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The cryptocurrency market cap experienced a great increase in recent years. However, large price fluctuations
demonstrate the need for governance structures and identify whether there are market manipulations. In this
paper, we conducted three analyses – social media data analysis, blockchain data analysis, and price bubble
analysis – to investigate whether market manipulation exists on Bitcoin, Ethereum, and Dogecoin platforms.
Social media data analysis aims to find the reasons for the price fluctuations. Blockchain data analysis is used
to find the detailed behavior of the manipulators. Price bubble analysis is used to investigate the relation
between price fluctuation and manipulators’ behavior. By using the three analyses, we show that market
manipulation exists on Bitcoin, Ethereum and Dogecoin. However, market manipulation of Bitcoin is limited,
and for most of Bitcoin’s price fluctuations, we found other explanations. The price for Ethereum is most
sensitive to technical updates. Technical companies/teams usually hype some new concepts, e.g., ICO, DeFi,
which causes a price spike. The price of Dogecoin has a high correlation with Elon Musk’s Twitter activity,
which shows influential individuals have the ability to manipulate its prices. Also, the poor monetary liquidity
of Dogecoin allows some users to manipulate its price.
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1 INTRODUCTION
Recent years have witnessed the great success of Bitcoin [55]. It is the first and most famous
cryptocurrency created in 2008, which is secured by its underlying technology named blockchain.
Since the famous “Bitcoin Pizza Day" when a programmer used 10,000 BTC paid for two pizzas in
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May 2010 [43], Bitcoin experienced a tremendous growth and reached its peak on Nov. 2021, which
was worth 69,000 dollars / BTC.

The rapid growth of Bitcoin resulted in the boom of the cryptocurrencies market and the birth
of different blockchain platforms. One of the most famous is Ethereum [11], developed by Vitalik
Buterin et al. in 2014. The advent of Ethereum addressed many limitations of Bitcoin, whose main
application is transferring and storing values. Ethereum is the first platform that supports the
running of smart contracts, programming artefacts deployed on the blockchain [32]. By using
smart contracts, developers can easily deploy decentralized applications [69]. The great success
of Ethereum made it become the world’s second-biggest cryptocurrency. The price of Ethereum
reached its peak in Nov. 2021 (4800 dollars / Ether).
However, the real value of cryptocurrencies is controversial. To prove Bitcoin is worthless,

two developers named Billy Markus and Jackson Palmer decided to create a payment system
as a “joke" [21]. They copied the source code of Bitcoin and created a famous Altcoin named
Dogecoin [71] just by simply changing a few lines of Bitcoin code, e.g., the supplement and
name [1]. The irony is that Dogecoin has now gained great uptake and has become one of the
top ten biggest cryptocurrencies in terms of market capitalisation today. The total market cap of
Dogecoin exceeded $50 billion on April 2021. Although the total market cap of cryptocurrencies
has increased dramatically in recent years; all of them still experience large price fluctuations. For
example, the price of Bitcoin was about $20,000 / BTC at the end of 2017, but dropped to $3,000
/ BTC in Jan 2019. It has been shown that the price of cryptocurrencies can easily be affected
by influential individuals. For instance, Elon Musk, the CEO of Tesla, was a strong advocate of
Dogecoin, which led to an 11,000% price soar of Dogecoin within two years [3]. Due to the lack of
governance and the anonymity of cryptocurrency trading, it is likely that market manipulation exists
in the cryptocurrencies market [45]. The market manipulation benefits the influential individuals,
and enables them to make unfair profits from other crypto-assets owners [46].

A previous study [17] analyzed the leaked transaction history of the Mt. Gox Bitcoin exchange
and found that there was serious market manipulation in the Mt. Gox exchange, which led to
the price of Bitcoin soaring and dropping several times between 2011 to 2013. Although Chen
et al.’s study [17] proved the existence of market manipulation on Bitcoin, their study still has
great limitations. Specifically, their study only focuses on Bitcoin, while many users also hold
other cryptocurrencies, e.g., Ether and Dogecoin. However, their analysis is based on the leaked
exchange transaction data, which makes their method hard to perform on other cryptocurrencies.
Last but not least, the data they analyzed was between 2011 to 2013, and the cryptocurrencies
market has had great changes in recent years. Thus, their results seem out-of-date and cannot
prove the manipulation still exists today.

In this paper, we focus on Bitcoin, Ethereum, and Dogecoin, as Bitcoin has the most significant
market cap; Ethereum is themost popular platform to run smart contracts and has the second biggest
market cap; Dogecoin is the most popular Altcoin. To investigate whether market manipulation
exists on these cryptocurrencies and how they affect their price, we perform three analyses, i.e.,
Social Media Data Analysis, Blockchain Data Analysis, and Price Bubbles Analysis. Social media
data analysis aims to find the reasons for the price fluctuations. In this paper, we call everything that
could be found on Internet as social media data (SMD), including news, Facebook data, Twitter, blogs,
etc. There is an observation that social media data, e.g., governments’ policies and Musk’s Twitter,
could affect the cryptocurrencies market, and some SMD could be manipulated by individuals or
institutions. We first highlight the large price fluctuation dates in the recent six years. Then, we
search for the SMD that responds to these fluctuations on the Internet. After that, we use open
card sorting [67] to classify the SMD into seven groups, e.g., policy, market. Finally, a quantitative
analysis and word cloud analysis are conducted to investigate which kind of group affect the
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price most. During the social media data analysis, we find that big companies’ policy is one of the
important factors that affect the price of cryptocurrencies. Some evidence collected from SMD
shows the existence of inside trading and manipulation by these companies. For example, Coinbase
(a famous cryptocurrencies exchange) was accused of insider trading in 2017. They bought a large
amount of Bitcoin Cash (BCH) in advance and then announced the addition of BCH to its exchange,
which led to the price soaring of BCH. Thus to investigate whether the inside traders (manipulators)
are popular with a blockchain platform, we conduct blockchain data analysis to find out abnormal
activities and accounts by checking their trading histories. Finally, we conduct a price bubble
analysis by using GSADF, which is usually used to evaluate the emergence and duration of bubbles
based on historical data regarding currency prices [56]. The occurrence of a price bubble is closely
related to market manipulation and speculation. Based on the SMD we collected, we analyze the
reasons why the bubble appears and prove the existence of market manipulation.
By using the above three analyses, we obtain a different finding to previous work [17] based

on the leaked transaction history of Mt. Gox Bitcoin exchanges between 2011 to 2013. According
to our results, market manipulation indeed exists on Bitcoin, Ethereum, and Dogecoin. However,
the degree of market manipulation of Bitcoin is limited, and most of its price fluctuations could
be explained by other factors. The price of Bitcoin is most sensitive to governments’ policies, and
it is difficult to perform market manipulation for individuals or organizations on Bitcoin. Market
manipulation is prevalent on Ethereum and Dogecoin, but in different ways. The price for Ethereum
is most sensitive to technical updates. Technical companies/teams usually hype some new concepts,
e.g., ICO [37], DeFi [60], to drive the price soar [28]. The price of Dogecoin has a high correlation
with Elon Musk’s Twitter, which shows influential individuals have the ability to manipulate its
prices. Also, Dogecoin has poor monetary liquidity – users who own a large number of Dogecoin
(“whale users") also have the ability to control its price.

The key contributions of this paper include:
• To the best of our knowledge, this is the most comprehensive study on market manipula-
tion of cryptocurrencies and obtaining different findings compared with previous works.
We conducted in-depth analyses on various topics, including the mechanisms influencing
cryptocurrency market, abnormal trading, price bubbles and market manipulation behavior.

• We proposed three different analysis methods to substantiate the presence of market manipu-
lation in cryptocurrencies. These methodologies are applicable for analyzing other platforms
as well. Our research design embraced a multidisciplinary approach, integrating perspectives
from computer science, data engineering, and econometrics, which involved the exploration
of social media data, scrutiny of transactions and validation of cross-models.

• We have introduced innovative formula systems and classification frameworks to quantita-
tively assess the impact of various factors on the cryptocurrency market. By employing a
systematic approach that combines quantitative and qualitative research methods, we have
significantly enhanced the quality and reliability of our study.

• We conducted an analysis on the manipulation of Bitcoin, Ethereum, and Dogecoin prices.
By thoroughly examining extensive transaction records and social media data, we provide
the reasons that led to the price fluctuations in the recent six years, a list of abnormal
accounts and related abnormal behaviors on the three cryptocurrencies. Additionally, these
data could be utilized for further analysis, e.g., price prediction. All the data and analysis
results, e.g, SMD, price data, price bubble analysis could be found at https://github.com/
MarketManipulation/Market-manipulation.

The organization of the rest of this paper is as follows. In Section 3-5, we present the motivation,
approach, results and findings of Social Media Data, Blockchain Data, and Price Bubbles Analysis,
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respectively. After that, we highlight the threats to validity in Section 6. Then, we introduce related
works in Section 7. In Section 8, we conclude the whole work and present our future work.

2 BACKGROUND
In this section, we briefly introduce the background information about blockchain, cryptocurrency
market, and methods applied in our work.

2.1 Blockchain and Cryptocurrency Mining
Blockchains are typically managed by peer-to-peer networks as a public distributed ledger, where
nodes compete to verify transactions and validate new blocks by solving extremely complex
mathematics, a process known as "Mining". When a block is successfully created, the miner receives
a predetermined amount of Bitcoin or other cryptocurrencies [55]. The mining mechanism serves
two purposes: first, it sustains the Bitcoin ecosystem spontaneously, and second, it is the only
way available for new cryptocurrency to enter circulation. On the other hand, the math problems’
difficulties are related to the characteristics of the blockchain system, such as network hash rate
etc. Technical factors affect the efficiency and cost of mining, and the fees for mining affect the
motivation of miners, both of which directly determine the supply of cryptocurrencies and directly
affects the prices.

Blockchain Fork is an unavoidable issue when it comes to blockchain technology [64]. According
to the above, different parties are required to maintain the blockchain history and add the desired
changes. When parties are not in agreement for reasons such as addressing security risks and
delaying in confirmation of transactions. [58], the blockchain splits and alternative chains may
emerge. Forks can result in the creation of entirely new cryptocurrencies, as well as have a significant
effect on the price of existing ones. Many well-known Cryptocurrencies, such as Bitcoin Cash and
Bitcoin Gold, evolved from the original Bitcoin blockchain via a hard fork. Recently, some work
has studied how the Bitcoin fork affects the volatility of the Bitcoin price. It has been concluded
that within two months after the fork occurs, the price of Bitcoin will be apparently affected [6].

2.2 Cryptocurrencies
Bitcoin. Bitcoin was the first application of blockchain technology as well as the first P2P currency.
Its maturity and pioneering significance have promoted it to stand as the "base money" of the crypto
market. Bitcoin acts as an intermediary between other cryptocurrency transactions, and it links
cryptocurrencies to the commercial reality of the U.S. dollar, the stock market, the options market,
etc. As of today, more and more platforms and merchants are accepting Bitcoin, such as PayPal, and
Tesla has announced that they will accept Bitcoin as a form of payment. The feverish popularity
of Bitcoin comes with a double-edged sword. The price of Bitcoin is inherently volatile, prone to
experiencing substantial fluctuations driven by speculative trading activity, geopolitical events,
and others. S.Sapuric, A. Kokkinaki, et al. have conclusively demonstrated, through extensive
collection and analysis of financial data, that the exchange rate of Bitcoin displays significantly
greater volatility when compared to traditional currencies [62]. This characteristic price instability
introduces risks and uncertainties for both avid investors and ordinary users of the cryptocurrency.
Ladislav Kristoufek et al. utilized instrumental variables analysis to demonstrate that heightened
trading volume, increased on-chain transfer value, and the intrinsic price dynamics of Bitcoin
collectively contribute to a significant amplification of Bitcoin volatility [41]. Based on the empirical
findings, it is unlikely that Bitcoin’s volatility will decrease significantly over the long term. The
study conducted by Lukaš Pichl *, Taisei Kaizoji et al. examines the price of Bitcoin in relation to
standard currencies and analyzes its volatility over the past five years [50]. They utilize various
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standard currency pairs to establish both theoretical and empirical boundaries for Bitcoin arbitrage
opportunities.
The intrinsic value of bitcoin and its price formation mechanism have been thoroughly inves-

tigated in multiple studies. The consistent findings from these investigations offer compelling
evidence that Bitcoin indeed holds an inherent value, even in the face of a prolonged price bubble.
For example, Adam S. Hayes et al. estimated Bitcoin’s value using a backtested production cost
model, demonstrating that while it experiences volatility and bubbles, its price cannot collapse to
zero due to inherent worth [36]. Ladislav Kristoufek et al. applied economic principles like the law
of one price and quantity theory of money, determining Bitcoin possesses a fundamental value.
In December 2018, its price closely aligned with estimated intrinsic value of around $3,500 [40].
Jan Kubal, Ladislav Kristoufek et al. examined the interaction between Bitcoin price and network
hash rate. By studying aspects like electricity demand and environmental impact, they revealed a
deterministic link and explored intrinsic value from these angles [42]. The study conducted by Xin
Li, Chong Alex Wang et al. presents a theory-driven empirical analysis of the Bitcoin exchange
rate, considering both technical and economic factors. The findings indicate that in the long term,
economic fundamentals have a greater impact on the bitcoin exchange rate, while technical factors
become less influential following the closure of Mt. Gox [48].

Additionally, digital wallets remain vulnerable to hacking and theft. Prudent security measures
and robust backup protocols are important considerations given the non-reversible nature of Bitcoin
transactions and potential for sizeable financial losses associated with compromised wallets. While
the resilience of decentralized blockchain networks is notable, judicious risk management remains
essential for all participants navigating both the cryptocurrency’s ongoing volatility as well as
technical and operational issues.
Ethereum.The concept of Ethereum was conceived by Vitalik Buterin in 2013. Despite being
essentially the same in their decentralized nature, Bitcoin and Ethereum are not directly competitive.
It is because Ethereum has positioned itself as a programmable blockchain that can support
decentralized apps (dApps) with smart contracts, whereas the Bitcoin blockchain was created
exclusively to support trading functions. The varying structure and uses of these two blockchains
may have led to Ethereum being more sensitive to technology upgrades and version iteration,
while the Bitcoin blockchain focuses on guaranteeing transaction security. With the popularity of
Decentralized Finance (DEFI) and Non-Fungible Tokens (NFT), Ethereum has gained momentum in
recent years [73].

ETH is the “gas” of the Ethereum network. Programs and services linked to the Ethereum network
require computing power. The Ethereum miners receive the transaction fees paid by their clients
only in ETH and execute their requested transactions. Thus, Ethereum has real value in comparison
to Bitcoin because its value is embedded in the value of Ethereum’s ecosystem. For as long as
Ethereum is in demand, ETH will be required.

In addition, another significant application of ETH at present is ICO (Initial Coin Offering). The
difference between ICO and IPO (Initial Public Offering) is that an IPO issues and trades stocks,
whereas an ICO issues and trades digital tokens. ETH’s ICO projects offer an attractive alternative
to other cryptocurrencies due to the direct link between Ethereum and DApps. The popularity of a
number of ICOs based on the Ethereum network has largely increased the value of Ethereum [9].
The transaction function is not designed as deeply as Bitcoin’s. Given that Ethereum is intended
to be generalized, its application should maximize the concept of low-level compatibility. This
eliminates the necessity for embedded advanced use cases, such as the "time lock" in Bitcoin.
Also, Bitcoin utilizes a model based on Unspent Transaction Outputs (UTXO) as opposed to the
account-based model employed by Ethereum [11], which is less secure but more convenient.
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Ethereum 2.0 introduces a new consensus mechanism called Proof of Stake (PoS). PoS replaces
the traditional Proof of Work (PoW) algorithm that prior Ethereum networks utilized. In PoW,
miners utilize computational power to solve complex cryptographic puzzles in order to validate
blocks and earn rewards. In contrast, PoS selects block validators based on the amount of Ether
(ETH) they hold and stake. This means node selection in PoS is determined by the quantity of
currency staked rather than computing power.

This PoS mechanism aims to improve network efficiency, security, and reduce energy consump-
tion relative to PoW. The core concept of Ethereum PoS is the use of Validators. Validators are node
operators that hold and stake a predetermined amount of Ether. They are responsible for validating
and assembling new transaction blocks, as well as participating in the blockchain consensus process.
The Ether staked by validators serves as collateral, incentivizing honest behavior. If a validator acts
maliciously or negligently, they risk forfeiting their stake funds. This mechanism helps ensure the
integrity and security of the Ethereum network in PoS.
Altcoins. Altcoins are digital currencies that are an alternative to Bitcoin. Both Bitcoin and Altcoins
are based on the same principles. Therefore, they share code and operate as peer-to-peer systems.
Altcoins are digital currencies derived from Bitcoin, which shared basic principles and blockchain
structure as Bitcoin but had distinct characteristics of their own. Ciaian P, Rajcaniova M, et al.
defines Altcoins as cryptocurrencies which emerged after Bitcoin, including Ethereum, Dash,
DogeCoin, LiteCoin, PeerCoin, and Ripple [59]. Similarly, Pirgaip B, Dinçergök B, et al. conducted
a research on Bitcoin market price analysis, where they investigated and analyzed not only Bitcoin
but also major fiat currencies, Altcoins, commodities, and securities [22]. There are several types of
Altcoins, including Stablecoins such as Tether, Memecoins, based on social media jokes and puns,
Utility Tokens such as Ethereum, and so on.

Over 14,000 cryptocurrencies were available by 2021. According to CoinMarketCap [61], Bitcoin
alone accounted for more than 40% of the total crypto market cap at the time of writing this paper,
while Ethereum makes up more than 20%. The remaining market share is occupied by all other
Altcoins. Take Dogecoin as an example, it was created to mock the "cryptocoin has value" and its
code is exactly the same as Bitcoin only changing the name of ’Bitcoin’ to ’Dogecoin’. Incredibly,
with Elon Musk constantly hyping it on Twitter, Dogecoin’s market value is directly"flying to the
moon". With the popularization of Dogecoin and the influence of Elon Musk, the next dogecoin
being hyped is SHIBA COIN, which we refer to as "SHIB" and have risen hundreds of times in just
a month.

2.3 Digital Exchanges
Distributed exchanges (DEXs), as conceptualized in the emerging blockchain ecosystem, refer to
decentralized exchanges that operate without dependence on centralized trading platforms. DEXs
facilitate transactions on blockchain networks through the implementation of smart contracts.

Prominent examples of DEXs include Uniswap, Sushiswap, and Balancer - platforms that leverage
smart contract technology to realize automated market making (AMM) mechanisms for exchanging
digital assets. In contrast to conventional centralized exchanges, DEXs are posited to afford users
enhanced mobility and transparency due to their democratized and openly verifiable designs based
on public blockchain ledgers. This novel construct of decentralized trading venues redistributes
powers from centralized intermediaries to individual users, offering researchers a case study on the
technical and economic impacts of decentralization in crypto markets.
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2.4 Topic Modeling and Latent Dirichlet Allocation (LDA)
The topic model is a statistical method for extracting topics from a given corpus based on machine
learning or natural language processing [7]. Topic modeling is considered one of the most popular
methods for uncovering hidden semantic structures in natural language processing (NLP).
Latent Dirichlet allocation (LDA) is a popular topic modeling technique that enables sets of

observations to be explained by unobserved groups that explain why some parts of the data are
similar [8]. Specifically, it is theorized that each document consists of a limited number of words
and each word in the document relates to its topic.

2.5 Cryptocurrency Bubble
Generally, economists describe "Bubble" as deviations from normal distributions of asset prices.
As the bubble expands, investors will suffer large losses, increasing financial system risks and
the possibility of a financial crisis. Considering that bubbles deviate from the real economy and
have no intrinsic value, they are extremely fragile and may adversely affect the development of
the blockchain industry. The lack of intrinsic value for digital currency assets exacerbates this
volatility. Accordingly, studies on the quantification and causes of cryptocurrency price bubbles
have attracted the attention of a wide range of stakeholders, including regulators, policy makers,
investors, and scholars. The existence of cryptocurrency bubbles has been demonstrated in a wide
range of studies. According to Garcia [31] and Kristoufel [39]et al., previous research investigated
the main Bitcoin price drivers and indicated the existence of a bubble phase.

3 SOCIAL MEDIA DATA ANALYSIS
In this section, we investigate which kinds of Social Media Data (SMD) have the most impact on
the cryptocurrencies price, and whether it could be controlled by individuals or institutions to
manipulate the market.

3.1 Motivation
The cryptocurrency market has suffered extreme price fluctuations in recent years, which shows
high correlations with some social media data [10]. For example, Dogecoin price always soared or
fell when Elon Musk (The CEO of Tesla) sent Dogecoin-related information on his Twitter. Due
to the lack of supervision, the fluctuation of cryptocurrencies might give chances for people or
institutions to manipulate the market to make unfair profits [65]. Besides, the policy of governments
also greatly influences the price of cryptocurrencies. For example, the Chinese government banned
cryptocurrency trading, which led to the drop of Bitcoin price in May 2021. Although policy-related
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Table 1. The number of days that fall or rise greater than 10% for the three cryptocurrencies.

Cryptocurrency Period R ≥ 10% F ≤ -10%
Bitcoin 2016.07-2022.07 43 32

Ethereum 2016.07-2022.07 95 64
Dogecoin 2016.07-2022.07 140 95

information could affect the price of cryptocurrencies, it is less likely that some people have enough
power to utilize government policy to manipulate the cryptocurrency market [66].

3.2 Approach
Figure 1 illustrates the overview architecture of how we find the SMD, classify them into different
groups, and their impact levels on the cryptocurrency prices. Our method consists of three steps,
e.g., data collection, social media data (SMD) classification, and influence analysis. We first collect
the daily price of Bitcoin, Ethereum, and Dogecoin from July 2016 to July 2022. We then highlight
the dates with large price fluctuation1 (10%). We then search related SMD through search engines
and social media websites, e.g., Google, Twitter and Facebook. After that, we utilize open card
sorting to classify the obtained SMD into seven groups. Finally, we conduct quantitative and word
cloud analyses to find which factor strongly influences cryptocurrency prices. We discuss the
detailed steps in the following parts of this section.

It was crucial to strategically define the range of data in order to ensure its validity. To minimize
bias, we intentionally extended the data collection period to five years, combining transaction data
with social media data from multiple platforms. This comprehensive approach utilizing big data
surpasses previous efforts that focused on narrower time windows or single sources. In comparison,
Moore et al. [54] analyzed fraud data solely from the Bitcoin market during the period of 2010-2015.
Cheung A et al. [20] examined evidence of Bitcoin bubbles and manipulation using transaction
logs from 2010-2014. In a seminal analysis published in 2023, La Morgia et al. [46] investigated
pump and dump schemes across Dogecoin exchanges, taking a more comprehensive longitudinal
perspective by spanning three years and including data from four distinct trading venues.
We took measures to increase the research scope and data integration to reduce biases, but

the inherent uncertainty and rapid changes in the cryptocurrency market inevitably mean that
conclusions may not remain applicable in the long run. The primary objective of this study is to
address the lack of knowledge analysis in recent years and provide references for current decision-
making to identify risks and develop response strategies. At the same time, we established a price
impact assessment framework aimed at providing a relatively stable analytical benchmark for the
cryptocurrency market. The framework methodology itself is robust and provides a foundation for
future research. Through continuous optimization, we believe the factors model can better extract
strategic insights from online and market systems, although the systems are full of uncertainties.

3.2.1 Data Collection. Two kinds of data need to be collected for further analysis – historical
daily prices data of cryptocurrencies and social media data. The recent six-year daily prices data is
collected through the API provided by investing.com. The time period of the data we collected for
the three cryptocurrencies are all between July 2016 and July 2022. After finding the fluctuation
date of the three cryptocurrencies, we searched related social media data via search engines and
social media websites, e.g., Google, Twitter and Facebook. For example, Bitcoin price fell -15.42%
on Aug.2, 2016. We searched related news and found that $72 million of Bitcoin was stolen from
1We regard 10% as a large price fluctuation as in many stock market, e.g., China, Singapore, when the stock price fall or rise
greater than 10% in a single day, the trade will be terminated.
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Table 2. Seven kinds of SMD lead to the price fluctuation of the cryptocurrencies market

Group Explanation
Technology Any protocol changes of the blockchain system, e.g., consensus protocol,

performance optimization
Policy Governments’ policy to the cryptocurrencies market.
Market Price fluctuation caused by specific institutions or big companies, e.g, Tesla

accepts Bitcoin as a payment
Economic Price fluctuation caused by economic factors, such as financial laws and

regulations, market correlations, etc
Security Price fluctuation caused by attacks or any security-related issues.
Views Public opinions or actions by influencers in cryptocurrency fielde, e.g., Elon

Musks’ Twitter.
Others Black swan events that lead to the fluctuation, e.g., wars, Covid-19.

Hong Kong’s Bitfinex exchange that day, which led to the drop of the Bitcoin price. Table 1 shows
the number of days that fall or rise greater than 10%. Specifically, there are 43 days and 32 days of
Bitcoin that rise and fall greater than 10% in the recent 6 years. The table shows that the Bitcoin
price has the most stable, while the Dogecoin worst.

3.2.2 Social Media Data Classification. We follow the open card sorting [67] approach to analyze
and categorize the collected SMD. Open card sorting is commonly used for organizing data with
no predefined groups. It involves grouping fragmented elements into a grouped information
architecture with inclusion relationships. Specifically, each card will be clustered into a group with
a certain topic or meaning first. If there is no appropriate group, a new group will be generated.

It is particularly appropriate in situations where there are many sub-information elements, and
designers are not sure which sub-information elements belong to which, or even how to classify
them. In addition, it organizes the elements of the information system in a way that is easy for
users to understand. It can be used to help design or evaluate information architecture. Researchers
may gain valuable insight from classifying cards, as well as conduct in-depth analyses to determine
the principles and defining characteristics of each card.

There are two iterations of this step and two authors of this paper involved in the card sorting.
In iteration 1, we randomly chose 20% of the SMD. The two authors carefully read the details of

the SMD and double-checkedwhether the SMDwas the root cause of the price fluctuation. They then
discussed to classify the SMD into a group, e.g., economic and policy. In iteration 2, the two authors
independently categorized the remaining 80% of the SMD into the initial classification scheme
described in iteration 1. After that, they compared their results and discussed any differences to
ensure their correctness. Finally, the collected SMD were classified into seven groups; the definition
of them can be found in table 2.

3.2.3 Influence Analysis on Prices. Two kinds of analyses are conducted in this part, e.g., quantitative
analysis and word cloud analysis. The quantitative analysis aims to find which group contributes
the most to the price fluctuation. Word cloud analysis tries to analyze the semantics of the collected
SMD and find more detailed factors of the price fluctuation.
A. Quantitative Analysis. Based on the classification above, we get a list of group categories as
groups = {‘Technology’, ‘Policy’, ‘Market’, ‘Economic’, ‘Security’, ’Views’, ’Others’}. The impact of the
each group is calculated as Equation(1): 𝑔𝑟𝑜𝑢𝑝_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑖] is represented by Equation(2) , where
𝑛𝑖 is the number of SMD classified into group i. For example, 𝑛1 is the number of SMD classified as
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the ‘Technology’. 𝑔𝑟𝑜𝑢𝑝_𝑤𝑒𝑖𝑔ℎ𝑡 [𝑖] is calculated as Equation(3) as follows , where𝑚𝑖 represents
the daily rise or fall caused by a SMD, reflecting the impact of a SMD.
To be specific, following the determination of the daily fluctuations of price rises and falls, we

retrieve a sizable corpus of corresponding social media data (SMD). These SMDs are prospectively
organized into the predefined taxonomy of seven topical factors previously established through
the card sorting process before. Each SMD collected is labeled with the associated date and price
fluctuation designation for said date. We utilize the price variation affiliated with each SMD to
computationally derive subsequent factor weights. Subsequently, we will computationally leverage
the price variation affiliated with each SMD to systematically derive the ensuing factor weights.
For example, 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦_𝑁𝑒𝑤𝑠 [𝑚1,𝑚2, ...] represents SMD in the Technology factor category,

where 𝑚𝑖 represents the price fluctuation associated with that news, indicating its impact. 𝑛1
represents the number of SMD labeled as "Technology" and 𝑛2 represents the number labeled as
"Policy". The seven categories constitute the entire SMD matrix.
Next, in calculating the weights, we consider frequency of occurrence and magnitude of price

fluctuation caused by a factor. We calculate the final weight factors from both 𝑔𝑟𝑜𝑢𝑝_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑖]
and 𝑔𝑟𝑜𝑢𝑝_𝑤𝑒𝑖𝑔ℎ𝑡 [𝑖]. Some market influences may appear frequently but not cause significant
price changes, while some policies may significantly impact price but occur less frequently.
𝑔𝑟𝑜𝑢𝑝_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑖] represents occurrence frequency and 𝑔𝑟𝑜𝑢𝑝_𝑤𝑒𝑖𝑔ℎ𝑡 [𝑖] represents influence
level. The final weight is calculated using multiplication. If related Technology SMD do not appear
on a day, their price fluctuation is considered zero, meaning they do not contribute to the influence
factor calculation.

𝑔𝑟𝑜𝑢𝑝_𝑖𝑚𝑝𝑎𝑐𝑡 [𝑖] = 𝑔𝑟𝑜𝑢𝑝_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑖] + 𝑔𝑟𝑜𝑢𝑝_𝑤𝑒𝑖𝑔ℎ𝑡 [𝑖] (1)

𝑔𝑟𝑜𝑢𝑝_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑖] = 𝑛𝑖∑7
𝑖=1 𝑛𝑖

(2)

𝑔𝑟𝑜𝑢𝑝_𝑤𝑒𝑖𝑔ℎ𝑡 [𝑖] =
∑𝑛𝑖

𝑥=1 |𝑆𝑀𝐷 [𝑖 ] [𝑚𝑖 ] |∑7
𝑥=1

∑𝑛𝑖
𝑥=1 |𝑆𝑀𝐷 [𝑖 ] [𝑚𝑖 ] |

(3)

B. Word Cloud Analysis.
We utilize the LDA (Latent Dirichlet Allocation) topic model [7], an automated model that

analyzes a combination of documents data, to create clusters of words and find out the hidden
patterns between words related to their topics. Based on our experience, we summarized 5 topics
for each cryptocurrency, and each topic has 30 topic words. Following the LDA analysis results, we
generated a word cloudmap based on theword frequency distribution for the three cryptocurrencies,
which provides an intuitive view of the associated words with the three cryptocurrencies.

3.3 Results
3.3.1 Distribution of Seven SMD Groups. Table 3 shows the distribution of seven SMD groups
for the three cryptocurrencies. Note that several SMDs might contribute to the same day’s price
fluctuation. Thus, the sum of the seven factors might exceed the total days of rise/fall. For example,
China imposed new restrictions on cryptocurrency trading and mining on May 19, 2021. On the
same day, Tesla also announced that they would no longer accept Bitcoin as a payment. These two
SMDs were labeled as “Policy" and “Market", respectively; they both contributed to the fall of the
cryptocurrencies market at that day.

However, we failed to find any SMDs that led to the price fluctuation on some days. For
example, there are 43 days that the price of Bitcoin rise higher than 10%, but we failed to find
any SMD result to the fluctuation for 9 days. The detailed number can be found in the last line of
table 3. The results show that all of the price falls of Bitcoin could be explained by related
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Table 3. The distribution of seven SMD groups for the three cryptocurrencies.

Bitcoin Ethereum Dogecoin
R(43) F(32) R(95) F(64) R(140) F(95)

Technology 6 6 55 23 4 0
Policy 19 20 17 21 0 28
Market 19 16 45 18 55 5
Economic 10 9 22 19 25 38
Security 2 3 1 11 0 0
Views 9 3 11 8 87 19
Other 1 2 1 3 0 0
Not found 9 0 3 4 37 29

Table 4. The importance of seven SMD groups for the price fluctuation.

Bitcoin Ethereum Dogecoin
R F R F R F

Technology 0.004 0.010 0.156 0.048 0.000 0.000
Policy 0.134 0.335 0.011 0.054 0.000 0.078
Market 0.107 0.141 0.076 0.034 0.125 0.004
Economic 0.010 0.035 0.019 0.028 0.025 0.185
Security 0.000 0.003 0.000 0.011 0.000 0.000
Views 0.014 0.008 0.004 0.004 0.222 0.052
Others 0.000 0.001 0.000 0.001 0.000 0.000

reasons. Thus, it is possible to warn about the risk to Bitcoin holders when specific events happen.
The price fluctuation of Ethereum is more predictable, as most of the price fluctuation could find
a specific reason. For the price fluctuations that cannot find related SMD, we found some large
trading options from whale users from blockchain transactions. Selling or buying large amounts
of cryptocurrencies could lead to a large price fluctuation, which might hint the possibility
of market manipulation by whale users. We discuss the details of this in the next section. Note that
this kind of behavior will not be classified into ‘Economic’ group, as the time of the fluctuation
does not follow any financial laws and regulations.

3.3.2 Quantitative Analysis results. Table 4 illustrates the importance of seven SMD groups for the
price fluctuation by using the method we introduced on Section 3.2.3. Groups with a higher score
means it contributes more to the price fluctuation. Among the seven groups, ‘View’ and ‘Market’
SMD could be controlled by influential individuals or institutions, which hints at a high
possibility of market manipulation. ‘Technology’ and ‘Policy’ are usually controlled by blockchain
teams and governments, which shows a low possibility to the market manipulation. Thus,
we call ‘View’ and ‘Market’ as human-controlled groups, and call ‘Technology’ and ‘Policy’ as
non-human-controlled groups. For the other three factors, we called it neutral factors, as it is not
easy to determine a specific individual/institution could control the SMD. For example, ‘Economic’
is a collective action by many cryptocurrency investors. There is usually a large price fall followed
by a large price rise, as many investors want to hold profits they earned. It is likely the price
fluctuation is a consensus for all the investors, but it is also possibly controlled by influential
individuals, e.g., whale users, as they have the ability to cause panic and greed.
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SMD groups contribute to the price fluctuation of the three cryptocurrencies are significantly dif-
ferent. The Policy is the most important group that lead to the price fluctuation for Bitcoin.
This means the governments’ attitude has the highest influence on Bitcoin market. Ethereum is the
first and the most popular blockchain platform that supports the running of smart contracts. As ex-
pected, Technology group affects the ETH price the most. Although the most important group
that lead to the price fluctuation for the Bitcoin and Ethereum are non-human-controlled factors,
one of the human-controlled group, Market also contributes a lot. It shows that big companies’
attitudes also have strong influence to the price of Bitcoin and Ethereum.
Unlike Bitcoin and Ethereum,more human-controlled factors are involved in the price

fluctuation of Dogecoin. Specifically, Views contributes much more to the price rise than other
factors, while Economic contributes the most to the price fall. The non-human-controlled factor,
i.e., Technology and Policy almost have no influence to the Dogecoin’s price rise. It clearly shows
that the price rise of Dogecoin is human-controlled. Many investors clearly know it, and thus price
falls are usually followed by the rise (Economic), as the investors want to lock their profits.

3.3.3 Word Cloud Analysis Results. Following the LDA analysis, we generate word cloud maps
based on the frequency of the topic words distribution for the three currencies. It provides an
intuitive view of the associated words with each of the three currencies shown in Figure 2.

a) BTC

b) ETH c) DOGE

Fig. 2. Word Cloud Graph Based on the LDA Results

According to the word cloud map, price fluctuations of Bitcoin are strongly related to
“policy", followed by “banks", “China", “market", etc. The term “Elon Musk" plays an
important role in price fluctuations for Dogecoin, even more important than “policy" and
“economics". This shows that Elon Musk has a strong influence on Dogecoin’s price. “Technology"
is the most important word for Ethereum, and follows with “policy", “markets", and “finance".
“Vitalik Buterin", the co-founder of Ethereum, also appear in the word cloud map of Ethereum.
Unlike Musk, Vitalik is a developer who usually announces the technical updates / future maps of
Ethereum, and rarely shows opinion to the cryptocurrencies’ price. However, it also shows that
Vitalik has the ability to affect the Ether price.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Market manipulation of Cryptocurrencies: Evidence from Social Media and Transaction Data 111:13

Manipulation AnalysisData Collection  

a)  Whale  Account Analysis b)  Abnormal Account Analysis

Fig. 3. The overview architecture of blockchain data analysis

3.4 Findings
Based on the above analysis, we summarize the following findings:
Finding 1: Most of the price fluctuations of the three cryptocurrencies can find related reasons
from social media data. Dogecoin contains the most number of suspicious price fluctuations, while
the Bitcoin and Ethereum price are more predictable, which hints lower probability of market
manipulation in these two cryptocurrencies.
Finding 2: Bitcoin price has a high correlation to governments’ policy, especially for China. The
technology factor plays an important role in the Ethereum price fluctuation. The price rise of
Dogecoin is seriously human-controlled.
Finding 3: Individuals have little responsibility to the price fluctuation of Bitcoin and Ethereum
in the recent six years. However, big companies and institutions’ attitudes can lead to their price
fluctuation.
Finding 4: Influential individuals have the ability to affect the price of Ethereum and Doge e.g.,
Vitalink for Ethereum, Musk for Dogecoin. However, there is no specific person who has enough
influence to affect the Bitcoin price. This indicates that manipulating the Bitcoin price is more
difficult than Ethereum and Dogecoin.

4 BLOCKCHAIN DATA ANALYSIS
In this section, we investigate whether insider traders (manipulators) are influential on each
blockchain platform. Finding the blockchain accounts of such insider traders and analyzing their
trading activities may allow us to analyze how they manipulate the crytocurrency price.

4.1 Motivation
In the previous section, we found some suspicious large price fluctuations that cannot find any
reasons. According to our observation from blockchain transactions, whale users’ trading activities
might take responsibility for these fluctuations. Besides, we also found that “Market" and “Views"
are the two important SMD groups that result in the large price fluctuation of cryptocurrencies.
However, “Market" and “Views" could be controlled by some people or institutions. We indeed
found some evidence to prove the manipulation exists. For example, Binance, the world’s largest
cryptocurrency exchange, was investigated for insider trading by the U.S. Commodity Futures
Trading Commission (CFTC) and the U.S. Securities and Exchange Commission (SEC) in 2021.
These SMD confirmed that whale users’ behavior could affect the price of cryptocurrencies and the
existence of insider tradings.
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Table 5. The percentage of coins hold by top N whale users

Top N 10 30 50 100
BTC 6.30% 10.37% 12.53% 15.72%
ETH 22.20% 28.51% 31.91% 38.46%
DOGE 42.90% 51.33% 55.33% 60.29%

4.2 Approach
Since all the activities on the blockchain are stored and visible to the public, we utilize blockchain
data to analyze whether the manipulation and insider trading really exist. The detailed steps are
illustrated in Figure 3.

4.2.1 Data Collection. In the data collection step, we use Tokenview2 and Etherscan3 to collect
blockchain account information. Both of them are blockchain search engines to look up the detailed
information of a specific account, e.g., its balance, transaction information, identity information (Al-
though blockchain account is anonymous, some accounts will be given a name tag, e.g., “exchange",
“attacker"). Google BigQuery4 is a serverless, cost-effective, multicloud data warehouse designed
to provide business insights from big data and address analytics and data science problems [33].
Its data warehouse stores blockchain data of Bitcoin, Ethereum, and Dogecoin. It enables scalable
analysis over petabytes of blockchain data by using SQL language.

4.2.2 Manipulation Analysis. Two analyses are conducted in this section, i.e., whale account
analysis, and abnormal account analysis.
A. Whale Account Analysis. This analysis aims to find the impact level of whale accounts to the
prices on a cryptocurrency. Whale accounts hold a large number of cryptocurrencies. Their trading
behavior could lead to price fluctuations. We utilize Google BigQuery to find the top 100 richest
whale accounts for the three cryptocurrencies and then manually check their historical trading
activities.
B. Abnormal Account Analysis. This analysis aims to prove that inside traders and manipulation
exist on the cryptocurrency market and analyze abnormal accounts’ behavior. Specifically, we
first conduct a transaction analysis to find “abnormal transactions" and “abnormal accounts". A
transaction is identified as an “abnormal transaction" if this transaction has “a large sized transfer/an
usually large size of transfer"5 within the five days before a large price fluctuation, and all the
amounts are transferred to or from exchange accounts. The sender of the “abnormal transaction" is
regarded as “abnormal accounts".

4.3 Results
4.3.1 Whale Account Analysis. Table 5 gives the percentage of cryptocurrencies held by the top
N whale users. All three cryptocurrencies show a degree of centralization but still have
significant differences. The top 10 whale users hold 42.90% of Dogecoin, and more than 60%
of Dogecoin is owned by the top 100 users. These numbers clearly show that the liquidity of
Dogecoin is poor and whale users could easily control Dogecoin prices. Ethereum also
shows great centralization with the top 10 whales holding 22.20% of Ethers and the top 100 users

2https://tokenview.com/
3https://etherscan.io/
4https://cloud.google.com/
5A weekly report from Huobi [75], the top five cryptocurrency exchange, define “a large amount of transfer" as 1000 BTC,
10,000 ETH, 1000,000 Doge in a transaction.
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Fig. 4. An example of abnormal account (DRSqEwcnJX3GZWH9Twtwk8D5ewqdJzi13k) of Dogecoin.

controlling more than 1/3 of the total Ethers. The assets of Bitcoin are the most distributed among
the three cryptocurrencies. The top 10 whale users also control 6.3% of Bitcoin, which means that
it is much more difficult for Bitcoin whales to manipulate the price compared to the other
two cryptocurrencies.

4.3.2 Abnormal Account Analysis. Based on the approach introduced on Section 4.2.2.B, we find in
total 5, 27, 23 “abnormal accounts" before large price falls, and 0, 66, 0 “abnormal accounts" before
large price rises for Bitcoin, Ethereum, Dogecoin, respectively. The detailed information of these
“abnormal accounts" can be found in our Github repository.

Figure 4 gives an example of an abnormal account of Dogecoin. The account is labeled as an
abnormal account as we find it generates several “abnormal transactions". Then, we manually
check all of its trading activities. From the figure, we can see a high overlap between the
account’s trading activity and Dogecoin’s price fluctuation. Specifically, the account always
buys Dogecoin (coin transfer into the account) when the price is low and sells Dogecoin (coin
transfer out to the account) when the price reaches its peak. Another interesting “coincidence" is
that there are always “Market" or “View" SMD followed by its trading activities, and these SMD are
regarded as the reasons that lead to large price fluctuations. This coincidence leads to a possibility
of insider trading and manipulation of Dogecoin.
Bitcoin has the least number of “abnormal accounts", which shows market manipulation

is rarer on Bitcoin compared to Ethereum and Dogecoin. We found that only Ethereum
has “abnormal accounts" before large price rise, but all three platforms find related “abnormal
accounts" before a large price fall. Normally, selling cryptocurrencies could lead to a price drop. To
sell coins, the coin owners need to transfer the cryptocurrencies to exchanges, which will leave
transactions on the blockchain. Similarly, buying cryptocurrencies can increase the price value.
However, transferring cryptocurrencies from exchanges to blockchain will be charged fees. Thus,
many coin owners might only trade on centralized exchanges, which will not generate transactions
on the blockchain. The number of “abnormal accounts" for Ethereum before large price rises might
show that the Ether owners are more confident about the future of Ethereum and more willing to
have long-term holding of Ether. To our surprise, Ethereum has the most number of “abnormal
accounts". We observed that many abnormal accounts only have a single abnormal transaction,
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and these transactions were generated at a same time period. This hints that these accounts belong
to the same institution or individual.

4.4 Findings
Based on the above analysis, we summarize the following findings:
Finding 5: Dogecoin and Ethereum show great centralization, especially for the Dogecoin. The
bad monetary liquidity gives the ability to the whale users to manipulate the price. Manipulating
the Bitcoin price is the most difficult among the three cryptocurrencies due to the decentralized
asset distribution.
Finding 6: All of three cryptocurrencies appear to contain “abnormal accounts", who are able
to “predict" the future price. The “abnormal accounts" prove the existence of insider trading and
manipulation of cryptocurrencies market, but only a limit number of “abnormal accounts" are
found on Bitcoin, which shows market manipulation is not common on Bitcoin market.

5 PRICE BUBBLES ANALYSIS
In this section, we investigate the price bubble phenomenon on the three cryptocurrency platforms
to identify the possibility of market manipulations.

5.1 Motivation
Cryptocurrency prices can deviate significantly from their real values due to the anonymity and
lack of regulation from government. The phenomenon is often referred to as the Bubble [72], which
is closely related to market manipulation and speculation.
Based on SMD collected over the past few years, it appears that a small number of addresses

are manipulating the market by leveraging their social influence and crypto-assets; profiting by
repeatedly triggering price explosions and hyping cryptocurrencies. By detecting price bubbles, we
can identify periods of market manipulation and locate abnormal trading activity. As outlined in
the previous chapter, we will compare the duration of three types of cryptocurrency bubbles with
the duration of suspected manipulations. Moreover, the timeline of each significant bubble is traced
back to its emergence time to determine whether the price was influenced by any price-influencing
factors demonstrated in the SMD analysis. This allows us to perform an in-depth analysis of market
manipulation.

5.2 Approach
The GSADF testing is used to evaluate the emergence and duration of bubbles based on historical
data regarding currency prices [56]. GSADF tests involve taking all possible subsamples from
a sample dataset (traversing the data starting and ending points), calculating all possible ADF
statistics with the sample data, and comparing the maximum GSADF statistic with a 95% critical
value on the right. Bubbles are identified when the critical value exceeds the rejection domain.
GSADF test results are presented in the form of a table that compares the GSADF t-statistic value
with the critical values under different confidence levels (𝛼). If the GSADF t-statistic value exceeds
critical values, this indicates a bubble in the sampling time of the cryptocurrency. The confidence
level 𝛼 represents the acceptance region for test results in the sample population, and the higher 𝛼
is, the wider the margin of error is accepted.
According to the methodology used by Phillips et al. (2015) to calculate the effective window

size [56], the window size is equal to 5% of the total sample size. Minimum effective window X refers
to the period within which the bubble value can be calculated. This implies that no statistical test
results are available for the first X days of the sample. For example, Dogecoin’s effective window
size is 74 days, and its sample size is 1,470. Secondly, We set up a Monte Carlo simulation for 1000
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Table 6. Gsadf statistical test results

BTC ETH DOGE
GSADF t-Statistic 9.264672 10.88541 11.96402

Test critical values
𝛼=99% 2.944194 2.944194 2.225943
𝛼=95% 2.469119 2.469119 2.500415
𝛼=90% 2.21219 2.21219 2.957507

Table 7. The main periods of Bitcoin bubbles

Bubble periods Landmark events
2016.12.21 - 2017.01.05 Trump’s election win
2017.02.23 - 2017.03.07
2017.05.02 - 2017.07.09
2017.07.20 - 2017.09.13

Blockchain commercial applications,
Bitcoin ETF and investor enthusiasm

2017.09.27 - 2018.01.15 Bitcoin futures launch at CME
2018.11.20 - 2018.12.16 BCH fork and less policy restrictions
2019.04.07 - 2019.07.01 Policy support and market acceptance

2020.11.05 - 2021.05.14 Global economic stimulus and market
speculation, such as Tesla accepting BTC

2021.10.15 - 2021.11.15 U.S. ETF launch

to ensure sufficient accuracy, and obtained the corresponding statistical value of the GSADF test
and corresponding critical value through the 1000 iterations.
In this paper, we first conducted bubble tests for confidence intervals of 90%, 95% and 99%,

respectively, to ensure the completeness and rationality, and selected a 95% acceptance region for
estimating bubble emergence and duration further. We then calculated a bubble test graph at 95%
confidence levels, which consists of a price curve, a critical value curve, and a GSADF t-statistic
value curve. In addition to testing the existence of bubbles, this can further determine the time of
the existence of bubbles. When the t-statistic value is greater than the critical value, it means that
the price bubble appears at this time point.

5.3 Results
5.3.1 Bubble Existence Analysis. Table 6 presents the results of the bubble existence test. It can
be seen that the critical value of each currency at 90%, 95% and 99% confidence levels is
much smaller than the GSADF t-statistic respectively, indicating that there are significant
price bubbles during the sampling period.

5.3.2 Bubble Periods Analysis. We examined the periods of time during which bubbles occurred,
conducted transactions and SMD, and further examined market manipulation. Figure 5 shows
detailed daily GASDF test results for three representative cryptocurrencies.

BTC Analysis: We identified in total nine major Bitcoin price bubbles, as shown in Table 7.
Within these bubble periods, we selected representative SMD and summarized the key reasons or
representative events leading to the bubble in the “Landmark events" column. The largest bubble
occurred in 2017, lasting 258 days. Over the next three years, the frequency and magnitude of
bubbles significantly decreased until the second bubble peaked and price soared in 2021.
In 2017, the first Initial Coin Offering allowed cryptocurrency founders to sell their new coins

directly to investors, leading to an unprecedented wave of speculative activities. An ICO (Initial
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BTC ETH

DOGE

Fig. 5. GSADF test result for three representative cryptocurrencies at a 95% confidence level

Coin Offering) is a concept derived from the concept of Initial Public Offering in the stock market,
and is the initial issuance of tokens for blockchain projects to raise universal cryptocurrencies
such as Bitcoin and Ethereum [49]. In December 2017, the CME (Chicago Mercantile Exchange)
officially listed Bitcoin futures, which led to a further increase in the price of Bitcoin, which peaked
at $19,511 on December 17, 2017.

The prevailingmentality of "FOMO" (fear of missing the opportunity) [5] and various speculations
contributed to the soaring price of Bitcoin, which led to its largest price bubble period in its history.
In actuality, the feverish investment sentiment for Bitcoin is more driven by the fear of missing out
on appreciation than intrinsic value, and the mining process wastes a tremendous amount of energy,
which prompted the Chinese government to require a full liquidation of domestic cryptocurrencies.
Subsequently, the United States, Japan and other countries have become stricter on the regulation
of Bitcoin. And the emergence of Bitcoin’s hard fork, Bitcoin Cash, the price of Bitcoin began to
plummet, causing the Bitcoin bubble to burst.
Based on our analysis of these price bubble period transactions, we found some suspicious

account activities. For example, there is a whale account created on June 2017 with a few trans-
actions. However, each transaction was accompanied by an apparent price fluctuation in Bitcoin.
Additionally, the active period of this address is highly correlated with the GSADF test curve.
Besides, it appears to be associated with the BitMEX exchange which has an excellent record
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Table 8. The main periods of ETH bubbles

Bubble periods Landmark events
2017.02.26 - 2017.07.06 Popularization of ICO and EEA

2017.12.11 - 2018.02.01 Ethereum switched from Proof of Work
to Proof of Stake

2019.05.15 - 2019.06.26 Technological and application progress

2020.02.11 - 2020.02.23 Government and financial giants are
embracing the Ethereum industry

2020.07.30 - 2020.09.01 Ethereum 2.0
2020.11.21 - 2021.05.26 The DeFi, NFT hot
2021.8.13 - 2021.9.6 Ethereum Improvement Proposal 1559
2021.10.15 - 2021.12.8 Important update to Ethereum-Altair

for shorting profits throughout its trading history. As an example, on May 17, 2018, the lowest
price of Bitcoin on BitMEX was $6,380, while the lowest price on Binance, Houbi, and other major
exchanges was approximately $7,000. According to Alexander et al. (2020), BitMEX clearly has
manipulated the market by using robots [2]. As of 2020, BitMEX and its founders have been charged
with financial crimes by the Commodity Futures Trading Commission (CFTC). Furthermore, the
BitMEX has been found to have engaged in several unusual transactions with Bitfinex, another
exchange which has been accused of manipulating the Bitcoin market during the Bitcoin bubble.
John Griffin et.al (2018) pointed out that it was mainly the Bitfinex that manipulated the Bitcoin
boom of 2017 by manipulating the USDT, the dollar’s token [34].
ETH Analysis: Table 8 illustrates the timing and key events of six major ETH bubbles. The

first and third bubbles lasted the longest at 189 and 186 days, respectively.
After the peak of the ETH bubble was reached in 2017, the price of ETH fluctuated approxi-

mately in line with its intrinsic value changes over the next three years, thus avoiding a
concentrated and large-scale bubble. Through 2021, the ETH bubble reached its second peak, with
the price also reaching a historical high. Following the establishment of the Enterprise Ethereum
Alliance (EEA) in 2017, the first bubble peak was triggered, reflecting expectations of Ethereum’s fu-
ture potential in the market. From then on, every time a large technology company announced
its participation in the EEA, such as Cisco, Bloq, the price of ETH goes up. It is important to
recognize that the main factor behind the 2017 Ethereum bubble’s expansion and collapse was the
explosion of ICO projects and market speculative sentiment, which caused the price to deviate from
the practical value and technical level of Ethereum at the time. Due to Ethereum’s smart contract
capabilities that support the creation and development of various applications, more ICOs are being
launched and raised ETH based on Ethereum [28]. Many ICO sponsors sold large amounts of the
coins they raised to exchange for dollars or other assets quickly, but without actually completing
any actual work. Vitalik Buterin, the founder of Ethereum, remarked in September 2017 as regards
the ICO boom: “A lot of projects will fail and people will lose money." In 2021, ETH experienced the
second highest bubble period and the highest and longest uptrend in its history, largely as a result
of the popularity of Distributed Finance (DeFi) [63] and Non-Fungible Token (NFT). Nevertheless,
the frenzied capital chase has highlighted the risks and security issues associated with DeFi systems,
which must still be developed and improved.
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Table 9. The main periods of Dogecoin bubbles

Bubble periods Landmark events
2017.03.25 - 2017.06.23 Elon Musk’s Tweet
2017.12.12 - 2018.01.14 Cryptocurrency market’s boom
2018.09.01 - 2018.09.10 Dogetherum’ Launch
2019.04.03 - 2019.04.07 Elon Musk’s Tweet
2020.07.08 - 2020.07.08 TikTok dogecoin frenzy

2020.11.24 - 2020.11.24 Elon Musk became the world’s second
richest person

2020.12.20 - 2020.12.21 Elon Musk’s Tweet
2021.01.01 - 2021.01.10 Elon Musk’s Tweet
2021.01.28 - 2021.02.14 Elon Musk’s Tweet
2021.04.13 - 2021.04.21 Elon Musk’s Tweet
2021.04.30 - 2021.05.14 Elon Musk’s Tweet

DOGE Analysis: Unlike ETH and Bitcoin, Dogecoin’s price bubbles are very fierce and
can burst very quickly in a very short time. Early 2021, a variety of Dogecoin price bubbles
were created and burst in rapid succession, with almost no gap between them. Therefore, we have
selected 11 major bubble periods from more scattered bubble periods to present in Table 9.
There were three price bubbles for Dogecoin before 2019 but only a slight increase in

2017. The main reason for this is the cryptocurrency boom in 2017, in which Dogecoin had not
received significant market attention in terms of trading volume and related news. However, since
2019, every bubble has appeared at the same time as Elon Musk’s support for Dogecoin
on Twitter. After Elon Musk’s initial statement regarding Dogecoin appeared on April 1, 2019,
"Dogecoin might be my favorite cryptocurrency", a bubble rapidly developed. The bubble lasted for
only five days, but it drove the price of Dogecoin to almost $1. In January 2021, Elon Musk again
used Twitter to hype Dogecoin, and more and more supporters came on board. Tesla’s acceptance
of Dogecoin payments also triggered a speculative flurry. While Dogecoin has no intrinsic value,
it is closely associated with Elon Musk and Tesla. Even the price of dogecoin is affected by
Tesla’s stock price. On April 1, 2021, Musk announced his intention to "send Dogecoin to the
moon," causing the price of dogecoin to skyrocket.
We analyzed transactions during these bubble periods and found some addresses that were

more active during the price bubble. There are a few addresses that not only coincide with the
bubble time, but more precisely coincide with the time when Elon Musk tweeted. These addresses
are likely to belong to Elon Musk or get inside information about coming tweets. These suspicious
addresses are listed in our Github repository.

5.4 Findings
Based on the above analysis, we summarize the following findings:
Finding 7: Bitcoin bubbles are closely related to the market’s acceptance and good news, which
makes them susceptible to collapse under restrictions. With tighter policies and expanding market
value, it is more difficult to manipulate Bitcoin and the bubble may become more difficult to
artificially promote.
Finding 8: The most common method for manipulating the ETH market is boasting about
innovation to attract overvalued investments.
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Finding 9: Dogecoin is the most vulnerable to direct human influence. Public opinion has directly
contributed to the formation of several bubbles, among which Elon Musk’s tweets are highly
correlated with the price.

6 THREATS TO VALIDITY
6.1 Internal Validity
Manual Efforts. Manual efforts were taken an important role in this paper. For example, in
section 3, we manually searched the social media data that resulted in the price fluctuation. Then,
we used open card sorting to classify these SMD, which also involved manual efforts. However, we
might miss some SMDs, and errors might contain in the card sorting process. To reduce errors, all
the manual efforts were double-checked by two experienced blockchain researchers and discussed
any difference to ensure correctness.
Data Selection. In this paper, all the analysis were based on a price fall or rise that larger than
10%. The threshold of large price fluctuation determines the scale of data we analyzed in this paper.
Specifically, there might be different market manipulations patterns for the price fluctuation lower
than 10%, which leads to different findings. Fortunately, we still obtain 75, 159, 235 price fluctuation
days for Bitcoin, Ethereum, Dogecoin, respectively, based on the current threshold (10%). The
number of price fluctuation days is already a statistically representative sample [76] of the whole
population, which could prove the integrity of our findings.
Ex-post Selection. The experimental design used for whale account identification could potentially
introduce some degree of ex-post selection bias. Specifically, screening accounts based on pre-
determined thresholds post data collection raises the possibility that the results may lack full
objectivity or be distorted. This approach also risks failing to comprehensively reflect all accounts
warranting suspicion of manipulation. As a consequence, there is a non-trivial possibility that the
method overlooks manipulative accounts or inadequately captures the scope of potential market
intervention.

6.2 External Validity
Causality vs Correlation. SMDs were used to find the reasons that led to the price fluctuations.
However, it is possible that some SMDs were written by unprofessional reporters who misunder-
stood the reasons for the price fluctuations. To reduce the influence of this situation, all the SMDs
we selected were reported by several professional institutions or individuals.

7 RELATEDWORK
Vasek and Moore published the first empirical study on Bitcoin manipulation and scams [68]. By
analyzing the reports collected from online forums, they found 192 scams and divided them into
four groups, i.e., Ponzi schemes, mining scams, scam wallets, and fraudulent exchanges. This work
gives evidence that the scam activities could affect the Bitcoin price. Gandal et al. conducted an
in-depth investigation of the price manipulation activities in the Bitcoin ecosystem[30] by using
statistical analysis and regression modeling. Weilin et al. [17] analyzed the leaked transaction
history of Mt. Gox Bitcoin exchanges by using singular value decomposition (SVD) and found that
there was serious market manipulation in Mt. Gox exchange which led to the Bitcoin soaring and
dropping several times between 2011 to 2013.

Moore et al. employed a logistic regression model to study the phenomenon of large-scale fraud
in the Bitcoin market between 2010 and 2015 [54]. Based on correlation analysis of transaction
statistics, Wang et al. concluded that significant amounts of capital were used to manipulate the
price of Bitcoin by Tether [70]. Additionally, to analyze market manipulation from transaction
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data, Mirtaheri et al. investigated cryptocurrency market manipulation from the perspective of
social media [53]. Fan et al. proposed a method for detecting smart contract scams by mining the
topological features of transaction data [27]. They extracted interaction features from dynamic
transaction information and analyzed interaction features and topological structure data, enabling
discovery of fraudulent smart contracts on Ethereum. In recent years, other cryptocurrencies have
also been the subject of market manipulation scandals. Chen et al. expand the research on detecting
the Ponzi scheme on Ethereum based on previous research [19]. Chen and Liang et al. further
conducted another study specifically focusing on phishing scams in cryptocurrency field [15]. Xia
et al. conducted a horizontal analysis of fraudulent tokens on Uniswap, determining that 50% of
scam tokens were specifically set up for "pull and rug" schemes, with some scam tokens planting
backdoors and vulnerabilities in their smart contracts [74]. With in-depth studies of crypto scams,
much attention has been paid to the "pump and dump" manipulation of cryptocurrencies, which
involves using speculation and other methods to raise prices and dumping quickly [45, 38, 18]. La
Morgia, Massimo and Mei leverage a unique dataset of the verified pump and dumps to build a
machine learning model able to detect a pump and dump scam [46].
Many previous works believe that speculative manipulation is primarily responsible for the

emergence of bubbles in the cryptocurrency market [44, 20, 4]. Many studies have indicated that
the Bitcoin price bubble, which began in June 2015, was accompanied by speculative manipulation
and unnatural market behavior [12]. However, detecting price bubbles can be achieved by utilizing
a variety of approaches. By using the unit root test method, Malhotra et al. demonstrate that the
Bitcoin market is experiencing a price bubble [51]. Cheung et al. used a robust bubble detection
method to prove the existence of speculative bubbles [20]. According to the rapid growth of
cryptocurrency market, researchers have investigated other cryptocurrencies for signs of bubble
characteristics. Corbet et al. further examine the existence and dates of pricing bubbles in Bitcoin and
Ethereum [23], Fry & Cheah extended their conclusions to the broader cryptocurrency market [29].
In the study conducted byMichel et al., all cryptocurrencies, including Ether and Ripple, experienced
bubbles during the past few years [24].

In terms of blockchain data analysis, Chen et al. [16] collected all the transactions on Ethereum
and leveraged graph analysis to conduct the first systematic study on the Ethereum ecosystem. Their
work gives a blueprint of the Ethereum money transfer, smart contract creation, and invocation.
Mcginn et al. [52] proposed a method to visualize Bitcoin transactions in order to explore users’
activities. Their work found that money laundering and attack activities were popular on the
Bitcoin market.
Most price bubble analyses focus on the stock market and have a long history. In 1981, LeRoy

and Porter [47] proposed the first quantitative analysis method for determining whether bubbles
exist by observing variance changes, but this method was too simple and inaccurate. Diba and
Grossman [26] proposed a co-integration test method, but this method is more suitable for currency
fluctuations with linear evolution. Phillips et al. [57] proposed the Sup ADF test method with
higher accuracy by combining forward recursive regression and Dickey-Fuller right unit root tests.
However, the Sup ADF test was not effective enough for the data with multiple bubbles. Inspired
by the Sup ADF model, Phillips and Shi et al. [56] improved the testing model and proposed new
methods named GSADF, which was used in this paper to detect the bubbles of the cryptocurrency
market.

In terms of methodology, many empirical studies on cryptocurrencies have also utilized methods
such as data engineering, natural language processing, and modeling analysis. For instance, Adam
Hayes et al. analyzed cross-sectional data from 66 commonly used cryptocurrencies, identifying
the key driving factors of cryptocurrency value [35]. Anirudh Dhawan and Talis J. Putnin et al.
examined data from 355 trading pairs over 6 months, uncovering a significant wealth transfer
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between abnormal trading volumes and whales, providing strong empirical evidence for extreme
price distortion [25]. Jialan Chen et al. conducted a empirical research by collecting off-chain data
from 5 exchanges websites and on-chain data [13].
In this work, we conduct three analyses to investigate the market manipulation of cryptocur-

rencies, i.e., SMD analysis, blockchain data analysis, and price bubbles analysis. To the best of our
knowledge, the current SMD analysis mainly focuses on finding scams. For example, Vasek and
Moore [68] published the first empirical study on Bitcoin-based scams. By analyzing the reports
collected from online forums, they found 192 scams and divided them into four groups. Chen et
al. [14] analyzed the online posts on a Q&A website (StackExchange). They used open card sorting
to summarize 20 Ethereum smart contract defects and divided them into five groups.
To conclude, we combine previous analysis into a comprehensive discussion of market ma-

nipulation with no restrictions on trading platforms and partial information websites from two
perspectives: transaction and social media. Additionally, most previous studies focused primarily
on Bitcoin rather than the entire cryptocurrency market, but in the past few years, with the boom
of cryptocurrencies and the improvement of the Bitcoin regulatory mechanism, cryptocurrency has
become the new favorite of investors and the protagonist of a variety of speculative cases. As the
cryptocurrency market is rapidly evolving, distant data may not be sufficient for current reference;
we intend to eliminate the time and data source limitations by developing new platforms and tools.

8 CONCLUSIONS AND FUTUREWORK
We conducted a comprehensive analysis of market manipulation of cryptocurrencies by using a
combination of social media data analysis, blockchain data analysis, and price bubbles analysis.
Using social media data analysis we summarized seven kinds of SMD that lead to the price fluctuation
of the cryptocurrency market. Bitcoin price has a high correlation to governments’ policy, especially
for China, and individuals have little responsibility to the price fluctuation of Bitcoin. The technology
factor plays an important role in the Ethereum price fluctuation. Market manipulation is prevalent
on Dogecoin. ElonMusk has a strong influence on Dogecoin’s price. Our Blockchain transaction data
analysis shows that Ethereum and Dogecoin have great centralization, which gives the ability to the
whale users to manipulate the price. Bitcoin, Ethereum, Dogecoin all seem to have some “abnormal
accounts", who are able to “predict" the future crytocurrency price. These “abnormal accounts"
suggest the existence of some form of insider trading and manipulation of the cryptocurrencies
market. Only a limit number of “abnormal accounts" are found on Bitcoin, which shows market
manipulation is not common in the Bitcoin market. Our price bubble analysis confirmed that
there is less market manipulation in Bitcoin. Technical companies/teams usually hype some new
concepts, e.g., ICO, DeFi, which tend to drive up the price of Ethereum. Elon Musk’s tweets are
highly correlated with the price of Dogecoin. Based on the manipulation patterns and “abnormal
accounts" that we found, we plan to design a system to detect market manipulation and warn of
the risk for investors when manipulation happens.

For our future work, we plan to employ additional quantitative analysis techniques to strengthen
our research findings. For instance, we will utilize neural networks to model the nonlinear depen-
dencies within price sequences and identify the fluctuation patterns influenced by manipulation.
Additionally, we intend to apply methods rooted in behavioral finance theories, such as attention
networks, to identify thematic patterns in the trading behavior of manipulators. Furthermore,
we will explore the utilization of generative adversarial networks (GANs) and other methods to
synthetically replicate manipulative trading behavior, thereby evaluating its actual impact on the
market.

Moreover, we have plans to expand the sample size and time range in order to conduct empirical
analyses and unveil manipulation characteristics across different currency markets.We genuinely
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appreciate your valuable feedback and suggestions. They will serve as significant references for
our future work in enhancing the quality and reliability of our research. We will strive to make
improvements accordingly and eagerly anticipate achieving better research outcomes.
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