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Abstract—Mobile edge computing (MEC) allows edge servers to be deployed at cellular base stations. Mobile app vendors like Uber
and YouTube can hire computing resources and deploy applications on edge servers for their users to access with a low latency
connection. Non-orthogonal multiple access (NOMA) has emerged as a new technology with a high potential to support the massive
connectivity of 5G networks, further enhancing the capability of MEC. The edge user allocation (EUA) problem, in which a mobile app
vendor needs to allocate its users to edge servers to achieve certain optimization objectives, faces new challenges in 5G NOMA-based
MEC systems. In this paper, we investigate the EUA problem in a multi-cell multi-channel downlink power-domain NOMA-based MEC
system. The main objective is to help mobile app vendors maximize their benefit by allocating as many users as possible in a specific
area at the lowest computing resource cost. To this end, we propose a decentralized game-theoretic approach to effectively select a
channel and edge server for each user while fulfilling their resource requirements, e.g., CPU, RAM, storage, and data rate requirement.
We theoretically and experimentally evaluate our solution, which significantly outperforms baseline and state-of-the-art approaches.
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1 INTRODUCTION

MOBILE edge computing (MEC) [1] is introduced to
tackle one of the most challenging obstacles in cloud

computing – high and unpredictable latency. By deploying
edge servers at cellular base stations (BSs), mobile network
operators can offer computing resources at the network
edge, much closer to mobile users (referred to as ”users”
hereafter for simplicity). Mobile app vendors like Uber and
YouTube can hire these computing resources for hosting
their applications to serve their users with low latency.
This is particularly critical for latency-sensitive applications
and services such as facial recognition, interactive VR/AR
gaming, vital monitoring systems, etc.

The rapid growth of mobile subscriptions promoted by
4G and the forthcoming 5G, which is predicted to reach 9
billions in 2025 [2], has put a great burden on the exist-
ing wireless communication infrastructure. Several multiple
access techniques for wireless communication have been
widely adopted for decades, e.g., code division multiple
access (CDMA), time division multiple access (TDMA), and
orthogonal frequency division multiple access (OFDMA). In
conventional systems that employ those orthogonal multi-
ple access (OMA) techniques, different users are allocated
orthogonal resources in time, code, or frequency domain.
Take OFDMA scheme for example, each individual user
is allocated a dedicated channel, which prevents multiple
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access interference. However, such schemes are not capable
of supporting a massive number of simultaneous users.
As a result, non-orthogonal multiple access (NOMA) was
proposed to support the massive connectivity demanded
by 5G [3], [4]. NOMA achieves high spectral efficiency by
allowing multiple users to be served simultaneously using
the same time and frequency resources (channels) in power
or code domain [4].

In this work, we focus on downlink NOMA networks in
power domain because downlink is important for applica-
tions that transmit a substantial amount of data to users,
e.g., video streaming or interactive VR/AR applications.
To deal with the intra-cell interference caused by multiple
users sharing the same channel, successive interference can-
cellation (SIC), a multi-user signal separation technique, is
applied at the receivers when decoding wireless signals. By
multiplexing users in the power domain at the transmitters
(BSs) and employing SIC at the receivers (users), NOMA
has been demonstrated to significantly improve the capacity
and user throughput performance compared to conven-
tional multiple access schemes [4]. NOMA is undoubtedly
a promising enabler for 5G networks and has attracted
tremendous attention from both academia and industry.

In addition to communication resources, computing re-
sources hired on edge servers also need to be optimized.
Similar to cloud computing, MEC also benefits from multi-
tenancy [5], where multiple tenants/users can be simulta-
neously served by a single software instance or share the
same infrastructure or database in an efficient manner [6],
[7]. It allows higher resource utilization, energy efficiency,
and overall performance on edge servers through workload
consolidation [8]. In an MEC environment, multi-tenancy
benefit can be achieved by allocating as many users as
possible to an edge server as long as it does not overload
the communication resources on the edge server with the
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incurred intra-cell interference. Leveraging multi-tenancy
effectively allows an app vendor to reduce the amount
of computing resources required to serve its users, saving
system costs or operating costs. At the same time, saving
edge servers’ computing resources enables the app vendor
to accommodate more users. This is essential for every app
vendor and must be seriously considered in the allocation
of users to edge servers.

The problem of allocating users to edge servers in an
MEC system is referred to as an edge user allocation (EUA)
problem. Recently, researchers are starting to investigate the
impact of NOMA on the computation offloading problem
[9] in MEC systems but not the EUA problem. Existing user
allocation approaches do not consider both communication
and computation aspects in the MEC system at the same
time. User allocation approaches in pure cellular systems
[10], [11], [12], [13] often lack the computation aspects of the
scarcity and heterogeneity of computing resources on edge
servers. Meanwhile, user allocation approaches in MEC
systems [5], [14], [15], [16] often neglect the communica-
tion aspects of multiple wireless channels, interference, and
power control, especially in a NOMA setting.

In this paper, from the app vendor’s perspective, we
make the first attempt to tackle the cost-effective EUA
problem in a downlink multi-cell multi-user 5G NOMA-
based MEC system. The app vendor needs to allocate each
user by jointly making two different decisions: 1) user
allocation, including edge server assignment and channel
assignment, and 2) power allocation, such that the number
of users allocated to edge servers is maximized, and the
system cost (costs of computing resources, i.e., the amount
of computing resources needed) is minimized. Meanwhile,
a number of unique constraints of MEC systems must be
satisfied (minimum user data rate requirement, proximity,
and resource constraints, etc.), taking into account intra-
cell and inter-cell interferences. Due to the NP-hardness
of this NOMA-EUA problem (to be proved later in this
paper), it is intractable to find an optimal solution in large-
scale scenarios. To tackle this challenge, we propose an
efficient game-theoretic approach that can find NOMA-EUA
solutions in a decentralized manner. The main contributions
of this paper include:

• We formulate the NOMA-EUA problem, taking into
account multiple channels, interferences, and power
control, and prove its NP-hardness.

• We formulate this problem as a potential game and
theoretically analyze the existence of at least one
Nash equilibrium in the game.

• To find the NOMA-EUA solution, we propose an
iterative and decentralized algorithm, named miUA,
for finding the Nash equilibrium in the game.

• We conduct a series of experiments to evaluate the
performance of miUA. It is shown that miUA signif-
icantly outperforms all state-of-the-art and baseline
approaches.

The remainder of the paper is organized as follows.
Section 2 discusses the key motivation for this work and
Section 3 introduces our NOMA system model. Section
4 formulates the NOMA-EUA problem, which consists of
two subproblems: a user allocation problem and a power
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Fig. 1: An example of downlink multi-cell NOMA-based
MEC networks

allocation problem. Section 5 proposes a solution to the user
allocation problem, including a theoretical analysis. Section
6 shows a solution to the power allocation problem. miUA
is experimentally evaluated in Section 7. In Section 8, we
review the relevant literature. Finally, we conclude the paper
and point out future work in Section 9.

2 MOTIVATION

In a 5G MEC system, BSs are densely distributed, espe-
cially in high-traffic areas. Their cell coverage areas usually
partially overlap to minimize non-service areas – areas in
which users can not be served by any edge server/BS1. A
user located in the overlapping region can be allocated to
one of the edge servers covering the user (proximity con-
straint) as long as that edge server has sufficient computing
resources such as CPU or RAM, and communication re-
sources such as channels (resource constraint). An edge server
can serve users on a number of channels, where multiple
users can be assigned to each single channel at the same
time. Compared to a typical cloud environment, an edge
server has a very limited amount of computing resources
[17], [18]. Furthermore, a channel cannot be used to serve
too many users at once due to the high interference it would
cause. Thus, an ineffective user-to-edge-server allocation
will soon exhaust the computing and networking resources
and result in poor data rate for users. Similar to [5], [19],
[20], [21], we consider a quasi-static scenario where users
are relatively stationary and do not quickly travel across
different BSs/edge servers when they are being allocated to
edge servers, e.g. mobile or IoT users who are not moving
at a high speed, traffic cameras, smart sensors, etc.

In downlink NOMA, SIC is facilitated by differentiating
the transmit power between users sharing the same channel
[3]. In single-cell NOMA scenarios, to ensure successful
decoding of the superposed signal sent by a BS, stronger
users on a channel (who have higher channel gains) are

1. We speak interchangeably of edge servers and base stations. For
the sake of consistency, we will hereafter try to use the term ”edge
server” instead of ”base station”. In situations where the communica-
tion/networking aspects are discussed, ”base station” will be used.
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allocated less transmit power, and weaker users (who have
lower channel gains) are allocated more transmit power [22].
Each user employs SIC to remove the signal interference
caused by users with lower channel gains. Nevertheless,
decoding solely by the order of channel gains is not appli-
cable to multi-cell NOMA scenarios because users’ channel
conditions are now also affected by the inter-cell interference
caused by their unassociated neighbor BSs [12], which could
be very severe in a dense multi-cell network.

Take Fig. 1 for example, where user 3 and user 4 suffer
from intra-cell interference as they share the same channel
on the same edge server. In addition to intra-cell interfer-
ence, user 3 is also impacted by the inter-cell interference
caused by its neighbor BSs, i.e., BS 1 and BS 2. Fortunately,
it has been demonstrated that an effective power allocation
and decoding order can considerably reduce inter-cell in-
terference [12], which in turn improves users’ data rate,
or system throughput in general [12], [22]. Thus, the EUA
problem must be jointly solved with the power allocation
problem to ensure that every user receives an app-specific
satisfactory data rate.

3 SYSTEM MODEL

3.1 System Description
Edge Servers: An MEC system consists of a set of M BSs

denoted by S = {s1, s2, ..., sM}. Each BS is equipped with
an edge server. Each edge server sj ∈ S , j ∈ {1, 2, ...,M},
has a specific amount of computing resources of different
types T = {CPU,RAM, storage, ...}. The computing capac-
ity of an edge server sj is represented by a |T |-dimensional
vector Qj = (Qt

j), where each dimension Qt
j is the capacity

of resource type t ∈ T . Each edge server sj covers a specific
geographic area with cell radius Rj .

For each edge server sj , the total bandwidth B is
equally divided into a set of V channels denoted by Cj =
{c1j , c2j , ..., cVj }. The bandwidth of each channel ckj ∈ Cj is
thus Bk

j = B/V , where k ∈ {1, 2, ..., V }.
Mobile users: The set of all the N users is denoted by

U = {u1, u2, ..., uN}. For each user ui ∈ U , i ∈ {1, 2, ..., N},
let a |T |-dimensional vector wi = (wt

i), t ∈ T , denote user
ui’s computing resource requirement, i.e., the amount of
computing resources that could be consumed by an edge
server assigned to serve user ui. Let dj,i be the distance
between user ui and edge server sj , and Si = {sj ∈ S|dj,i ≤
Rj},∀ui ∈ U , be the set of user ui’s neighbor edge servers,
i.e., edge servers that have user ui in their cell coverage
areas. Note that an individual user can be allocated to only
one channel on an edge server. To allocate each user ui ∈ U ,
two decisions need to be made as defined below:

Definition 1. (User Allocation Decision) Given the set of edge
server S = {s1, ..., sM}, each edge server sj ∈ S has a set
of channels Cj = {c1j , ..., cVj }, let ak

j,i = {0, 1} be the binary
decision variable for user ui. We have ak

j,i = 1 if user ui is
allocated to edge server sj on channel ckj ; otherwise ak

j,i = 0.
We use a = {ai|ui ∈ U} to denote the user allocation strategy
composed by the decisions for all the users ∀ui ∈ U , and ai ,
(sj , c

k
j ), where ak

j,i = 1, sj ∈ S , ckj ∈ Cj , which indicates the
channel and edge server to which user ui is allocated.

Let Uj = {ui ∈ U|
∑V

k=1 akj,i = 1},∀sj ∈ S , denote the

set of users allocated to edge server sj , and Uk
j = {ui ∈

U|akj,i = 1},∀sj ∈ S,∀ckj ∈ Cj , denote the set of users
allocated to channel ckj on edge server sj .

Definition 2. (Power Allocation Decision) Let pk
j,i denote the

transmit power allocated to user ui on channel ckj of edge server
sj , i.e., the amount of power used by edge server sj to transmit
data to user ui on channel ckj . We use p = {pk

j,i|ui ∈ U , sj ∈
S, ckj ∈ Cj} to denote the power allocation strategy composed by
the power allocation decisions for all the users.

The notations used in this paper are summarized in
Appendix ?? of the supplementary file.

3.2 Signal Model
According to the NOMA scheme [4], edge server sj

broadcasts a superposition-coded signal xkj to all the users
allocated on channel ckj simultaneously. The transmitted
signal xkj can be expressed as follows:

xkj =
∑

ui∈Ukj

√
pk
j,ix

k
j,i (1)

where xkj,i is the signal transmitted from edge server sj to
user ui on channel ckj . NOMA facilitates a simultaneous
transmission of multiple users’ signals [12], [23], whose
power levels are differentiated, over the same transmission
period and channel. We denote the total transmit power of
edge server sj on channel ckj by pkj =

∑
ui∈Ukj

pk
j,i. The total

transmit power allocated to all the users on all the channels
of an edge server sj must not exceed its maximum transmit
power Pj : we have

∑
ckj∈Cj

pkj ≤ Pj .
For each user ui allocated to edge server si on channel

ckj (when akj,i = 1), its received signal ykj,i is the summation
of its intended signal, intra-cell interference (caused by
other users sharing the same channel), inter-cell interference
(caused by nearby BSs/edge servers), and other noise. Note
that (1) includes both the signal intended for user ui and the
signal intended for the other users sharing the same channel
with ui, which causes intra-cell interference. ykj,i is defined
as follows:

ykj,i = hkj,ix
k
j︸ ︷︷ ︸

intended signal
+ intra-cell interference

+
∑

sl∈S\{sj}

hki,lx
k
l︸ ︷︷ ︸

inter-cell interference

+ okj,i︸︷︷︸
noise

(2)

where hkj,i is the complex channel coefficient between user
ui and edge server sj on channel ckj , and okj,i is the ad-
ditive white Gaussian noise with variance σ2, i.e., okj,i ∼
CN (0, σ2). User ui’s channel gain on channel ckj is |hkj,i|2,
which includes all the factors that can influence a signal.

3.3 Successive Interference Cancellation
In a downlink NOMA system, SIC is implemented for

users sharing the same channel, i.e. Uk
j , so that they can

decode their received superposed signal. Assume that Uk
j

has been determined, i.e., some users have been allocated
to the k-th channel on edge server sj . With SIC, users with
stronger channel conditions detect and remove the signals
of users with weaker channel conditions, who treat the
signals of users with stronger channel conditions as noise
[4]. Without loss of generality, suppose all the users in Uk

j are
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ordered by their channel conditions: u1, u2, ..., u|Ukj |, where
u1 has the weakest channel condition and u|Ukj | has the
strongest channel condition. SIC is not required for user
u1 since it is the first in Uk

j to decode signal. User u1 first
decodes xk1,j and subtracts its components from yk1,j . The
user who comes next in the decoding order (user u2) can
thus decode its received signal without interference from
user u1. Following this principle, the signal received by user
ui ∈ Uk

j has the following signal-to-interference-plus-noise
ratio (SINR):

γkj,i =
|hkj,i|2pk

j,i

|hkj,i|2
∑|Ukj |

q=i+1 pk
j,q + Ikj,i + σ2

(3)

where Ikj,i =
∑

sl∈Si\{sj} |h
k
l,i|2pkl is the inter-cell inter-

ference caused by user ui’s neighbor edge servers on
channel ckj . Given (3), the SINR of user u|Ukj |, which is
the last user to decode the received signal, is: γk|Ukj |,j

=

(|hk|Ukj |,j |
2pk
|Ukj |,j

)/(Ik|Ukj |,j
+ σ2).

Suppose ui, uq ∈ Uk
j and i < q, i.e., user uq has a

stronger channel condition. According to [12], [24], [25],
in order to ensure a successful SIC, user uq’s achievable
data rate for decoding user ui’s signal must be greater
than or equal to user ui’s data rate for decoding its own
signal: rkj,q→i ≥ rkj,i→i. If this condition is not satisfied, user
ui’s achievable data rate will decrease due to the intra-cell
interference not being canceled. Thus, user ui’s achievable
data rate rkj,i on channel ckj can be given by:

rkj,i = min{rkj,q→i|∀q ≥ i} (4)

where rkj,q→i, i.e. user uq’s data rate for decoding user ui’s
signal is:

rkj,q→i = Bk
j log2

(
1 +

|hkj,q|2pk
j,i

|hkj,q|2
∑|Ukj |

t=i+1 pk
j,t + Ikj,q + σ2

)
(5)

Intuitively, user ui’s achievable data rate is the minimum
data rate of the users that come after user ui in the SIC
decoding order, which will be discussed next.

SIC Decoding Order. As analyzed above, the position of
a user in the decoding order plays an important role in its
achievable data rate. Therefore, the decoding order cannot
be overlooked when the data rate is being optimized. As can
be seen from (4) and (5), the data rate is partially determined
by the channel coefficient and inter-cell interference. By
transforming (4), user ui’s achievable data rate rkj,i can be
expressed by:

rkj,i = Bk
j log2

(
1 +

pk
j,i∑|Ukj |

t=i+1 pk
j,t +Hk

j,i

)
(6)

where

Hk
j,i = max

{
Ikj,q + σ2

|hkj,q|2

∣∣∣∣∀q ≥ i} (7)

To ensure an acceptable data rate with low transmit
power for all the users, the decoding order should be
determined based on their channel conditions and the inter-
cell interference as follows: Hk

j,1 ≥ ... ≥ Hk
j,|Ukj |

. This order

is guaranteed if the decoding order of users allocated to
channel ckj on edge server sj follows the sequence:

Θ(ckj ) ,
Ikj,1 + σ2

|hkj,1|2
≥ ... ≥

Ik
j,|Ukj |

+ σ2

|hk
j,|Ukj |

|2
(8)

It has been shown that this decoding order is an optimal
order for efficiently increasing the data rate of each individ-
ual users [12]. If this decoding order is satisfied, user ui’s
achievable data rate rkj,i is:

rkj,i = Bk
j log2

(
1 +

|hkj,i|2pk
j,i

|hkj,i|2
∑|Ukj |

t=i+1 pk
j,t + Ikj,i + σ2

)
(9)

3.4 Resource Utilization Model
Multi-tenancy is an important feature in computing re-

source management [7] and must also be considered in EUA
[5]. By allowing users to share the same software instance,
app vendors can efficiently utilize the computing resources
hired on edge servers. This is critical in MEC systems where
computing resources on edge servers are relatively scarce
[21]. This drives app vendors to aggregate their users to a
small set of edge servers. For example, say two users need
to be served who require one CPU each. Allocating them
to two different edge servers would require two CPUs to
serve them. Taking advantage of multi-tenancy, allocating
them to the same edge server to be served by the same soft-
ware instance would require slightly less than two CPUs.
According to [5], [8], taking into account multi-tenancy, the
CPU utilization of edge server sj can be estimated based on
the users served by sj :

f
cpu
j = − logz(|Uj |)/100 (10)

where z is determined by the app-specific computation task
size (0.9 < z < 1) and |Uj | > 1 is the number of users served
by edge server sj . In general, when the number of users
served by an edge server increases, the CPU utilization of
that edge server increases monotonically until it converges
at some point. The convergence occurs when the number of
users is overly large and incurs a high computational over-
head for resource sharing [8]. When the extra computational
overhead exceeds the corresponding multi-tenancy benefit,
it does not benefit the app vendor as much as before, and it
is more cost-effective to serve the extra users with another
edge server.

As shown in [8], the storage utilization also follows
a model similar to (10). Assuming the utilization other
computing resources, e.g., RAM or storage, also follows a
similar model, the utilization of the computing resource
t ∈ T on edge server sj when user ui is being allocated
can be measured by:

f tj,i = − logzt(|Uj |)/100 (11)

where zt is determined by the computation task size and
is dependent of computing resource type t ∈ T , |Uj | is the
number of users on server sj to which user ui is allocated.
We have 0 < f tj,i < 1, ∀t ∈ T , ∀sj ∈ S . From the app
vendor’s perspective in this paper, the user allocation is
app-specific. We assume that the computation task sizes of
users with different resource requirements are identical and
do not vary during and after the allocation process.
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3.5 Computing Resource Cost Model
In an MEC system, an app vendor needs to pay for

computing resources hired on edge servers to serve its users.
Thus, it is important to utilize multi-tenancy to the fullest
extent to save on computing resource costs. Given a user
allocation strategy a, the computing resource cost incurred
by the decision of user ui ∈ U is:

Ma(ui) =


∑
t∈T

τ t(1− f tj,i)wt
i , if

∑
ckj∈Cj

akj,i = 1

ε
∑
t∈T

τ twt
max, if

∑
sj∈S

∑
ckj∈Cj

akj,i = 0
(12)

where (1 − f tj,i)w
t
i is the required amount of comput-

ing resource of type t ∈ T on an edge server when∑
ckj∈Cj

akj,i = 1, i.e., user ui is allocated to edge server sj ,
and τ t is the weight that indicates the app vendor’s priority
for saving computing resource of type t ∈ T by leveraging
multi-tenancy. For example, if an app is compute-intensive,
saving processing power such as CPU would be more
beneficial than saving other computing resources such as
storage. When

∑
sj∈S

∑
ckj∈Cj

akj,i = 0, i.e., user ui is not
allocated to any edge server, the cost incurred is modeled
as ε

∑
t∈T τ

twt
max, where ε > 1 is the weight that indicates

the severity of the penalty when the user is unallocated,
wt

max is the maximum amount of computing resource of
type t ∈ T that a user in the system may consume. From
the app vendor’s perspective, it is critical to allocate a user
to an edge server to ensure its low-latency service. Thus,
the cost incurred by failing to allocate a user is always
greater than

∑
t∈T τ

t(1 − f tj,i)wt
i - the cost incurred when

the user is allocated to an edge server. This drives the app
vendor to allocate as many users as possible to edge servers.
Otherwise, it will just simply choose not to allocate any
users to any edge servers to minimize the incurred system
cost to zero.

4 PROBLEM FORMULATION

In this section, we model the NOMA-EUA problem as a
mixed-integer constrained optimization problem as follows:

min
{a,p}

N∑
i=1

Ma(ui) (13a)

s.t.
N∑
i=1

|T |∑
t=1

atj,i(1− f tj,i)wt
i ≤ Qt

j ,∀sj ∈ S (13b)

M∑
j=1

V∑
k=1

akj,idj,i ≤ Rj ,∀ui ∈ U (13c)

M∑
j=1

V∑
k=1

akj,i ≤ 1,∀ui ∈ U (13d)

akj,ir
k
j,i ≥ akj,iΥ,∀sj ∈ S,∀ckj ∈ Cj ,∀ui ∈ U (13e)

Θ(ckj ),∀sj ∈ S (13f)
V∑

k=1

N∑
i=1

akj,ip
k
j,i ≤ Pj ,∀sj ∈ S (13g)

akj,i ∈ {0, 1},∀sj ∈ S,∀ckj ∈ Cj ,∀ui ∈ U (13h)

pk
j,i ∈ R≥0,∀sj ∈ S,∀ckj ∈ Cj ,∀ui ∈ U (13i)

where a is the user allocation strategy, and p is the power al-
location strategy. Optimization objective (13a) minimizes the
total system cost, i.e., the computing resource cost modeled
in Section 3.5. Computing resource constraint (13b) ensures
that the aggregated computing resource requirements of all
the users allocated to an edge server must not exceed the
computing capacity of that edge server. Proximity constraint
(13c) ensures that an edge server can only serve users within
its coverage area. Constraint (13d) indicates that any user
can only be either unallocated, or be allocated to one channel
of an edge server. Constraint (13e) ensures a minimum app-
specific data rate Υ for each allocated user. Constraint (13f)
enforces the optimal decoding order stated in Section 3.3,
which allows any user to successfully decode the signals of
users with weaker channel conditions on the same channel.
Constraint (13g) ensures that the total transmit power of
all users allocated to an edge server must not exceed its
maximum power allowance. Constraints (13h) and (13i)
indicate the possible values of user allocation decisions akj,i
and transmit power decisions pk

j,i.

The optimization problem above can be proved to be
NP-hard by showing that its subproblem (Section 4.1) is
NP-hard. Considering the dynamic of channel conditions
associated with different edge servers, this NOMA-EUA
problem becomes even more intractable to solve. To solve
it efficiently, we decompose it into two subproblems: 1) a
user allocation problem, and 2) a power allocation problem.
The user allocation problem will be solved first to find a
user-to-channel allocation that fully utilizes the computing
resources on edge servers. Given the user allocation strategy,
transmit power will be allocated to users such that they can
achieve the minimum user data rate requirement.

4.1 User Allocation Problem

In this section, we formulate the user allocation problem.
The power allocation problem is formulated in Section 4.2.
The user allocation problem can be modeled as follows:

min
{a}

Ca,p ,
N∑
i=1

(
η1Ma(ui) + η2Ia,p(ui)

)
s.t. (13b), (13c), (13d), (13h)

(14)

where η1 and η2 (η1 + η2 = 1) are the weight parameters
that indicates the relative importance of the two types of
costs, Ma(ui) and Ia,p(ui). In optimization objective (14),
we add a new term Ia,p(ui), i.e., the interference cost.
The objective of this subproblem is to minimize the cost
Ca,p incurred by serving all the users, including computing
resource cost Ma(ui) and interference cost Ia,p(ui). If the
computing resource cost is the sole cost, (14) will pursue to
allocate as many users to as few edge servers as possible.
This will easily cause severe intra-cell and inter-cell interfer-
ence in a NOMA-based MEC system, consequently reducing
user data rate and increasing transmit power consumption.
To mitigate this issue, we take the costs of interference
into consideration. Given a user allocation strategy a and
a power allocation strategy p, the interference-plus-noise
experienced by a user ui, denoted by Ia,p(ui), is defined
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as:

Ia,p(ui) =


|hkj,i|2

∑|Ukj |
q=i+1 pk

j,q + Ikj,i + σ2, if
∑

ckj∈Cj
akj,i = 1

εImax, if
∑

sj∈S

∑
ckj∈Cj

akj,i = 0

(15)
where ε > 1 is the weight specified by the app vendor that
indicates the severity of the penalty when the user is unal-
located, Imax is the maximum interference-plus-noise that a
user could experience. It is formulated in this way so that the
interference cost of unallocated users is always greater than
the interference cost of allocated users, thus driving app
vendors to allocate users to edge servers. The computing
resource cost has also been formulated by following this
methodology in Section 3.5. We can prove theNP-hardness
of this problem by reducing the NP-complete PARTITION
problem [26] to a special case of the decision version of this
problem. The detailed proof can be found in Appendix ??.

Note that power allocation is not considered in this
subproblem so all the users are assumed to be allocated
with identical and fixed transmit power for now. In the
implementation, Ma(ui) and Ia,p(ui) will be min-max nor-
malized. The possible minimum and maximum values of
computing resource and interference costs can easily be
calculated based on the given edge server information in
real-world scenarios, i.e. edge server computing resource
capacity, available channels, edge server locations, and min-
imum user data rate requirement.

Constraints related to power and data rate, including
(13e), (13f), (13g), and (13i) are not considered in this sub-
problem because they do not contribute to the optimization
of computing resources. These constraints will be enforced
through power allocation.

4.2 Power Allocation Problem
The power allocation problem is to be solved next. It is

expressed as follows:

min
{p}

N∑
i=1

M∑
j=1

V∑
k=1

pk
j,i

s.t. (13e), (13f), (13g), (13i)

(16)

The main objective of this subproblem is to allocate to
users as little transmit power as possible while satisfying
the user’s minimum data rate requirement, SIC decoding
order constraint, and power capacity constraint. Note that
our main goal is to help app vendors solve the NOMA-
EUA problem with the goal to minimize the system cost
(computing resource cost). Here, we minimize the transmit
power allocated to individual users to keep in line with the
cost-saving initiatives. Another main reason is that a data
rate higher than what is required for accessing an app is
not necessary for most, if not all, apps. Nonetheless, other
possible optimization objectives, e.g., maximizing users’
overall data rate, can be pursued here instead of (16) without
fundamentally modifying the problem model.

5 USER ALLOCATION

In this section, we present a game-theoretic approach
employed by miUA to effectively and efficiently solve

the user allocation problem introduced in Section 4.1. The
power allocation problem introduced in Section 4.2 will be
solved in Section 6. Over the years, game theory has been
shown to be a versatile method for solving NP-hard prob-
lems in MEC systems [5], [20], [21]. In this paper, players are
simulated to make allocation decisions individually, pursu-
ing to achieve objective (14). The game is decentralized by
design and can alleviate the computational overhead that
occurs by a centralized optimal solution.

5.1 Game Formulation and Properties
Our game aims to find a user allocation strategy a,

which consists of the allocation decisions for all the users.
Those decisions are made to pursue the app vendor’s
objective (14) by following the rules of the game. Let
a−i = (a1, ..., ai−1, ai+1, ..., aN ) denote the user allocation
strategy except the decision for user ui. Based on other
users’ decisions a−i, each individual user ui will try to make
a suitable decision on which channel of which edge server
to be allocated to, so that the total system cost is minimized.

The user allocation problem is modeled as a game
Γ = (U , {Ai}ui∈U , {Ca,p(ai)}ui∈U ), where U is the set of
users (players), Ai is the set of possible allocation strategies
for each user ui, and Ca,p(ai) is the cost function that mea-
sures the cost incurred by user ui’s decision ai = (sj , c

k
j ),

the lower the better, Ca,p(ai) =
∑

uq∈Ul∪Uj (η1Ma(uq) +
η2Ia,p(uq)), where Ul is the set of users allocated to server
sl, which is the server to which user ui was allocated (if
any) before it is allocated to server sj . Both Ul and Uj
must be considered because switching a user from a server
sl to another server sj impacts the inter-cell and inter-cell
interference received by the users allocated to server sl and
sj .

Next, we show that this game admits at least one Nash
equilibrium – a stable state of the game where the system
cost cannot be further lowered by changing the decision for
any individual users unilaterally.

Definition 3. (Nash Equilibrium) A user allocation strategy
a∗ = (a∗1, ..., a

∗
N ) is a Nash equilibrium when no user can

unilaterally change its decision to further lower the system cost:

Ca∗−i,p(a∗i ) ≤ Ca∗−i,p(ai),∀ai ∈ Ai,∀ui ∈ U (17)

Lemma 1 guarantees that if there exists a Nash equilib-
rium, the decisions for all the users will finally constitute
an allocation strategy that reaches the Nash equilibrium
through finite iterations in the game.

Lemma 1. Given a Nash equilibrium a∗ of the game, the
allocation decision a∗i ∈ Ai made for each user ui ∈ U is the
best response to the decisions a−i made for the other n− 1 users.

Proof: Please refer to Appendix ??.
An essential property of a potential game is that it al-

ways admits at least one Nash equilibrium [27]. By showing
that our user allocation game is a potential game, we can
confirm the existence of a Nash equilibrium. An ordinal
potential game [27] can be defined as follows.

Definition 4. (Potential Game) A game is an ordinal potential
game if, for a potential function φ(a), there exists

Ca−i,p(ai) > Ca−i,p(a′i)⇔ φa−i(ai) > φa−i(a′i) (18)
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where ui ∈ U , ai, a′i ∈ Ai and a−i ∈
∏

q 6=iAq .

The following theorem proves that our user allocation
game is an ordinal potential game.

Theorem 1. The formulated user allocation game Γ is an ordinal
potential game with the potential function:

φ(a) =
∑
ui∈U

η1
∑
t∈T

(
τ twt

i logzt(|Uj |)
)
I{

∑
ck
j
∈Cj

akj,i=1}

+
∑
ui∈U

η2h
k
j,i

|Ukj |∑
q=i+1

pkj,iI{aq=ai}I{
∑
ck
j
∈Cj

akj,i=1}

+
∑
ui∈U

η2
∑

sl∈S\{sj}

(|hkl,i|2pkl )I{
∑
ck
j
∈Cj

akj,i=1}

+
∑
ui∈U

(
ε
∑
t∈T

(τ twt
max) + εImax

)
I{

∑
sj∈S

∑
ck
j
∈Cj

akj,i=0}

(19)

where I{condition} is an indicator function that returns 1 if the
condition is true, and 0 otherwise.

Proof: Please refer to Appendix ??.

5.2 Decentralized User Allocation Algorithm

Given the user allocation game formulated above,
we propose a multi-tenancy and interference-aware user
allocation algorithm (miUA) for finding a Nash equilibrium
in the game. It is an iterative and decentralized algorithm
that follows a class of strategy updating rules called best
response dynamics [28], which is an evolutionary process
involving a finite number of iterations. In each iteration, the
decision for each user is determined by its best responses
(the allocation decisions that incur the lowest system costs)
to the decisions for other users made in the previous iter-
ation. This is a decentralized process where the decision-
making process for each user can be executed in parallel.
Due to the Finite Improvement Property of ordinal potential
games, it is guaranteed that this process will eventually
converge to a Nash equilibrium [27].

Given a set of edge servers S , users U , and other required
parameters, Algorithm 1 allocates users so that the total
system cost (14) is minimized. During the allocation, every
user is assumed to have a fixed and identical transmit power
p initially. Once all the users have been allocated, each
user’s transmit power will be adjusted to meet the data
rate requirement. This will be discussed in Section 6. With
regards to the user allocation, no user is allocated initially. In
other words, their initial decisions are ai = (sj , c

k
j ) = (0, 0),

∀ui ∈ U (Lines 1-3). After that, decisions are updated
for users iteratively (Lines 5-16) such that the system cost
incurred in the next iteration is lower than the previous
iteration. The updated decision for user ui’s is denoted
as a′i, which incurs a new system cost Ca′,p. Once all the
decision updates are submitted, the decision that incurs the
lowest system cost (Line 17) will be chosen and applied to
the corresponding user (Line 18). The allocation strategy a
will also be updated accordingly. Note that the allocation
strategy a at this stage is not final and can be updated in the
consequent iterations. After this iteration, users that are not
affected by the updated allocation strategy are not required
to alter their current decisions. The decisions for users

Algorithm 1 miUA
Input: S , U , and other parameters
Output: user allocation strategy a

1: initialization:
2: every user ui is initially unallocated, ai = (sj , c

k
j ) =

(0, 0), ∀ui ∈ U .
3: end initialization
4: repeat
5: Get the current system cost Ca,p
6: for each user ui ∈ U do
7: for each user ui’s neighbor server sj ∈ Si do
8: for each server sj ’s channel ckj ∈ Cj do
9: Calculate Ca′,p(a′i) – the new cost if user

ui is allocated to channel ckj in server sj
10: end for
11: end for
12: From all possible decisions a′i above, find one

with the lowest cost Ca′,p(a′i)
13: if a′i 6= ai and Ca′,p < Ca,p then
14: Contend a′i for the decision update
15: end if
16: end for
17: Find user ui, whose decision update a′i incurs system

cost Ca′,p that is the lowest among all users U
18: Apply decision a′i
19: until no decision updates needed for any users
20: Execute Algorithm 2 to allocate transmit power to users

affected by the latest allocation strategy update need to be
updated. For example, say users u1 and u2 both want to be
allocated to the same channel on the same edge server. After
user u2 is allocated to this server in the current iteration
of the game, this server is now exhausted of computing
resources and insufficient to server user u1. Consequently,
the decision for user u1 needs to be updated with a new
pair of edge server and channel.

The process for finding the best allocation decision for
each user (Lines 5-16) will now be discussed in more detail.
In each iteration, the best allocation decision for each user ui
is determined by going through every channel on every ui’s
neighbor edge server (Lines 7-11). The pair of channel and
edge server that incurs the lowest system cost, which can
be calculated by (14) (Line 9), is selected for user ui (Line
12). Next, if user ui is not already allocated to this channel
on this edge server, and the new system cost is lower than
the current system cost, this pair of channel and edge server
will be submitted for the decision update opportunity (Lines
13-15). If selected (by the mechanism previously discussed,
Line 17), the decision update for user ui will be applied.
Should a better allocation decision for user ui be found
in consequent iterations, it will again be submitted to be
updated. It is important to note that the decision update
process for each user (Lines 6-11) can be executed in parallel
because the processes for different users are independent of
each other. Moreover, for each individual user, the search
for the best pair of channel and edge server (Lines 7-11) can
also be parallelized.

After the user allocation process has been completed,
Algorithm 2 will be executed to allocate transmit power to
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users (Line 20) to ensure their required data rate.

5.3 Performance Analysis
5.3.1 Convergence Analysis

The convergence time of our game is measured by the
number of iterations T taken by the game to reach a Nash
equilibrium. Theorem 2 proves the upper bound of the
convergence time.

Theorem 2. The convergence time of Algorithm 1 is upper
bounded by:

T ≤
N
(
ε
∑

t∈T (τ twt
max) + εImax

)
|hmin|2p

(20)

where |hmin|2 is the minimum channel gain that a user could
experience, and p is the default transmit power allocated to users
during the user allocation process.

Proof: Please refer to Appendix ??.

5.3.2 Performance Bounds
Theorem 3 analyzes the lower bound and the upper

bound on the number of allocated users on each edge server.

Theorem 3. Let numj(a) denote the number of users allocated
to edge server sj given a user allocation strategy a, we have:⌊

Qt
j

wt
max

⌋
− 1 ≤ numj(a) +

logzt(numj(a)!)

100
≤
⌊
Qt

j

wt
min

⌋
(21)

Proof: Please refer to Appendix ??.
Given the bounds on the number of allocated users, one

can then derive the bounds on the system cost by applying
the bounds to Ca,p (Eqs. (14), (12), and (15)).

6 POWER ALLOCATION

After the user allocation is finished, miUA allocates
transmit power to users to ensure their required data rate.
The power allocation problem formulation can be found in
Section 4.2.

6.1 Power Allocation Problem Transformation
Instead of allocating transmit power to each user indi-

vidually, the power allocation problem (16) can be converted
into a problem of finding the total transmit power of all the
users on a channel (or in other words, the transmit power
allocated to a channel). After that, the power allocated to
each channel will be allocated to the users on that channel.
The rationale behind this is that the transmit power required
by a user is determined by the total transmit power of
users allocated to its neighbor edge servers on the same
channel, apart from the transmit power of users sharing the
channel on the same server. Once the total transmit power
of the users allocated to the neighbor edge servers on the
same channel is found, we can find the transmit power for
each individual users. Lemma 2 below defines the minimum
transmit power required by a channel to satisfy the data rate
requirement of the users allocated to that channel. We use
psc = {pkj |ckj ∈ Cj , sj ∈ S} to denote the channel transmit
power allocation strategy.

Lemma 2. Given Uk
j – the set of users allocated to channel ckj

on edge server sj , to ensure the required data rate Υ for all those

users, the total transmit power pkj of those users, i.e., the transmit
power allocated to channel ckj , must satisfy:

pkj ≥
|Ukj |∑
i=1

(
2
Υ

Bk
j − 1

)(
2
Υ

Bk
j − 1

)i−1
Hk

j,i , ykj (psc)

Proof: Please refer to Appendix ??.
According to [25], [29], the optimal solution to finding

the total transmit power of all the users allocated to a
channel can be found by solving the following problem,
which is transformed from problem (16).

min
{pkj }

M∑
j=1

V∑
k=1

pkj (22a)

s.t. pkj ≥
|Ukj |∑
i=1

(
2
Υ

Bk
j − 1

)(
2
Υ

Bk
j − 1

)i−1
Hk

j,i , ykj (psc),

∀ckj ∈ Cj ,∀sj ∈ S (22b)

Θ(ckj ),∀sj ∈ S (22c)
V∑

k=1

pkj ≤ Pj ,∀sj ∈ S (22d)

pkj ∈ R≥0,∀ckj ∈ Cj ,∀sj ∈ S (22e)

where objective (22a) minimizes the total transmit power
allocated to all the channels on all the edge servers. Con-
straint (22b) is retrieved from Lemma 2, which helps enforce
constraint (13e). Constraint (22c) enforces the SIC decoding
order on each channel. Constraint (22d) ensures that the
total transmit power allocated to all the channels on an edge
server does not exceed that edge server’s power capacity.
Constraint (22e) indicates the possible values of channel
transmit power decision pkj .

6.2 Decentralized Power Allocation Algorithm
Similar to Algorithm 1, the power allocation algorithm

introduced below (Algorithm 2) is also decentralized.
This is a two-stage algorithm. First, the BS’s transmit

power is allocated to each channel (Lines 1-11). After that,
the transmit power allocated to each channel will be al-
located to the users on that channel (Lines 12-19). In the
first stage, initially, the transmit power of a BS is equally
assigned to all channels on that BS (Lines 2-4). This is
followed by an iterative and recursive process for updating
the transmit power allocated to channels, which consists of
a finite number of iterations (Lines 5-11). In each iteration,
the transmit power allocated to each channel is updated
based on the transmit power allocated to other channels,
which may have been updated in the previous iteration
(Line 8). Similar to [25], ykj (psc) is a standard interference
function [29] since it satisfies three criteria as follows: 1)
Positivity: ykj (psc) > 0, and 2) Monotocity: If psc > p′sc
then ykj (psc) > ykj (p′sc), and 3) Scalability: For all α > 1,
then αykj (psc) > ykj (αpsc). When ykj (psc) is standard, Al-
gorithm 2 is referred to as a standard power control algorithm,
which will eventually converge to a unique fixed point (the
global optimal solution, if one exists) from any initial power
allocation [25], [29], [30].

In the second stage, the transmit power allocated to
channels will be allocated to the users on these channels
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Algorithm 2 Decentralized power allocation algorithm
Input: S , U , a, and other parameters
Output: power allocation strategy p

1: Stage 1: allocating BS’s transmit power to channels
2: initialization:
3: pkj = Pj/V , ∀sj ∈ S , ∀ckj ∈ Cj
4: end initialization
5: repeat
6: for each server sj ∈ S do
7: for each server sj ’s channel ckj ∈ Cj do
8: Calculate pk

(iIteration)

j = ykj (p(iIteration−1)
sc )

9: end for
10: end for
11: until convergence
12: Stage 2: allocating channel’s transmit power to users
13: for each server sj ∈ S do
14: for each server sj ’s channel ckj ∈ Cj do
15: for ui ∈ Uk

j do . start from the weakest user

16: Calculate pk
j,i =

(
2
Υ

Bk
j − 1

)(∑i−1
q=1 pk

j,q +Hk
j,i

)
17: end for
18: end for
19: end for

(Lines 13-19). On each channel, the transmit power is allo-
cated in the order of channel conditions, or the SIC decoding
order (8). The user with the weakest channel condition is
the first to be allocated transmit power using (9), where
rkj,i = Υ (Line 16). Transmit power is allocated to that user
first because it is the first to decode the received signal
without the need for SIC or the consideration of the power
of the other users sharing the same channel.

7 PERFORMANCE EVALUATION

We perform a series of experiments to evaluate the
performance of miUA against state-of-the-art and baseline
approaches.

7.1 Experimental Settings

In the experiments, we employ a 19-hexagonal macro-
cell model, i.e., M = 19. The experimental settings are
compliant with the existing LTE specifications [31] and
summarized in Table 1. Edge servers’ available computing
resources Qj are randomly generated by following a normal
distribution N (µ, 102), where µ is the average capacity of
each resource type in T = {CPU,GPU,RAM, storage}, and
the standard deviation is 5. We set the weight parameters
η1 = η2 = 0.5. Users are randomly located within the
coverage of those edge servers by following a uniform
distribution. Users’ required data rate Υ is set at 2Mbps. We
assume that users have three possible levels of normalized
computing resource requirements, wi ∈ {< 1, 2, 1, 1 >
,< 2, 1, 2, 2 >,< 3, 3, 2, 2 >}. We have conducted ex-
periments with other resource requirements and achieved
similar results. Thus, we select those three levels as the rep-
resentatives. Each user’s computing resource requirement is
randomly selected from those three levels.

We conduct two sets of experiments. In experiment Set
#1, the average computing resource capacity µ of edge

TABLE 1: Experimental Settings

Cell layout Hexagonal grid, 19 cell sites
(edge servers)

Cell radius (Rj ) 289m
Inter-site distance 500m
Minimum distance between
user and edge server

35m

Large-scale path loss model 128.1 + 37.6log10(dj,i)dB
BS maximum transmit power
(Pj )

46dBm

Thermal noise density −174dBm/Hz
System bandwidth (B) 10MHz
Number of channels (V ) 5

servers is fixed at 16; and we vary the number of users N
from 200 users to 600 users in steps of 50. In experiment
Set #2, the number of users is fixed at 500; and we vary
the average computing resource capacity µ of edge servers
from 10 to 26 in steps of 2. To evaluate the performance of
miUA in achieving the optimization objective, i.e., minimiz-
ing the system cost (computing resource cost), we compare
the normalized computing resource costs achieved by the
five approaches. In addition, we compare the number of
users allocated to edge servers, the higher the better. The
convergence time of miUA is also evaluated, which is a
critical machine-independent efficiency indicator for game-
theoretical approaches [5], [19], [20], [32], [33].

7.2 Performance Benchmark

We compare miUA against four representative ap-
proaches, including two state-of-the-art approaches and two
baseline approaches:

• SCG-SA [34]: This approach solves the user allo-
cation problem in a NOMA-based cellular network
with the objective to improve the system energy ef-
ficiency. SCG-SA ranks users based on their channel
conditions. Users with strong channel conditions are
allocated first because they consume less transmit
power. However, SCG-SA is designed to operate in a
pure cellular network without edge servers, and thus
does not consider the heterogeneity of edge servers
with varying computing resources.

• EUAGame [5]: This approach solves the user allo-
cation problem in an MEC system with the objec-
tive to maximize the number of allocated users at
minimum computing resource costs by leveraging
the multi-tenancy feature. However, EUAGame is
not designed to operate in a multi-channel cellular
system or a NOMA-based system. It completely ne-
glects the communication/networking aspect. In the
experiments, after users are allocated to edge servers,
this approach first allocates users to channels ran-
domly and then performs a fixed power allocation as
adopted in [11], [35].

• NearestUA: We propose a naive baseline approach
that allocates each user to their nearest edge server
with sufficient computing resources. The rationale
behind this approach is that a short distance between
a user and an edge server usually results in a strong
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channel condition. After that, each user is allocated
to the channel with the fewest users. Then, this
approach employs Algorithm 2 to allocate transmit
power to users.

• Random: This baseline approach allocates each user
to a random edge server and channel as long as
that edge server has sufficient computing resources.
Similar to NearestUA, this approach also employs
Algorithm 2 to allocate transmit power to users.

7.3 Experimental Results

Figures 2, 3, and 4 demonstrate the results of experiment
Set #1. Figures 5, 6, and 7 demonstrate the results of experi-
ment Set #2. In general, miUA significantly outperforms all
other approaches in both sets of experiments, being able to
allocate the most users at the lowest system cost. SCG-SA
follows behind miUA by a large margin, but outperforms
EUAGame, NearestUA, and Random significantly. Fig.s 4
and 7 demonstrate miUA’s convergence time and the im-
pacts of the number of users as well as the available server
capacity.

7.3.1 Effectiveness

Experiment Set #1: In this experiment set, the number of
users gradually increases from 200 to 600. As the number
of users increases, the percentage of users allocated by
all the approaches decreases (Fig. 2). As the amount of
computing resources available is fixed, adding more users to
the system will exhaust edge servers’ computing resources
quickly, thus increasing the number of users that cannot be
allocated to any edge servers. Under all parameter settings,
miUA is able to allocate the most users. SCG-SA comes
second with the percentage of users allocated being 10%-
20% lower than miUA. EUAGame, NearestUA, and Ran-
dom produce roughly similar results with the percentage
of users allocated being far lower than miUA (20%-35%
lower). From Fig. 3 we can also see that the system cost
incurred by miUA is the lowest among all the approaches.
As the number of users increases, the system cost difference
between miUA and other approaches increases, indicating
miUA’s more efficient use of computing resources than
other approaches. Although SCG-SA significantly allocates
more users than EUAGame, NearestUA, and Random, it
is only marginally better than those three approaches in
terms of the system cost. This shows that SCG-SA is not
capable of utilizing the edge servers’ computing resources
by leveraging multi-tenancy.

Experiment Set #2: In this set of experiments, we vary
the average computing resource capacity µ available on
edge servers from 10 to 26. As the computing resources
become more abundant, more users can be allocated to edge
servers, leading to an increasing trend in the percentage of
users allocated by all the approaches (Fig. 5). Again, it can
be seen that miUA vastly outperforms other approaches. It
is able to allocate approximately 10%-20% more users than
SCG-SA, and 15%-40% more users than EUAGame, Near-
estUA, and Random. EUAGame, NearestUA, and Random
have roughly similar performance, where EUAGame is just
slightly better than NearestUA, which faintly outperforms
Random. In Fig. 6, it can be seen that miUA and EUAGame
incur considerably lower system costs than the other

approaches.
Discussion: In the previous discussion (Fig.s 2 and 5),

we refer to the allocated users as the users who are allocated
to edge servers with sufficient computing resources and
data rate. In this section, we analyze the allocated users
at a higher granularity level (Fig.s 8 and 9). The users are
categorized into four groups: 1) unallocated users, including
users that are not allocated to any edge servers and users
that are allocated to edge servers but receiving insufficient
computing resources and data rate, 2) users that are al-
located to edge servers, receiving required data rate but
insufficient computing resources, 3) users that are allocated
to edge servers, receiving sufficient computing resources
but insufficient data rate, and 4) users that have all the
requirements satisfied to use the services provided in edge
servers. We compare the two state-of-the-art approaches,
SCG-SA and EUAGame, to show the importance of an effec-
tive power control scheme or computing resource allocation.
SCG-SA is designed to allocate users in a NOMA-based
cellular network but does not consider the scarcity and
heterogeneity of computing resources in MEC systems. In
contrast, EUAGame is designed to allocate users in an MEC
system but ignores its communication aspect, including
multiple wireless channels, interference, and power control.
As expected, we can observe in Set #1 (Fig. 8) that there is a
large number of users experiencing insufficient computing
resources when allocated by SCG-SA. With EUAGame, there
is a large number of users receiving insufficient data rates,
because EUAGame does not consider interference when
allocating users and lacks a proper power control, which
is critical in a NOMA system. We can observe the same in
Set #2 (Fig. 9).

In general, SCG-SA outperforming EUAGame indi-
cates the significance of considering wireless interference
and proper power control in a NOMA-based MEC system.
Our proposed approach miUA considers both aspects of a
NOMA-based MEC system, i.e., the communication aspect
(multiple wireless channels with different types of interfer-
ence, and power control), and the computation aspect (the
scarcity and heterogeneity of computing resources on edge
servers). Therefore, miUA clearly outperforms all other
approaches. NearestUA and Random, although leveraging
a state-of-the-art power control mechanism, are still remark-
ably outperformed by all other approaches. This shows that
not systematically incorporating wireless interference and
computing resource cost leads to a poor performance in
allocating users in a NOMA-based MEC system.

7.3.2 Efficiency
In order to evaluate the efficiency of miUA, we measure

its convergence time by the number of decision iterations it
takes to reach a Nash equilibrium (Fig.s 4 and 7). In Set #1,
the number of iterations slowly increases with the increase
in the number of users to be allocated (Fig. 4). Since one
user is allocated in each decision iteration, we analyze the
ratio between the number of iterations and the number of
allocated users (the red line in the graph). We can see that
the ratio starts from 1.5 at 200 users, then goes down to
around 1.2 at 600 users. This indicates that when the number
of users is low, users’ decisions tend to change more often
as there is more room for improvement. When the number
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Fig. 2: Percentage of allocated users
vs. number of users (Set #1).
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Fig. 3: System cost vs. number of users
(Set #1).

Fig. 4: Number of decision iterations vs.
number of users (Set #1, miUA).

10 12 14 16 18 20 22 24 26
Available server capacity

40%

60%

80%

100%

Al
lo
ca
te
d 
us
er
s p

er
ce
nt
ag
e

miUA
SCG-SA
NearestUA
EUAGame
Random

Fig. 5: Percentage of allocated users
vs. number of users (Set #2).
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Fig. 6: System cost vs. number of users
(Set #2).

Fig. 7: Number of decision iterations vs.
number of users (Set #2, miUA).

Fig. 8: Details of allocated users (Set #1). Fig. 9: Details of allocated users (Set #2).

of users is large, edge servers and channels tend to be more
occupied, hence less room for decision updates.

In Set #2, where the number of users is fixed, we can see
that miUA’s convergence time increases with the increase
in the amount of computing resources available (Fig. 7). As
we increase the amount of available computing resources,
there is a high probability that users are allocated to edge
servers with sufficient resources. The number-of-iterations-
to-number-of-allocated-users ratio remains relatively stable
at around 1.2. This indicates that despite the amount of the
available computing resources, users do not change their
decisions very often. We can conclude that the convergence
time is more dependent on the number of users (Set #1, Fig.
4).

8 RELATED WORK

Mobile edge computing (MEC) is a new computing
paradigm that brings together cloud computing and cellular
network. Deploying edge servers at cellular base stations
allows end-users to use the services and applications pro-

vided by app vendors with low network latency.

8.1 User Allocation in MEC

The user allocation problem in MEC systems was first
introduced in [15], [16], in which the authors propose an
optimal approach and an efficient heuristic to allocate as
many users to as few edge servers as possible. In [36], [37],
the authors attempt to solve the user allocation problem
in which a user’s computing resource requirement can be
dynamically adjusted during the allocation process. Their
objective is to maximize the users’ quality of experience.
The authors of [14] tackle the scenario where users can
move between different edge servers, which requires re-
allocating users from one server to another. They aim to
minimize the number of reallocations. The authors of [5]
aim to minimize the system cost measured by the amount
of computing resources consumed by users, which is sim-
ilar to our objective. The authors of [38] propose a user
allocation approach that takes into account the wireless
interference, aiming to improve users’ data rates. We, on the
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other hand, try to minimize the computing resource cost.
The data rate in our work is satisfactory once it reaches
a certain level. Among the aforementioned studies, only
the study presented in [38] incorporates the communication
aspect of an MEC system that features multiple wireless
channels with interference. Nevertheless, it only considers
intra-cell interference, whereas we also consider inter-cell
interference, which could be very severe in a dense cellular
network. Furthermore, none of the existing work on EUA
considers NOMA, in which interference and power control
play an important role and should not be overlooked as
demonstrated in our experiments.

Realizing the benefit provided by NOMA, researchers
are beginning to study MEC problems under NOMA set-
tings [9], [39], [40]. However, most of them focus on the com-
puting offloading problem, which is an important problem
that shares some similarities with the edge user allocation
problem. Nevertheless, they are distinguished by several
essential characteristics. In the computation offloading prob-
lem, a user generates a series of computation tasks, which
can be executed partly on its local device or edge servers
(partial offloading), or completely on edge servers (full
offloading) [1]. A computation task usually has a single-
dimensional resource requirement (CPU cycles) [17], [21],
[40], [41]. While in the edge user allocation problem, an
app vendor needs to hire multiple types of computing
resources to serve a user on an edge server [5], [42], [43],
and the resources allocated to a user must be available at
all times during the user’s connection to the edge server.
In addition, in some studies [21], [44], users are assumed to
be pre-allocated to edge servers before their computation
tasks are offloaded. Furthermore, computation offloading
is a low-level problem that is often tackled from the edge
infrastructure provider’s (or the mobile network operator’s)
perspective, whose main objective is to minimize either the
overall system delay or the system energy consumption [1],
[40]. On the other hand, the edge user allocation problem
is tackled from the app vendor’s perspective, who aims to
maximize their profit by serving as many users as possible
at the lowest costs.

8.2 User Allocation in NOMA-based Cellular Network

The user allocation problem (also often referred to as the
user association problem) is a mature and well-researched
problem in conventional cellular networks [45]. However,
the introduction of NOMA has sparked a new wave of re-
search on this problem. The authors of [10] aim to maximize
the sum-throughput in both downlink and uplink NOMA
systems. They also demonstrate that NOMA can achieve a
significant throughput gain over the traditional orthogonal
multiple access (OMA) scheme. Inter-cell interference is not
yet considered in [10] though. The authors of [11] confirm
that carefully pairing users into channels in NOMA can offer
a larger sum rate than OMA. Nevertheless, this work is
limited to only two users per channel. The authors of [12]
try to maximize the sum data rate in a multi-cell but single-
channel system. The authors of [13] aim to minimize the
power consumption in a multi-channel single-cell NOMA
scenario. If applied in a multi-cell NOMA scenario, the au-
thors would also have to consider the inter-cell interference.
The authors of [34] attempt to increase the energy efficiency

in a multi-cell multi-channel NOMA system by allocating
users based on a ranking of channel conditions. In [35], the
authors try to improve users’ quality of experience when
allocating users. From the review of existing studies, we
can see that all the existing approaches will need to be re-
modeled or redefined when adapting to a new environment
like MEC as they completely neglect the computing side of
MEC (the scarcity and heterogeneity of computing resources
on edge servers). Our proposed approach eliminates this
limitation by jointly considering both communication and
computation aspects in an MEC environment.

9 CONCLUSION AND FUTURE WORK

In this paper, the edge user allocation problem in a
downlink non-orthogonal multiple access (NOMA) based
mobile edge computing (MEC) system is investigated from
the app vendor’s perspective. To attack this NP-hard prob-
lem, we formulate the problem as a potential game with
the objective to maximize the number of allocated users
at a minimum computing resource cost. By jointly con-
sidering both the communication and computation aspects
of a NOMA-based MEC system, miUA, our decentralized
game-theoretic approach, greatly outperforms the state-of-
the-art and baseline approaches, being able to serve the most
users with sufficient data rate and computing resources. Our
experiments highlight the significance of incorporating both
wireless interference and computing resource consumption
into the user allocation approach in a NOMA-based MEC
system. We also theoretically analyze the optimality and
convergence of our proposed approach.

Integrating and utilizing NOMA in MEC is still in a
very early research stage, particularly for the edge user
allocation problem. There is plenty of future work that
could be studied, for instance, how to handle handover
when dealing with user mobility, dynamic user arrivals
and departures, incorporating a more specific pricing model
imposed on app vendors, etc. Furthermore, solutions to the
user problem in uplink NOMA-based MEC systems should
also be investigated.
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