things (IoT), a wide range of
devices are being integrated into systems, vast amounts of big data is becoming available for
analysis, various augmented and virtual reality systems are being developed, and “intelligent
solutions” are increasingly expected. At the same time, these emerging technologies have renewed
interest and opened new possibilities in exploring the full potential of not-so-new paradigms such
as artificial intelligence and end-user development8 going forward in the 2020s.

We predict a strong role of agile software development in partnering with and enabling these
emerging technologies in the foreseeable future, expecting a number of questions to be explored.

● How will agile practices enable AI-based software engineering? There has been a large
increase in the last 3 years of publications on new AI-based software tools. How can AI
be used to augment agile software development? 	

● Can agile improve data analytics and data sciences practices in the way it has software
engineering? Is there an Agile approach to Data Science leveraging similar practices to
those of Agile software engineering?	

● To fulfill the demand of IoT, to what extent can agile methods revolutionize the IoT
industry? How do hardware, embedded, creative, visual, source, touch and other
interface designers work effectively with or indeed within agile software development
teams? IoT solutions may be composed from hardware and software components - how
to we produce more agile hardware solutions?	

● Security continues to be a major concern for developers and users. While agile
practices and continuous deployment approaches theoretically allow for quick fixes of
emerging security issues, extensive security testing before deployment is increasing
being required. Similarly, zero-day security threats can’t be fully designed or tested for,
but an agile fix may not be acceptable in many circumstances either. How do agile
methods ensure security requirements are continuously met?	

● How can agile processes support the development of safety-critical systems in
increasingly software-intensive autonomous vehicles, software-defined networking and
robotics development and integration? 	

● End-user development of complex software, whether by coding, configuration,
composition or a mixture, is likely to continue to increase. Can agile practices support
the development of software by non-technical experts who nonetheless want to quickly
and effectively improve and deploy parts of the software systems they use? Where does
an agile software development team end and end-user developers of their own (parts of
a) software system begin?	

● How do we successfully leverage agile across multiple emergent technology domains
and practices - e.g. what does “agile, secure DevOps for data-intensive intelligent
systems” mean for researchers and practitioners?	

Conclusion
Since its inception in the late 1990s, agile software development has come to dominate the latter
half of the past 50 years of software engineering. Starting with establishing fundamental concepts
such as agile adoption, methods, practices, and human and social aspects, it moved on to
integrating with software engineering topics and sub-disciplines such as usability, requirements
engineering, global software engineering, software architecture, CMMI, game design; with a
renewed interest in security and safety-critical systems of late, and looking to move into exploring
synergies with artificial intelligence and end-user development going forward. Research has been
directed at understanding how agile is made to work in practice within and alongside these pre-
established software engineering paradigms. Barriers, areas of conflict, synergies, strategies and
workarounds were researched and presented. Moving further out of its original comfort zone of
small, co-located teams, agile spread beyond development into DevOps implementations and
large-scale agile on the enterprise level.

After more than two decades of practice, organisations consider themselves “still maturing” in
successfully deploying, improving, and contextualizing their agile practices to their teams,
customers, and specific project conditions, and researchers continue to study and assist
practitioners comprehend and address these issues. Another, fundamental issue, that of managing
change within a process that actively promotes embracing change, demands further inquiry.

However, unsure as we may feel about our collective maturity in agile software development,
software engineers are indeed looked upon as the experts in agile practice by those in disciplines
beyond software, such as embedded systems and product lines. Agile practitioners can assist in
agile transformations outside of software development, e.g. HR, sales and marketing, project

management, research and development by abstracting out the lessons learnt from agile
transformation in software teams and applying them to new contexts, and helping adapt agile to fit
new contexts.

Finally, peeking into the future, much give and take can be expected between agile and
emerging technologies such as the internet-of-things (IoT), AR/VR, big data services and
paradigms such as artificial intelligence, and end-user development in the foreseeable future.

References
1. M. Fowler and J. Highsmith. The agile manifesto, Software Development, 9(8), 28-35, 2001. Available:

http://agilemanifesto.org/ Last accessed 24th Jan 2018.

2. VersionOne. 12th Annual State of Agile Survey Report,
Available http://stateofagile.versionone.com/ Last accessed 2nd May 2018.

3. VersionOne. The State of Agile Development (First Survey Report),
Available http://stateofagile.versionone.com/ Last accessed 24th Jan 2018.

4. B.A. Kitchenham and S. Charters. Procedures for Performing Systematic Literature Review in Software
Engineering, EBSE Technical Report version 2.3, EBSE-2007-01, Software Eng. Group.

5. R. Hoda, N. Salleh, J. Grundy, H.M. Tee. Systematic literature reviews in agile software development: A
tertiary study, Information and Software Technology, vol. 85, pp. 60 – 70, 2017.

6. D. Reifer, F. Maurer, H. Erdogmus. Scaling Agile Methods IEEE Software, July/August 2003 IEEE, 2003

7. M. Aoyama. Web-based agile software development. IEEE software, 15(6), 56-65, 1998.

8. J. Segal, C. Morris. Developing scientific software. IEEE software, 25(4), 18-20, 2008.

RASHINA HODA is a Senior Lecturer and the founder of the Software Engineering
Processes Tools and Applications (SEPTA) research group at the University of Auckland,
New Zealand. Her research interests include agile software development, human and social
aspects of software engineering, grounded theory, and serious game design. Hoda received
her PhD in computer science from Victoria University of Wellington, New Zealand. Contact
her at r.hoda@auckland.ac.nz

NORSAREMAH SALLEH is an Associate Professor at the Department of Computer Science,
International Islamic University Malaysia. Her research interests include the areas of
empirical software engineering (SE), evidence based SE, human and social aspects of SE
and Computer Science/ SE education. She received her PhD in Computer Science from the
University of Auckland. Contact her at norsaremah@iium.edu.my

JOHN GRUNDY is Senior Deputy Dean of the Faculty of Information Technology at Monash
University. His research interests include automated software engineering, software tools,
human-centric software engineering, visual languages, software architecture, software
security engineering and user interfaces. He is Fellow of Automated Software Engineering
and Fellow of Engineers Australia.

