
1

Cost-Effective App User Allocation in an Edge
Computing Environment

Phu Lai, Qiang He, John Grundy, Feifei Chen, Mohamed Abdelrazek, John Hosking, and Yun Yang

Abstract—Edge computing is a new distributed computing paradigm extending the cloud computing paradigm, offering much lower
end-to-end latency, as real-time, latency-sensitive applications can now be deployed on edge servers that are much closer to
end-users than distant cloud servers. In edge computing, edge user allocation (EUA) is a critical problem for any app vendors, who
need to determine which edge servers will serve which users. This is to satisfy application-specific optimization objectives, e.g.,
maximizing users’ overall quality of experience, minimizing system costs, and so on. In this paper, we focus on the cost-effectiveness of
user allocation solutions with two optimization objectives. The primary one is to maximize the number of users allocated to edge
servers. The secondary one is to minimize the number of required edge servers, which subsequently reduces the operating costs for
app vendors. We first model this problem as a bin packing problem and introduce an approach for finding optimal solutions. However,
finding optimal solutions to the NP-hard EUA problem in large-scale scenarios is intractable. Thus, we propose a heuristic to efficiently
find sub-optimal solutions to large-scale EUA problems. Extensive experiments conducted on real-world data demonstrate that our
heuristic can solve the EUA problem effectively and efficiently, outperforming the state-of-the-art and baseline approaches.

Index Terms—Edge computing, fog computing, user allocation, optimization, resource allocation

F

1 INTRODUCTION

MOBILE and Internet-of-Things (IoT) devices, including
smartphones, wearables, sensors, etc., have become

extremely popular in modern society [2]. The rapid growth
and advances of mobile and IoT devices have fueled the
variety and sophistication of mobile and IoT software appli-
cations such as natural language processing, facial recog-
nition [3], interactive gaming [4], etc. Those applications
usually require intensive processing power and high energy
consumption. Due to the limited computing capabilities and
battery power of mobile and IoT devices, heavy computa-
tion tasks are often offloaded to the app providers’ servers
in the cloud to be processed. However, this usually comes
with high network latency and unpredictable delays, due
to the long distance between the cloud servers and end-
users, as well as a performance bottleneck that is often
caused by the centralized network architecture (e.g., sudden
surges of users or heavy workloads, network issues, and
so on). In addition, as the number of connected devices
is rapidly increasing, predicted to be around 32 billion by
2023 [2], plus the continuously increasing network traffic
and computational workload, online app vendors are facing
the challenge of maintaining a reliable and low-latency
connection to their users, which is one of the key quality-
of-service (QoS) requirements [5].

This is an extended and revised version of a preliminary conference paper that
was presented in ICSOC 2018 [1].

• P. Lai, Q. He, and Y. Yang are with the School of Software and Electrical
Engineering, Swinburne University of Technology, 3122, Australia. E-
mail: tlai, qhe, yyang@swin.edu.au.

• J. Grundy is with the School of Information Technology, Monash Univer-
sity, 3168, Australia. E-mail: john.grundy@monash.edu.

• F. Chen and M. Abdelrazek are with the School of Information Technol-
ogy, Deakin University, 3125, Australia. E-mail: mohamed.abdelrazek,
feifei.chen@deakin.edu.au.

• J. Hosking is with the School of Science, University of Auckland, Auck-
land, New Zealand. E-mail: j.hosking@auckland.ac.nz.

To tackle this issue, Cisco [6] has proposed the fog
computing paradigm – sometimes called edge computing –
in which computing, networking, and storage resources are
distributed closer to the edge of the network by a number
of intermediate edge servers deployed in close proximity
to end-devices, or end-users. This paradigm offers lower
network latency than the conventional centralized cloud
computing paradigm. It also offers great scalability by en-
abling computation and storage at the edge of the network.
This significantly reduces the data transmission (and band-
width consumption) between end-users and the cloud [7].
This is particularly important for high volume streaming
applications or critical systems such as autonomous traffic
systems, health care, or online gaming, which require real-
time decision making. In edge computing, app vendors
hire existing edge servers to host their applications serving
their users. Thin clients – such as wearables, sensors, or
smartphones – all that have limited battery power, storage,
and computing capabilities, benefit from this architecture
by the ability to offload intensive computation tasks to the
distributed edge servers near them [8]. In this way, the
central cloud is not required to perform all the computation
tasks single-handedly, which is highly resource-demanding,
has a higher chance of being a performance bottleneck, and
generally incurs higher network latency to users.

In a mobile edge computing (MEC) environment, a
number of edge servers are deployed by edge infrastructure
providers like AT&T or Vodafone in a distributed fashion
(usually near cellular base stations [9]) so that they can
cover different geographical areas. Users within an edge
server’s coverage can connect to the edge server via LTE,
4G, or 5G [10]. Edge infrastructure providers are responsible
for ensuring a low latency connection to users. A user’s
latency requirement is assumed to be satisfied as long as
the user is allocated to an edge server. The coverage areas

2

of adjacent edge servers usually partially overlap to avoid
non-service areas – areas that are not covered by any edge
server [1], [11]. A user located in the overlapping area can
connect to one of the edge servers covering them (proximity
constraint) that has sufficient computing resources (capacity
constraint) such as CPU, storage, bandwidth, or memory.
Note that from the app vendor’s perspective, they need
to ensure that the resources hired on an edge server will
suffice to accommodate their users allocated to that edge
server during the allocation process. How much of the hired
resources will be used is dependent on the users at runtime.
Compared to a cloud data center, a typical edge server has
very limited computing resources [12], [13], which leads to
the need for an effective resource allocation strategy.

Edge servers’ capacities, current workloads, coverage,
proximity to users, and the number of users to allocate can
be obtained or calculated at runtime. Due to the limited
resources of the edge servers, an edge server might not be
able to serve all the users within its coverage. Since some
of the users might also be located in other edge servers’
coverage, an app vendor can allocate them to those edge
servers to share the workload with the overloaded servers.
Due to the aforementioned constraints, there might be some
users that cannot be assigned to any edge server. Those
users will be connected directly to a remote cloud server,
which is not desirable. Therefore, the optimization objective
here is to maximize the number of users allocated to edge
servers, which ensures the QoS from the app vendor’s
perspective. In the meantime, the number of edge servers
required to serve those users (or the number of active edge
servers) needs to be minimized. This will ensure the cost-
effectiveness of the allocation by cutting down the app
vendor’s costs of hiring edge servers to serve their app
users [?], [1] and improving the resource utilization on
edge servers [?], [14]. In fact, minimizing the number of
required servers is one of the key objectives in the server
consolidation problem in cloud computing [15], [16]. In
this paper, we study quasi-static scenarios where users are
relatively static, not roaming across edge servers quickly
[?], [4], [11], [17], e.g., surveillance cameras, traffic sensors,
mobile, or IoT users who stay in one location.

The above problem is referred to as an edge user allo-
cation (EUA) problem [?], [1], [18], [19]. This problem has
been modeled as a bin packing problem and proven to
be NP-hard in our previous work [1]. As demonstrated
in [1], the EUA problem is extremely computationally ex-
pensive to solve optimally in a large-scale scenario due to
the dense distribution and limited computing resources of
edge servers. It takes up to 23 seconds to find an optimal
solution when there are just around 512 users and 125
edge servers, which is unacceptable for applications or
services that require real-time or near real-time decision
making. Therefore, we introduce Most Capacity First (MCF),
a heuristic approach for efficiently finding a sub-optimal
solution to the EUA problem. Note that the EUA problem
has a number of variants with different assumptions and
objectives, depending on specific applications and services.
For example, [18] aims to maximize the number of allocated
users and minimize the number of user reallocations when
dealing with user mobility; [?] aims to maximize the number
of allocated users with minimum system costs; and [19] aims

to maximize users’ overall quality of experience (QoE). The
main contributions of this paper include:

• In our previous work [1], we formally model the
EUA problem as a variable-sized vector bin packing
(VSVBP) problem, which is NP-hard. We then op-
timally solve this problem using the Lexicographic
Goal Programming technique.

• Due to the NP-hardness of the problem, finding
an optimal solution is intractable in a scenario that
involves a great number of users and edge servers. To
effectively deal with the high complexity, this paper
proposes MCF – a heuristic approach for finding a
sub-optimal EUA solution efficiently.

• Extensive evaluations are conducted on a real-world
dataset to demonstrate the effectiveness and effi-
ciency of the proposed approaches. The results show
that our approaches outperform the state-of-the-art
and baseline approaches.

The remainder of the paper is organized as follows.
Section 2 motivates this research with an example. Section
3 introduces the VSVBP problem, based on which we for-
mulate the EUA problem in Section 4. Section 5 presents
our optimal and heuristic approaches for solving the EUA
problem, which are evaluated in Section 6. Section 7 reviews
the related work and Section 8 concludes this paper.

2 MOTIVATING EXAMPLE

A representative application that can leverage the low la-
tency provided by edge computing is large-scale cloud gam-
ing [20] - the fastest growing gaming model [21]. This model
has made many online game platforms, such as Hatch1 and
Sony PlayStation Now2, more accessible to thin-client mo-
bile players since the resource-expensive game application
instances are running on powerful servers in the remote
cloud. Let us consider an increasingly popular virtual re-
ality game, which requires a great amount of computing
power for graphics rendering. The centralized cloud model
allows mobile devices to offload heavy computation tasks
to the servers in the cloud. However, this approach often
introduces significant network delays because of the long
distance between the players and the remote cloud servers.
Therefore, pushing computing power closer to players with
edge computing is a promising solution to this problem.

Fig. 1 shows a small example of an MEC environment
with 8 players u1, ..., u8 and 3 edge servers, s1, ..., s3.
Each edge server covers a particular geographical area
and has a specific amount of computing resources (CPU,
RAM, storage, and bandwidth). An edge server can only
serve players within its coverage (proximity constraints).
For example, player u1 can be allocated to either edge
server s1 or s3 only. Edge server s2 cannot serve player
u1 since player u1 is outside its coverage area. In an
edge computing environment, the computing resources of
an edge server, such as CPU, RAM, bandwidth, etc., are
usually shared by multiple users. Thus, in addition to
the proximity constraints, the game vendor needs to take

1. www.hatch.live/
2. www.playstation.com/en-gb/explore/playstation-now/

3

2

Edge
server 2

<10,17,15,16>

Edge
server 1

<4,6,6,10>

<4,6,6,10>

Edge server

User

<CPU, RAM, storage, bandwidth>

Edge
server 3

<10,15,11,15>

App vendor decision for User 2:
Which server to serve User 2 (Edge
server 1, or Edge server 2)?

<1,2,1,2>
1

3

4

5
6

7

8

<2,3,3,4>

<5,7,6,6>

<1,2,1,2>

<1,2,1,2>

<5,7,6,6>

<2,3,3,4>

<2,3,3,4>

Fig. 1: Example edge computing environment

into account various capacity constraints, i.e., whether the
available computing resources on an edge server suffice
to serve the players allocated to it. In Fig. 1, each edge
server has a limited amount of computing resources, de-
noted as a vector 〈CPU,RAM, storage, bandwidth〉. Differ-
ent players might require different amounts of computing
resources. For instance, edge servers that serve players
who select higher graphics settings (4K graphics quality,
spatial anti-aliasing, etc.) consume more resources to fa-
cilitate high-quality graphics rendering. The total resource
requirements of players allocated to an edge server must
not exceed the available computing resources on that edge
server. There are five players located within the coverage
of edge server s3, whose aggregated resource requirement
is 〈11, 17, 14, 16〉, which exceeds the available resources of
server s3 (〈10, 15, 11, 15〉). Thus, the game vendor needs to
allocate some of those players to other edge servers. The
objective is to allocate as many players to as few edge
servers as possible.

A possible solution to the EUA problem in Fig. 1 is to
allocate player u1 to server s1, players u2, u3, u4, and u6
to server s2, and players u7, and u8 to server s3. Player
u4 cannot be allocated to server s2 since the server is
already serving other players and no longer has sufficient
resources to serve player u4. Neither proximity nor resource
constraints are violated in this way. However, this is not
the optimal solution in terms of QoS or cost-effectiveness
since only seven out of eight players are allocated to edge
servers, and all three edge servers are required. A better
solution would be to allocate players u2, u4, u5, and u6 to
server s2, and players u1, u3, u7, and u8 to server s3. This
allocation allows all eight users to be served by edge servers;
furthermore, it does not require edge server s1 at all.

Finding an optimal solution to the EUA problem is not
trivial, especially in a large-scale scenario with numerous
users covered by numerous edge servers. Fig. 1 is a very

small-scale example. In a real-world EUA scenario, there
would be many more players (or app users in general)
and edge servers, resulting in a much larger solution space
for the EUA problem. Assuming that there are n users
and m edge servers, the solution space may consist of up
to mn possible solutions. Thus, an effective and efficient
user allocation approach is needed for app vendors in such
scenarios.

3 BACKGROUND

Definition 1. Classic Bin Packing (BP) Problem. Given an
infinite supply of identical bins S = {s1, s2, ...} with capacity C
and a set of n items U = {u1, u2, ..., un}. Let a value wj be the
size of item uj that satisfies 0 < wj ≤ C , ∀uj ∈ U . The objective
is to pack all the given items into the fewest bins possible such that
the total item size in each bin must not exceed the bin capacity C :∑

uj∈Usi
wj ≤ C, ∀si ∈ S, where Usi is the set of items placed

in bin si.
The only constraint in the classic BP problem is that the

total size of the items packed into a bin must not exceed
the capacity of the bin. This combinatorial optimization
problem is known to be an NP-hard problem [22].

Definition 2. Variable-Sized Bin Packing (VSBP) Prob-
lem. Given a limited collection of k bin sizes such that 1 =
size(B1) > size(B2) > ... > size(Bk) > 0, there is an
infinite supply of bins for each bin type Bl, where l = 1, ..., k.
Let S = {s1, s2, ..., sm} be the list of bins needed for packing all
items. Given a list of n items U = {u1, u2, ..., un}, each with
item size wj ∈ (0, 1], where j = 1, ..., n, the aim of the VSBP
problem is to pack all items into bins so that the total size of items
in each bin must not exceed the bin capacity, and the total size of
the required bins

∑
si∈S size(si) is the minimum.

In the classic BP problem, all bins are homogeneous with
the same bin capacity. VSBP is a more general variant of
the classic BP in which a limited collection of bin sizes is
allowed. VSBP aims at minimizing the total size of the bins
used, which is different compared to the aim of the classic
BP problem.

Definition 3. Vector Bin Packing (VBP) Problem. Given
a set of n items U = {u1, u2, ..., un}, the size of item uj ∈ U
is denoted as d-dimensional vector wj = 〈w1

j , w
2
j , ..., w

d
j 〉, where

wj ∈ [0, 1]d. One is given an infinite supply of identical bins
S = {s1, s2, ...} with capacity C = 〈11, 12, ..., 1d〉. The aim is
to pack the set U into a minimum number of bins si ∈ S such
that ‖

∑
uj∈Usi

wj‖∞ ≤ 1,∀si ∈ S , where Usi is the set of all
items packed in bin si.

In the classic BP problem, the size of an item is presented
as a single aggregation measure. In contrast, the size of
an item in the VBP problem is associated with a multi-
dimensional vector. The aim remains similar, in which the
sum of packed item size vectors must not exceed the bin
capacity vector in each dimension, which is normalized to 1
without loss of generality. The VBP problem is also known
as the multi-capacity BP problem in some literature [23],
[24].

EUA Problem. In the EUA problem, each edge server
corresponds to a bin with its available computing resources
being the bin capacity. An app user corresponds to an item,
whose computing resource requirement corresponds to the
size of that item.

4

In this paper, we tackle the EUA problem from the app
vendor’s perspective. Since different users require various
amounts of different computing resources [?], [25], [26],
the amount of computing resources required by a user
should be presented as a d−dimensional vector where each
dimension represents a resource type (CPU, RAM, storage,
etc.) instead of a single aggregate measure. This is also
applied to the amount of computing resources available on
edge servers. Therefore, the EUA problem can be modeled
as a mixture of the VSBP problem and the VBP problem,
hence being a variable-sized vector bin packing (VSVBP)
problem. The EUA problem is NP-hard since the classic
BP problem, which is NP-hard [22], is a special case of
the VSVBP problem where all bins’ sizes and all resources’
requirement of users are identical.

4 PROBLEM FORMULATION

Given a number of app users belong to a single app vendor
using the same application, our objective is to maximize
the total number of allocated app users and minimize the
number of edge servers required to serve those users. We
first introduce the relevant notations used in our model in
Table 1. In the EUA problem, every user covered by any
edge server must be allocated to an edge server unless all the
servers accessible to the user have reached their maximum
resource capacities. If a user cannot be allocated to any edge
servers or is not positioned within the coverage of any edge
servers, they will be directly connected to the app vendor’s
central cloud server.

TABLE 1: Notations

Notation Description
S = {s1, s2, ..., sm} a finite set of edge server si, where i =

1, 2, ...,m.
D = {CPU,RAM,
storage, bandwidth}

a set of computing resource types.

Ci = 〈C1
i , C

2
i , ..., C

d
i 〉 the capacity of an edge server si. Ci is a

d−dimensional vector with each dimen-
sion Ck

i , k = 1, ..., d, representing the
available amount of resource type k ∈ D
on edge server si.

U = {u1, u2, ..., un} a finite set of user uj , where j = 1, 2, ..., n.
wj = 〈w1

j , w
2
j , ..., w

d
j 〉 d−dimensional vector representing the

computing resource requirement of user
uj . Each vector component wk

j , k =
1, ..., d represents the amount of resource
type k needed by user uj on an edge
server.

Usi ⊂ U a set of users allocated to edge server si.
Suj ⊂ S a set of user uj ’s neighbor edge servers,

i.e., edge servers that have user uj in their
coverage areas.

cov(si) the coverage of edge server si.

In the classic BP problem, an item can be placed in any
bin as long as the bin has sufficient remaining capacity.
However, in our problem, each edge server covers a limited
geographical region. Thus, an item (user) can only be placed
in one of several specific bins (edge servers). A user uj can
be allocated to an edge server si only if it is located in server
si’s coverage area:

uj ∈ cov(si),∀uj ∈ U ;∀si ∈ S (1)

and the total resource requirements of all users allocated
to an edge server must not exceed its available comput-
ing resources (Constraint (2)). Otherwise, the server will
be overloaded, causing service disruptions or performance
degradation. Take Fig. 1 for instance, the aggregated re-
source requirements of users u1, u2, and u3 are 〈7, 11, 8, 10〉,
which are greater than the available computing resources of
edge server s1 (〈4, 6, 6, 10〉). Thus, allocating all those three
users to this edge server violates the capacity constraint.∑

uj∈Usi

wj � Ci,∀si ∈ S (2)

Our primary objective is to maximize the number of
users allocated to edge servers, which ensures the quality
of service from the app vendor’s perspective:

maximize
∑
si∈S
|Usi | (3)

Our secondary objective is to find a users-to-edge-
servers allocation such that the number of required edge
servers is minimum:

minimize

∣∣∣∣{si ∈ S∣∣ ∑
uj∈Usi

wj > 0}
∣∣∣∣ (4)

5 APPROACHES

5.1 Optimal Approach
In this paper, we address the EUA problem with two
optimization objectives: 1) maximizing the number of allo-
cated users and 2) minimizing the number of required edge
servers, while satisfying the proximity constraint and capacity
constraint. Accordingly, we solve the EUA problem with
the Lexicographic Goal Programming (LGP) technique [27].
With the LGP technique, multiple optimization objectives
are ranked by their levels of importance, or priorities. The
problem solver will attempt to find an optimal solution
that satisfies the primary objective and then proceed to find
a solution for the next objective without deteriorating the
previous objective(s). An LGP program can be solved as a
series of connected linear programs. The LGP formulation
of the EUA problem is as follows:

maximize
n∑

j=1

m∑
i=1

xij (5)

minimize
m∑
i=1

yi (6)

subject to: xij = 0 ∀i, j ∈ {i, j|uj /∈ cov(si)}
(7)

n∑
j=1

wk
j xij ≤ Ck

i yi ∀i ∈ {1, ...,m};∀k ∈ {1, ..., d}

(8)
m∑
i=1

xij ≤ 1 ∀j ∈ {1, ..., n} (9)

xij ∈ {0, 1} ∀i ∈ {1, ...,m};∀j ∈ {1, ..., n}
(10)

yi ∈ {0, 1} ∀i ∈ {1, ...,m} (11)

5

xij and yi are binary indicator variables such that

xij =

{
1, if user uj is allocated to edge server si.
0, otherwise.

yi =

{
1, if edge server si is used to serve users.
0, otherwise.

Objective (5) maximizes the number of app users allo-
cated to edge servers. Objective (6) minimizes the number
of edge servers required to serve allocated users. Here,
objective (5) is prioritized over objective (6). There are two
groups of binary variables, i.e., xij (10) and yi (11).

Proximity constraint (7): An edge server cannot serve
users who are located outside its coverage area. An app user
may be in the overlapping coverage area of multiple edge
servers. For instance, user u1 can be allocated to either edge
server s1 or s3 in Fig. 1.

Capacity constraint (8): Each edge server si has an
available resource capacity of Ci = 〈C1

i , C
2
i , ..., C

d
i 〉, a d-

dimensional vector. The aggregated resource requirements
of each resource type of all users allocated to an edge
server must not exceed its available capacity. Take Fig. 1
for example, allocating users u1 and u2 to server s1 is valid
since 〈2, 4, 2, 4〉 � 〈4, 6, 6, 10〉.

Constraint family (9) ensures that every app user is
allocated to at most one edge server. In other words, a user
can be allocated to either an edge server or the app vendor’s
remote cloud server.

We can find an optimal solution to a small-scale instance
of the EUA problem above with an Integer Programming
solver, e.g., Gurobi3 or IBM ILOG CPLEX4. In our experi-
ments, we use IBM ILOG CPLEX Optimizer solver V12.8.0
(ilog.cplex5 package in Java).

5.2 Most-Capacity-First Heuristic
Due to theNP-hardness of the problem, finding an optimal
solution will take a very long time in large-scale scenarios.
This will be demonstrated in our experimental results pre-
sented in Section 6. Thus, to help app vendors allocate their
users in large-scale scenarios, this section proposes MCF
(MOST CAPACITY FIRST), an effective and efficient heuristic
for finding a near-optimal solution to the EUA problem.

Given a set of edge servers S and a set of users U (lines 1-
4), MCF efficiently and effectively allocates an app vendor’s
users to edge servers. Initially, all users are unallocated.
In order to maximize the number of users allocated, MCF
first sorts the set of users U in ascending order of users’
computing resource requirements (line 5). The computing
resource requirement of a user is a multi-dimensional vector
with each component being a resource type. Since different
resource types (CPU, RAM, storage, or bandwidth) have
different scales, we can sort the computing resource require-
ments by normalizing all resource types’ requirements by
maximum norm (assuming all resource types are equally
important), then calculate the Euclidean norm over those

3. www.gurobi.com/
4. www.ibm.com/analytics/cplex-optimizer/
5. www.ibm.com/support/knowledgecenter/SSSA5P 12.8.0/

ilog.odms.cplex.help/refjavacplex/html/ilog/cplex/package-
summary.html

Heuristic 1 Most Capacity First (MCF)

1: initialization:
2: a set of edge servers S and a set of users U
3: all users uj ,∀uj ∈ U , are unallocated
4: end initialization
5: sort U in ascending order of computing resource require-

ments (i.e., low-demanding users are prioritized, being
the first to be allocated)

6: for each user uj ∈ U do
7: Suj

, user uj ’s neighbor edge servers;
8: Sactiveuj

, user uj ’s active neighbor edge servers;
9: if Sactiveuj

6= ∅ then
10: allocate user uj to an edge server si ∈ Sactiveuj

which has the most available capacity
11: else
12: allocate user uj to an edge server si ∈ Suj which

has the most available capacity
13: end if
14: if si cannot be decided then
15: allocate user uj to the central cloud server
16: end if
17: end for

resource types. App vendors can also apply other methods
[28] as they see fit to sort users or servers by the amount of
computing resources.

Next, MCF allocates users one by one (lines 6-14) in the
order of their appearance in the list U sorted above. Since the
list of users has been sorted in ascending order of resource
requirements, users who have lower requirements will be
allocated before users who have higher requirements. This
helps maximize the number of users allocated because al-
locating high-demanding users first would exhaust edge
servers’ resources rather quickly. For each user, MCF re-
trieves the set of its neighbor edge servers (servers that have
the user in their proximity - line 7) and the set of its active
neighbor edge servers (servers that have already been used
to serve users, or are serving users - line 8). To minimize the
number of required edge servers, MCF attempts to allocate
the user to one of the active servers first (line 9), instead
of using a new edge server. Out of all active edge servers,
one with the most available capacity will be chosen to serve
the user (line 10). In this way, it will be most likely to have
sufficient capacity to accommodate other users later on. If
there is no current active server (line 11), MCF will allocate
the user to the neighbor edge server which has the most
available capacity (line 12). Note that allocating a user to an
edge server must not violate the capacity constraint in any
case. If all neighbor edge servers of the user have reached
their maximum capacity, the user will be directly connected
to the app vendor’s central cloud server (lines 14-16), which
is not desirable. MCF completes once all users have been
attended to.

Time Complexity Analysis. As discussed at the end of
Section 3, the EUA problem is NP-hard. It is intractable
to find optimal solutions to large-scale EUA scenarios that
involve a large number of app users and/or edge servers.
MCF is a practical option in such scenarios for its high
efficiency. Here, we analyze the worst-case time complexity

6

of the proposed heuristic (MCF - Heuristic 1). The running
time of MCF consists of: 1) iterating through all n users
(Line 6), which costs O(n), and 2) sorting a maximum of m
edge servers to identify the edge server that has the most
available capacity (Line 10 or 12), which costs O(m log(m)).
Therefore, the time complexity of this block (Lines 7-13)
is O(nm log(m)), which is generally more complex than
Line 5. Hence, the overall time complexity of MCF is
O(nm log(m)). Note that m is the worst-case scenario; in
practice, each user is covered by a much smaller number of
edge servers or base stations (i.e., 32 base stations in theory
as specified by ETSI [29], or 15 base stations according
to the dataset used in our experiments in Section 6). As
experimentally demonstrated in Section 6.3.2, the running
time of MCF is around 1-2 ms in all scenarios.

Given the low running time of MCF, app vendors are
able to continuously run it to react to user movement since it
allocates app users one-by-one to edge servers. Specifically,
when a user moves out of the coverage area of the edge
server serving it, it will be disconnected from the edge
server; the occupied computing resources on that edge
server will be released; then MCF will consider it as a new
user and allocate it to a new edge server following the rules
defined in Heuristic 1, Lines 6-14. This is possible as long
as switching users from one edge server to another does
not incur extra costs, or if the extra costs are trivial. Such
extra costs may include the migration cost (e.g., the cost of
moving user data across edge servers) or reconfiguration
cost (e.g., some services might require reconfiguration to
serve new users) [30]. In some use cases, those extra costs
could be fairly trivial. Take video streaming for example
[31], where videos encoded with different resolutions are
cached on edge servers so that a user can access them with
low latency. Switching the user across edge servers would
only require a small amount of data to be transferred, e.g.,
which video the user is watching, the resolution of the
video, and the position in the video where the user left
off. For applications and services where the extra costs are
considerable, the new costs will need to be modeled and
integrated into the objective functions. The heuristic will
thus need to be modified accordingly.

6 EXPERIMENTAL EVALUATION

We have performed a series of experiments on a real-world
dataset to evaluate the performance of our approaches
against other baseline and state-of-the-art approaches.

6.1 Performance Benchmark
Our optimal approach (Section 5.1), referred to as Optimal
hereafter, and MCF heuristic (Section 5.2) are compared to
four representative approaches, namely a Greedy baseline,
a Random baseline, and two state-of-the-art approaches for
solving the EUA problem:

• Greedy: This approach allocates each user to the edge
server with the most available capacity, regardless of
the server’s active status. Users are allocated in no
particular order.

• Random: This approach allocates each user to a ran-
dom edge server available. Users are allocated in no
particular order.

• ICSOC19: [19] proposes two approaches to solve
the user allocation problem so that the total users’
QoE is maximized. The QoS level, or the computing
resource requirement, of each user can be flexibly
adjusted. We solve a slightly different problem where
each user has a fixed QoS level. Their proposed
optimal approach will be used in our experimental
evaluation.

• TPDS20: [?] proposes a game-theoretic approach to
solve the user allocation problem with the objective
of maximizing the number of allocated users and
minimizing system costs, measured by the amount
of computing resources needed to serve users and
the penalty of having unallocated users.

ICSOC19 and TPDS20 are chosen as the benchmark
state-of-the-art approaches as they solve the same problem
as ours – user allocation, and their objectives indirectly
imply the maximization of the number of allocated users.
TPDS20 also implies the minimization of the number of
required edge servers. All experiments are written in Java
and conducted on a Windows machine equipped with Intel
Core i5-7400T processor (4 CPUs, 2.4GHz) and 8GB RAM.

6.2 Experimental Settings
The experiments are conducted on the EUA dataset6 [1],
which contains the geographical locations of end-users and
all cellular base stations in Australia. This dataset was also
used in [19] and [?] to evaluate ICSOC19 and TPDS20.

Edge servers: To capture the characteristics of a 5G envi-
ronment [32], we simulate a highly dense urban area of 1.8
km2 covered by 125 base stations, each equipped with an
edge server. The coverage radius of each edge server is ran-
domly generated within 100-150m. The initial capacities of
edge servers are randomly generated by following a normal
distribution N (µ, σ2), where µ is the average capacity of
each resource type in D, and the standard deviation σ = 10
for all conducted experiments. Since a normal distribution
might contain negative numbers, any negative amount of
computing resources generated is rounded up to 1.

Edge users: We assume that there are three
possible types of resource requirements, wj ∈
{〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, 〈5, 7, 6, 6〉}, ∀uj ∈ U , and
D = {CPU,RAM, storage, bandwidth}. The computing
resource requirement of each user is uniformly
randomly selected. We select those three resource
requirement levels as representative in our experiments
since we have conducted experiments with other
types of resource requirement settings, where the
difference between resource requirements is large
(e.g., {〈1, 1, 1, 1〉, 〈4, 5, 6, 6〉, 〈7, 9, 10, 7〉}), or where the
resource requirements are identical, or skewed (e.g.,
{〈3, 2, 3, 2〉, 〈2, 3, 2, 3〉, 〈1, 2, 1, 3〉}), which all returned
similar results (almost identical, or just marginally
different).

To comprehensively analyze the performance of our
approaches in various EUA scenarios, we conduct a series
of experiments with different varying parameters, including
the number of users, the number of edge servers, and edge

6. www.github.com/swinedge/eua-dataset

7

servers’ capacities (µ as defined above). Table 2 summarizes
the settings of the experiments, which will be discussed in
the next section. Each experiment is repeated 100 times to
obtain 100 different user distributions, and the results are
then averaged. This allows extreme cases, such as overly
dense or sparse user/server distributions, to be neutralized.
To evaluate the performance of the approaches in achiev-
ing the optimization objective, we compare the number
of allocated users and required edge servers achieved by
the six approaches, and also the average number of users
allocated per required edge server. The efficiency will also
be evaluated by the CPU time taken to solve the problem.

TABLE 2: Experimental Settings

Users Edge servers Available resources (µ)
Set #1 100, ..., 1000 50% 35
Set #2 500 10%, ..., 100% 35
Set #3 500 50% 30, 35, ..., 75

6.3 Experimental Results
Figs. 2, 3, and 4 demonstrate the effectiveness of all the
approaches in experiment Sets #1, #2, and #3, respectively,
in terms of 1) the percentage of users allocated, the higher
the better (in sub-figures (c)), 2) the percentage of edge
servers needed to serve those users, the lower the better
(in sub-figures (b)), and 3) we additionally measure the
average number of users allocated per required edge server,
the higher the better (in sub-figures (a)). In general, Opti-
mal, being the optimal approach, clearly achieves the best
performance compared to all other approaches across all
experiments – being able to allocate the most number of
users to the fewest number of edge servers. This comes at
the cost of its very high computational overhead and it is
thus inapplicable in large-scale scenarios, where low latency
is critical. MCF outperforms all other baseline and state-of-
the-art approaches. The efficiency of MCF is demonstrated
in Figs. 5 and 6, measured by its computation time.

6.3.1 Effectiveness
Experiment Set #1. In this set of experiments, the num-
ber of users varies from 100 to 1,000 in steps of 100.
The number of edge servers is fixed at 50% of all edge
servers in the simulated area. In Fig. 2a, as the number of
users increases, the average number of users allocated per
required edge server achieved by Optimal also increases,
closely followed by MCF. While the average number of
users per required edge server achieved by Optimal and
MCF increases linearly, the performance of the other four
approaches starts to plateau at some point, e.g., 600 users in
our experiments. This depicts the ineffectiveness of the other
approaches in large-scale scenarios with a great number of
users. With regard to the number of edge servers required
(Fig. 2b), the approaches are divided into two groups based
on their performance. The first group, which includes IC-
SOC19, Greedy, and Random, requires far more edge servers
than the second group, which consists of Optimal, MCF,
and TPDS20. Optimal requires the fewest number of edge
servers, followed by MCF, then TPDS20. From 600 users
onwards, every approach requires 100% number of edge

servers since there is a large number of users now. Thus,
all available computing resources need to be utilized. Fig.
2c shows the percentage of users allocated. We can observe
a decreasing trend here. Since the amount of computing
resources is fixed, introducing more users will increase the
number of users who cannot be allocated to any edge server.
From 100 to 500 users, MCF allocates slightly fewer users
than Greedy and ICSOC19. However, in those cases, Greedy
and ICSOC19 require far more edge servers to serve those
users, which results in a lower average number of users
per required server in general as shown in Fig. 2a. Other
than those cases, MCF allocates considerably more users
than Greedy, Random, ICSOC19, and TPDS20. ICSOC19
performs poorly (almost as bad as Greedy and Random)
because it aims to maximize all users’ overall QoE, which
in turn needs to consume as much computing resources as
possible, hence a high number of required edge servers.
In the meantime, ICSOC19 is also very computationally
expensive since it aims to find the optimal solution to an
NP-hard problem. Its low effectiveness and low efficiency
can be observed in other experiment sets as well. While
being suitable for maximizing users’ overall QoE, we can
see that ICSOC19 is not effective in minimizing the number
or required edge servers.

Experiment Set #2. In this experiment set, we vary the
number of edge servers available to serve users, from 10% to
100% in steps of 10% (Fig. 3). As more edge servers become
available, more computing resources are available to serve
users, which eventually increases the number of allocated
users (Fig. 3c). In this aspect, the difference between all
the approaches is marginal. However, when it comes to the
number of edge servers needed (Fig. 3b), Optimal, MCF,
and TPDS20 significantly outperform other approaches, re-
quiring much fewer edge servers to serve users. ICSOC19,
Greedy, and Random require almost all edge servers in all
settings. Meanwhile, the percentage of edge servers required
by Optimal, MCF, and TPDS20 rapidly decreases as the
number of available edge servers increases. This demon-
strates the effectiveness of those approaches in utilizing the
given resources. Overall, the average number of allocated
users per required server (Fig. 3a) is higher for Optimal
and MCF (closely followed by TPDS20 from 40% onwards).
Greedy, Random, and ICSOC19 fail to utilize the increasing
number of edge servers, hence the downward trend. In
some cases (20% - 40% for Optimal, 20% - 60% for MCF),
the average number of allocated users per required edge
server decreases because the cost of using edge servers (the
number of required edge servers) outweighs the benefit of
serving more users. Regardless, Optimal and MCF still beat
other approaches.

Experiment Set #3. In this experiment set, we vary
the amount of average available computing resources on
each server. Similar to experiment Set #2, increasing edge
servers’ capacities eventually increases the total number of
allocated users (Fig. 4c) and the average number of allocated
users per required server (Fig. 4a). It also generates more
room for resource utilization. In Fig. 4b, Optimal, MCF, and
TPDS20 demonstrate the ability to utilize the given com-
puting resources by the decreasing percentage of required
edge servers. MCF, again, requires fewer edge servers than
TPDS20. When µ is increasing, the capacity of each edge

8

(a) Number of users vs. Average
number of users per required edge
server

(b) Number of users vs. Percentage
of edge servers required

(c) Number of users vs. Percentage
of users allocated

Fig. 2: Experimental results of experiment Set #1 (varying number of users)

(a) Number of edge servers vs. Av-
erage number of users per required
sdge server

(b) Number of edge servers vs. Per-
centage of edge servers required

(c) Number of edge servers vs. Per-
centage of users allocated

Fig. 3: Experimental results of experiment Set #2 (varying number of edge servers)

(a) Edge server capacity vs. Average
number of users per required edge
server

(b) Edge server capacity vs. Percent-
age of edge servers required

(c) Edge server capacity vs. Percent-
age of users allocated

Fig. 4: Experimental results of experiment Set #3 (varying edge server’ capacity)

server becomes increasingly redundant, rendering an in-
creasing number of “unnecessary” edge servers, hence the
decrease in the percentage of required edge servers.

6.3.2 Efficiency
Fig. 5 depicts the efficiency of all the approaches, measured
by the average CPU execution time taken to solve an in-
stance of the EUA problem. Optimal is the most inefficient
approach that might take up to 50 seconds to find an optimal
user allocation solution. The elapsed CPU time of Optimal
increases considerably as we increase the size of the EUA
problem by adding more users (Set #1, Fig. 5a), more edge
servers (Set #2, Fig. 5b), and more edge server capacity
(Set #3, Fig. 5c). When it reaches a threshold, the elapsed

CPU time of Optimal decreases at a slower rate than it
increases. This threshold is determined by the number of
users to be allocated and the amount of computing resources
(available edge server capacity or available edge servers).
To be specific, in Fig. 5a, the CPU time starts to decrease
at 500 users. This happens because when the number of
users exceeds 500, a newly generated user tends to be
positioned at the exact location of an existing user. Thus,
the IBM CPLEX solver can base its decisions to be made for
the new user on the decisions made for the existing user.
As a result, we can see the elapsed CPU time is almost
symmetrical around that threshold (500 users). In Figs. 5b
and 5c, the elapsed CPU time decreases from 80% of the
total number of edge servers and from µ = 45 onward,

9

(a) Elapsed CPU time vs. Number of
users (Set #1)

(b) Elapsed CPU time vs. Number of
edge servers (Set #2)

(c) Elapsed CPU time vs. Edge
server capacity (Set #3)

Fig. 5: CPU time consumption in experiment Sets #1, #2, and #3

(a) Elapsed CPU time vs. Number of
users (Set #1)

(b) Elapsed CPU time vs. Number of
edge servers (Set #2)

(c) Elapsed CPU time vs. Edge
server capacity (Set #3)

Fig. 6: CPU time consumption in experiment Sets #1, #2, and #3 without Optimal and ICSOC19

respectively. This occurs because after those thresholds, the
whole MEC system is likely to have sufficient computing
resources to serve a greater number of users without having
to consider many other possible allocation solutions, hence
less time required to decide an optimal solution.

Due to the extreme inefficiency of Optimal and ICSOC19,
Fig. 5 does not fully demonstrate the efficiency of other
approaches. Therefore, Optimal and ICSOC19 have been
excluded in Fig. 6 so that the efficiency of other approaches
can be visualized better. In all experiment sets (Figs. 6a, 6b,
and 6c), TPDS20 is two to three orders of magnitude slower
than other approaches, and its execution time increases
roughly linearly with the increases in any experimental
parameters. The rationale of this lies in the algorithm design
of TPDS20, which is an iterative mechanism that might
involve hundreds of iterations depending on the scale of
the problem. MCF, on the other hand, only takes around 1-2
ms to solve the problem in any experimental setting. This
demonstrates the scalability of MCF.

Generally speaking, MCF has been demonstrated to be
highly effective and efficient, outperforming all the baseline
and state-of-the-art approaches. TPDS20, while being suit-
able for solving that particular problem studied in [?], is
not suitable when it comes to solving the EUA problem in-
troduced in this paper. After all, game-theoretic approaches
have not been seen in the current literature as a method for
solving the bin packing problem.

6.3.3 Statistical Analysis
In this paper, each experiment is repeated 100 times to
obtain 100 different random user distributions. To determine
whether the approaches in comparison (Optimal, MCF,

Greedy, Random, ICSOC19, and TPDS20) are really dif-
ferent when applied to all possible user distributions (of
the relevant size), we perform one-sided Wilcoxon signed-
rank tests [33] with a significance level of 0.01 on all
three experiment sets. The detailed statistical results can be
found in Appendix A of the supplemental file. In summary,
the Wilcoxon signed-rank tests indicate that the difference
between the effectiveness of MCF and other baseline ap-
proaches under the majority of experimental settings are
statistically significant at the α = 0.01 level. The statistical
results are in line with the experimental results discussed
above. With regard to the efficiency, the execution time of
MCF is consistent at around 1-2 ms so we do not perform a
statistical test for that.

6.4 Threats to Validity
Threats to Construct Validity. To mitigate the threats to
construct validity, we evaluate the performance of our ap-
proach against several baseline approaches (Greedy and
Random), well-known approaches for solving the bin pack-
ing problem (demonstrated in Section 7.2), and state-of-the-
art approaches (TPDS20 and ICSOC19). Furthermore, we
conducted experiments with three varying parameters as
described in Table 2 to simulate different edge computing
scenarios in the real world. In this way, we could reliably
evaluate our approach through both comparisons with the
other approaches and also the impacts of each varying
experimental parameter on our approach.

Threats to External Validity. A major threat to external
validity is whether our findings can be generalized to other
application domains in edge computing. To minimize this

10

threat, we first use a generic dataset. Since different ap-
plication domains might have different factors that could
impact the experimental results, such as the density and
distribution of edge servers and users, our approach is
evaluated across various sizes and complexity, which is con-
trolled by varying the number of users, the number of edge
servers as well as their available computing capacities. This
helps increase the generalizability of our results. Different
users’ computing requirements have also been tested, which
produced similar results presented in this paper.

Threats to Internal Validity. A threat to the internal
validity of our work is the comprehensiveness of our exper-
iments and whether or not the results are not biased by the
experimental parameter settings. To mitigate this threat, we
carry out extensive experiments with systematically selected
parameters. The three experimental parameters (Table 2) are
the three representative ones that directly impact the out-
comes of the approaches. Additionally, for each experiment
set, we experiment with 100 different user distributions,
randomly selected from the pool of users to eliminate the
potential bias caused by highly special scenarios, such as
overly dense or sparse distributions.

Threats to Conclusion Validity. To mitigate the threats
to conclusion validity, we conduct a comprehensive eval-
uation of the proposed heuristic against other approaches
that cover many different scenarios, varying in both size
and complexity. The results are averaged over 100 runs of
the same experimental setting. After that, a statistical test is
performed to validate the difference between the proposed
heuristic and other baseline approaches.

7 RELATED WORK

Edge computing is a natural extension of cloud computing
with regard to the network topology and infrastructure
deployment, where the architecture is more geographically
distributed compared to cloud computing. This new archi-
tecture pushes cloud computing resources closer to end-
users. Barcelona in Spain is one of the first cities imple-
menting edge computing with many applications, includ-
ing power monitoring in public spaces, event-based video
streaming, traffic analysis, and connectivity on-demand [?].
There are more than 3,000 edge servers deployed across the
city serving thousands of IoT devices. The sheer number
of edge servers and end-devices, with the horizontal scaling
nature of edge computing, leads to the need for effective and
efficient solutions to many different research problems faced
by app vendors, including the user allocation problem.

7.1 User Allocation
In an edge computing environment, an app vendor can
deploy its applications and services on edge servers so
that users can access those applications and services with
minimum latency. From an app vendor’s perspective, the
user allocation problem is the problem of how to allocate
its users to proper edge servers so that some optimiza-
tion objectives are satisfied. We first introduced the user
allocation problem in our previous work [1]. However, the
extreme inefficiency of the proposed approach has led us
to this current work. [34] studies the cloudlet placement

and users-to-cloudlets allocation in wireless metropolitan
networks. In their scenario, users are connected to access
points, which might or might not have a cloudlet. They
group all users who are connected to the same access
point and then turn it into the problem of allocating access
points to cloudlets from an edge infrastructure provider’s
perspective. We, on the other hand, tackle the user allocation
problem from an app vendor’s perspective in the edge
computing environment and allocate users to edge servers
individually. [35] studies the service placement problem that
takes into account user mobility. The users-to-edge-servers
allocation is assumed to be automatically handled by the
edge infrastructure provider. [13] also tackles the resource
allocation for edge computing, which allocates edge server
computing resources to multiple competing services owned
by different app vendors at the network edge. We take the
next step and address the user allocation problem, which
allocates the edge server computing resources owned by a
single app vendor to its users.

In [36], [37], the authors assume that each small geo-
graphical area will only receive coverage from a single edge
server, or each server covers a region exclusively with other
servers. This is unlikely to happen in any practical mobile
edge computing situations, where different edge servers’
coverages might partially overlap to avoid non-service areas
[11], [19]. [18] considers the user mobility scenario where
users can move from one place to another, which requires
reallocating users among edge servers. Their user alloca-
tion approach aims at maximizing the number of users
while minimizing the number of reallocations. This does
not help minimize the number of required servers, which
is one of our optimization objectives. [?] proposes a game-
theoretic user allocation approach that minimizes system
costs, measured by the amount of computing resources
needed to serve users and the penalty of having unallocated
users. This approach also indirectly minimizes the number
of required edge servers so we have compared it with our
approach in Section 6.

Computation offloading [11], [17], [38] is an important
research track in edge computing that shares some sim-
ilarities with the user allocation problem. Nevertheless,
those two problems are differentiated by several essential
characteristics. In the computation offloading problem, a
user generates a series of computation tasks, which can be
partly executed on its local device and edge servers (partial
offloading), or completely on edge servers or remote clouds
(full offloading) [39]. A computation task usually has a
single-dimensional resource requirement (CPU cycles) [11],
[17], [40]. On the other hand, in the user allocation problem,
an app vendor needs to dedicate multiple types of resources
to serve a user on an edge server [?], [25], [26]. In some
works [11], [17], users are assumed to be pre-allocated to
edge servers before proceeding to the task offloading phase.
Furthermore, a user in the user allocation problem must be
allocated to a server, either an edge server or a cloud server,
instead of being able to partially offload its computation
tasks, or share computation tasks among edge servers.

Cloud task scheduling is also a research area that shares
some similarities with the EUA problem. Nevertheless, from
the app user’s perspective, the virtual machines or clouds
in the same data center share the same reachability while an

11

1 2 3 4 5 6 7 8 9 10
Number of users (x100)

4

6

8
Nu

m
be

r o
f u

se
rs
 p
er
 se

rv
er

MCF
FirstFit
FirstFitDecreasing
FirstFitIncreasing
BestFit
BestFitDecreasing
BestFitIncreasing

(a) Average number of users per re-
quired edge server vs. Number of
users (Set #1)

10 20 30 40 50 60 70 80 90 100
Number of servers (%)

4

5

6

7

Nu
m

be
r o

f u
se

rs
 p

er
 se

rv
er

MCF
FirstFit
FirstFitDecreasing
FirstFitIncreasing
BestFit
BestFitDecreasing
BestFitIncreasing

(b) Average number of users per re-
quired edge server vs. Number of
edge servers (Set #2)

30 35 40 45 50 55 60 65 70 75
Available se ve capacity (μμ

4

6

8

10

12

Nu
m

be
 o

f u
se

 s
 p

e
 se

 v
e

MCF
Fi stFit
Fi stFitDec easing
Fi stFitInc easing
BestFit
BestFitDec easing
BestFitInc easing

(c) Average number of users per re-
quired edge server vs. Edge server
capacity (Set #3)

Fig. 7: Comparison of several classic approximation algorithms for the bin packing problem

app user can only access an edge server that covers it. This
proximity constraint is one of the unique characteristics in
the edge computing environment, which has been widely
acknowledged in many other studies of edge computing [?],
[11], [18], [19].

7.2 Bin Packing
Bin Packing is a classic combinatorial NP-hard optimiza-
tion problem widely applied in different disciplines such
as operation research, or computer science (multiprocessor
scheduling [41], cloud task and resource allocation [42],
[43]). There are many variations of this problem, e.g., pack-
ing by weight or by cost [?], multi-dimensional BP [44],
dynamic BP [45], and a lot more variants with different
modified conditions, constraints, and assumptions to model
different problems. The latest attempt at exactly solving the
BP problem involves constraint programming. Shaw [46]
proposes a new dedicated constraint based on a set of prun-
ing and propagation rules, which is later on implemented
in IBM CPLEX [47], which is the tool used in this paper to
search for optimal solutions to EUA problems.

Along with exact algorithms, various approximation
algorithms have also been introduced to solve different
variants of the classic BP problem. Most of the proposed
approximation algorithms are designed for different special
cases or variants of the classic BP problem, such as splittable,
small items (relative to the size of a bin) [48], variable-sized
items with identical bins [28], minimizing the total used bins
load with only two bin sizes [49]. Surveys on approximation
algorithms for BP problems can be found in [47], [50]. BP is
a straightforward problem so any improvement in online
solutions would require a special assumption as mentioned
above. The authors of [51] state that the theoretical analysis
of variable-sized BP remains open even in the case of only
three different bin sizes. In an MEC environment, edge
servers are most likely to have more than three differ-
ent sizes (capacities). Therefore, to properly evaluate our
approaches, we also compare our approaches with some
representative approximation algorithms for solving the BP
problem [51], including First Fit, First Fit Decreasing, First
Fit Increasing, Best Fit, Best Fit Decreasing, Best Fit Increas-
ing (Fig. 7). Next Fit and Next Fit Decreasing are not suitable
for the EUA problem since it allows only one open bin at all
times. Our proposed MCF is essentially a variant of Worst

Fit Increasing, which prioritizes already-active edge servers
and is adapted to multi-dimensional computing resource
requirements.

As demonstrated by Figs. 7a and 7c, the increasing vari-
ants, which allocate users with low resource requirements
first, outperform other approaches, especially the decreasing
variants. This highlights the importance of the order of
users being allocated. In all experimental settings, especially
Set #2 (Fig. 7b), MCF outperforms all other approaches in
comparison. More experimental results and statistical tests
can be found in Appendix B of the supplemental file. [52]
models the machine reassignment problem also as a VSVBP
problem. Its proposed heuristic is a generalization of First
Fit Decreasing and Best Fit Decreasing, which have been
shown above to be not suitable for the EUA problem.

8 CONCLUSION AND FUTURE WORK

Further complementing the conventional cloud computing,
edge computing is a promising distributed computing ar-
chitecture that is expected to deliver many new genres
of services and applications, especially those that require
low-latency connection and real-time decision making. This
comes with many new challenges of which user allocation
is one of them. When an edge computing environment
scales up, this problem becomes intractable to solve in an
efficient manner due to its NP-hardness. Therefore, we
propose MCF (Most Capacity First) – a simple yet highly
effective and efficient heuristic, to solve the user allocation
in large-scale scenarios, aiming to allocate as many users to
as few edge servers as possible. Our experiments on a real-
world dataset demonstrate the performance of our approach
against the baseline and state-of-the-art approaches.

Being a new problem and has not been studied exten-
sively, there are many possible directions for future work.
Edge servers’ performance degradation caused by the in-
terference of workloads, or differentiated user workload
patterns, may occur in some applications. This could poten-
tially impact the performance and the available resources
of an edge computing system, hence must be considered in
future studies. Furthermore, it is possible that some users
might not use the entire resources allocated to them during
their runtime, leading to an under-utilized edge computing
infrastructure. We can thus investigate the scenario where
the runtime resource consumption might noticeably differ

12

from the resources allocated during the allocation process.
One can also consider a dynamic scenario where users come
and go over time or users can move across edge servers,
which may incur extra costs such as service reconfiguration
cost or migration cost. Those costs, if available, must be
incorporated into the approach proposed in this paper.

ACKNOWLEDGMENTS

This research is partly funded by Australian Research Coun-
cil Discovery Project grants DP170101932, DP180100212, and
Laureate Fellowship FL190100035.

REFERENCES

[1] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in Proceedings of International
Conference on Service-Oriented Computing. Springer, 2018, pp. 230–
245.

[2] P. Cerwall, A. Lundvall, P. Jonsson, S. Carson, R. Möller,
P. Jonsson, S. Carson, P. Lindberg, K. Öhman, I. Sorlie, R. Queirós,
F. Muller, L. Englund, M. Arvedson, and A. Carlsson, “Ericsson
mobility report,” Ericsson, Stockholm, 2018. [Online]. Available:
www.ericsson.com/en/mobility-report/reports/november-2018

[3] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzel-
man, “Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture,” in Proceedings of IEEE
Symposium on Computers and Communications. IEEE, 2012, pp.
59–66.

[4] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 4, pp. 974–983, 2015.

[5] B. Varghese, N. Wang, D. S. Nikolopoulos, and R. Buyya, “Feasi-
bility of fog computing,” arXiv preprint arXiv:1701.05451, 2017.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the Internet of Things,” in Proceedings of the first
edition of the MCC Workshop on Mobile Cloud Computing. ACM,
2012, pp. 13–16.

[7] M. Satyanarayanan, “The emergence of edge computing,” Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[8] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the Workshop on Mobile
Big Data. ACM, 2015, pp. 37–42.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[10] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—A key technology towards 5G,” ETSI white
paper, vol. 11, no. 11, pp. 1–16, 2015.

[11] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in
Proceedings of IEEE Conference on Computer Communications. IEEE,
2018, pp. 207–215.

[12] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient com-
putation offloading management scheme in the densely deployed
small cell networks with mobile edge computing,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[13] D. T. Nguyen, L. B. Le, and V. Bhargava, “Price-based resource
allocation for edge computing: A market equilibrium approach,”
IEEE Transactions on Cloud Computing, pp. 515–529, 2018.

[14] T. C. Ferreto, M. A. Netto, R. N. Calheiros, and C. A. De Rose,
“Server consolidation with migration control for virtualized data
centers,” Future Generation Computer Systems, vol. 27, no. 8, pp.
1027–1034, 2011.

[15] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai,
and F. Xia, “A survey on virtual machine migration and server
consolidation frameworks for cloud data centers,” Journal of Net-
work and Computer Applications, vol. 52, pp. 11–25, 2015.

[16] “Resource management in clouds: Survey and research challenges,
author=Jennings, Brendan and Stadler, Rolf,” Journal of Network
and Systems Management, vol. 23, no. 3, pp. 567–619, 2015.

[17] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[18] Q. Peng, Y. Xia, Z. Feng, J. Lee, C. Wu, X. Luo, W. Zheng, H. Liu,
Y. Qin, and P. Chen, “Mobility-aware and migration-enabled on-
line edge user allocation in mobile edge computing,” in Proceedings
of IEEE International Conference on Web Services. IEEE, 2019, pp.
91–98.

[19] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking,
J. Grundy, and Y. Yang, “Edge user allocation with dynamic
quality of service,” in Proceedings of International Conference on
Service-Oriented Computing. Springer, 2019, pp. 86–101.

[20] Y. Lin and H. Shen, “CloudFog: Leveraging fog to extend cloud
gaming for thin-client MMOG with high quality of service,” IEEE
Transactions on Parallel and Distributed Systems, no. 2, pp. 431–445,
2017.

[21] J. Smith, “The Mobile Gaming Report: Market size, the fee-to-play
model, and new opportunities to market and monetize,” Business
Insider Intelligence, Tech. Rep., 2016. [Online]. Available:
www.businessinsider.com/the-mobile-gaming-report-market-
size-the-free-to-play-model-and-new-opportunities-to-market-
and-monetize

[22] M. R. Garey and D. S. Johnson, Computers and intractability. WH
Freeman New York, 2002, vol. 29.

[23] W. Leinberger, G. Karypis, and V. Kumar, “Multi-capacity bin
packing algorithms with applications to job scheduling under
multiple constraints,” in Proceedings of International Conference on
Parallel Processing. IEEE, 1999, pp. 404–412.

[24] H. Hallawi, J. Mehnen, and H. He, “Multi-capacity combinatorial
ordering GA in application to cloud resources allocation and effi-
cient virtual machines consolidation,” Future Generation Computer
Systems, vol. 69, pp. 1–10, 2017.

[25] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Quality of experience (QoE)-aware placement of applications in
fog computing environments,” Journal of Parallel and Distributed
Computing, vol. 132, pp. 190–203, 2019.

[26] M. Aazam, M. St-Hilaire, C.-H. Lung, and I. Lambadaris,
“MeFoRE: QoE based resource estimation at fog to enhance QoS
in IoT,” in Proceedings of International Conference on Telecommunica-
tions. IEEE, 2016, pp. 1–5.

[27] C. Romero, Handbook of critical issues in goal programming. Elsevier,
2014.

[28] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for
vector bin packing,” Microsoft Research, 2011.

[29] ETSI, “Universal Mobile Telecommunications System
(UMTS); Requirements for Support of Radio Resource
Management (FDD) (3G TS 25.133 version 3.1.0 Release
1999),” Technical Report, Tech. Rep., 2000. [Online]. Available:
www.etsi.org/deliver/etsi ts/125100 125199/125133/03.01.00 60
/ts 125133v030100p.pdf

[30] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Mühlhäuser, “MOERA:
Mobility-agnostic online resource allocation for edge computing,”
IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1843–
1856, 2018.

[31] C. Liang, Y. He, F. R. Yu, and N. Zhao, “Enhancing video rate
adaptation with mobile edge computing and caching in software-
defined mobile networks,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 10, pp. 7013–7026, 2018.

[32] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and
research challenges for 5G wireless networks,” IEEE Wireless Com-
munications, vol. 21, no. 2, pp. 106–112, 2014.

[33] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. CRC Press, 2003.

[34] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,”
IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 725–737,
2015.

[35] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge com-
puting,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 10, pp. 2333–2345, 2018.

[36] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heterogeneous
cloudlet deployment and user-cloudlet association toward cost
effective fog computing,” Concurrency and Computation: Practice
and Experience, vol. 29, no. 16, p. e3975, 2017.

13

[37] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource
allocation for arbitrary user mobility in distributed edge clouds,”
in Proceedings of International Conference on Distributed Computing
Systems. IEEE, 2017, pp. 1281–1290.

[38] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with
nearby mobile devices: A work sharing algorithm for mobile edge-
clouds,” IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp.
329–343, 2016.

[39] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Communications
Surveys and Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[40] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user
mobile-edge computing systems,” IEEE Transactions on Wireless
Communications, vol. 16, no. 9, pp. 5994–6009, 2017.

[41] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “An application
of bin-packing to multiprocessor scheduling,” SIAM Journal on
Computing, vol. 7, no. 1, pp. 1–17, 1978.

[42] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing for resource
allocation in the cloud,” in Proceedings of ACM symposium on
Parallelism in Algorithms and Architectures. ACM, 2014, pp. 2–11.

[43] C. Li and X. Tang, “On fault-tolerant bin packing for online
resource allocation,” IEEE Transactions on Parallel and Distributed
Systems, 2019.

[44] C. Chekuri and S. Khanna, “On multidimensional packing prob-
lems,” SIAM Journal on Computing, vol. 33, no. 4, pp. 837–851, 2004.

[45] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Dynamic bin
packing,” SIAM Journal on Computing, vol. 12, no. 2, pp. 227–258,
1983.

[46] P. Shaw, “A constraint for bin packing,” in Proceedings of Inter-
national Conference on Principles and Practice of Constraint Program-
ming. Springer, 2004, pp. 648–662.

[47] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting
stock problems: Mathematical models and exact algorithms,” Eu-
ropean Journal of Operational Research, vol. 255, no. 1, pp. 1–20, 2016.

[48] Y. Azar, I. R. Cohen, A. Fiat, and A. Roytman, “Packing small
vectors,” in Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms. Society for Industrial and Applied Mathematics, 2016, pp.
1511–1525.

[49] S. S. Seiden, R. Van Stee, and L. Epstein, “New bounds for variable-
sized online bin packing,” SIAM Journal on Computing, vol. 32,
no. 2, pp. 455–469, 2003.

[50] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, “Approxima-
tion and online algorithms for multidimensional bin packing: A
survey,” Computer Science Review, vol. 24, pp. 63–79, 2017.

[51] E. G. Coffman Jr, J. Csirik, G. Galambos, S. Martello, and D. Vigo,
“Bin packing approximation algorithms: Survey and classifica-
tion,” in Handbook of Combinatorial Optimization. Springer, 2013,
pp. 455–531.

[52] M. Gabay and S. Zaourar, “Variable size vector bin packing
heuristics - Application to the machine reassignment problem,”
Sep. 2013, working paper or preprint. [Online]. Available:
www.hal.archives-ouvertes.fr/hal-00868016

Phu Lai received his MSc degree in Informa-
tion Technology in 2017 and is currently working
toward a PhD degree at Swinburne University
of Technology, Australia. His research interests
include software engineering, cloud computing
and edge computing.

Qiang He received the first PhD degree from
Swinburne University of Technology (SUT), Aus-
tralia, in 2009 and the second PhD degree
in computer science and engineering from
Huazhong University of Science and Technol-
ogy (HUST), China, in 2010. He is a lec-
turer at Swinburne University of Technology.
His research interests include software engi-
neering, cloud computing, services computing,
big data analytics, and green computing. More
details about his research can be found at

www.sites.google.com/site/heqiang/.

John Grundy is the Senior Deputy Dean for
the Faculty of Information Technology and a
Professor of Software Engineering at Monash
University. He holds the BSc(Hons), MSc and
PhD degrees, all in Computer Science, from the
University of Auckland. He is a Fellow of Au-
tomated Software Engineering, Fellow of Engi-
neers Australia, Certified Professional Engineer,
Engineering Executive, Member of the ACM and
Senior Member of the IEEE. His current inter-
ests include domain-specific visual languages,

model-driven engineering, large-scale systems engineering, and soft-
ware engineering education. More details about his research can be
found at www.sites.google.com/site/johncgrundy/.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia, in
2015. She is a lecturer at Deakin University. Her
research interests include software engineering,
cloud computing and green computing.

Mohamed Abdelrazek is an Associate Profes-
sor of Software Engineering and IoT at Deakin
University. Mohamed has more than 15 years
of the software industry, research, and teach-
ing experience. Before joining Deakin Univer-
sity in 2015, he worked as a senior research
fellow at Swinburne University of Technology
and Swinburne-NICTA software innovation lab
(SSIL). Before 2010, he was the head of the
software development department at Microtech.
More details about his research can be found at

www.sites.google.com/site/mohamedalmorsy/.

John Hosking is Dean of Science at the Uni-
versity of Auckland and Adjunct Professor of
Computer Science at the ANU. His research in-
terests are primarily in the Software Engineer-
ing/Software Tools area and he is an active
member of the Automated Software Engineering
and Visual Languages research communities.
John is a Fellow of the Royal Society of New
Zealand and a Member of the Ako Aotearoa
Academy of Tertiary Teaching Excellence.

Yun Yang received his PhD degree from the Uni-
versity of Queensland, Australia, in 1992. He is a
full professor at Swinburne University of Technol-
ogy. His research interests include software en-
gineering, cloud computing, workflow systems,
and service-oriented computing.

