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Malware detection at scale in the Android realm is often carried out using Machine learning techniques.
State-of-the-art approaches such as DREBIN and MaMaDroid are reported to yield high detection rates when
assessed against well-known datasets. Unfortunately, such datasets may include a large portion of duplicated
samples, which may bias recorded experimental results and insights. In this paper, we perform extensive
experiments to measure the performance gap that occurs when datasets are de-duplicated. Our experimental
results reveal that duplication in published datasets has a limited impact on supervised malware classification
models. This observation contrasts with the finding of Allamanis on the general case of machine learning bias
for big code. Our experiments, however, show that sample duplication more substantially affects unsupervised
learning models (e.g. malware family clustering). Nevertheless, we argue that our fellow researchers and
practitioners should always take sample duplication into consideration when performing machine learning
(via either supervised or unsupervised learning) based Android malware detections, no matter how significant
the impact might be.
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1 INTRODUCTION
Security of mobile apps is now a critical research and practice issue. Mobile apps are used pervasively,
including for critical activities such as transportation (e.g., smart car apps), finance (e.g., banking
apps), and healthcare (e.g., heart rate monitoring apps). Even leisure apps, which are seldom viewed
as critical, may pose security threats given that they can provide attackers easy access to sensitive
information on users’ devices [9, 39]. The diversification of app developers, vendors, and brokers
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creates a great challenge to ensure that each app can be rapidly and effectively vetted from the
perspective of security and privacy concerns.

Ideally, mobile apps should be intensively analyzed to check their security and privacy require-
ments conformance. However, when performed statically, app analysis is often time-consuming,
may produce many false positives, and will not identify all problems that occur at runtime [26, 42].
On the other hand, dynamic analysis does not scale and often cannot cover the whole code-
base [19, 34, 45]. In recent years the research community has progressively shifted to view machine
learning (ML) as an affordable and worthwhile effort for identifying security issues, in particular,
malicious behavior, in mobile apps [41].
An increasingly large body of research on machine learning-based approaches for predicting

Android malware has been published. DREBIN [8] and MamaDroid [46] are state-of-the-art sample
approaches that are commonly referred to. However, after promising results have been reported, the
community has started to reflect on the potential biases that many machine learning-based research
experiments carry. For example, Allix et al. [5] and then Pendlebury et al. [52] have experimentally
shown that the performance of malware detectors is actually highly dependent on experimental
parameters, such as dataset construction (e.g., spatial and temporal dimensions) or evaluation
methodology (e.g., 10-fold cross validation). Dataset is a critical ingredient in the training and
validation of all machine learning-based models. Nevertheless, to date the app analysis community
has paid little attention to the intrinsic quality of datasets beyond the problems of class imbalance
and temporal alignment [5, 52].

Concerning the quality of datasets and their impact on machine learning models, Allamanis [4]
has recently raised the concern of code sample duplication, i.e., the phenomenon where a given
sample is repeated several times in the dataset. This study reported that performance metrics
of machine learning models for big code are sometimes inflated by up to 100% when testing on
duplicated code corpora, compared to their performance on de-duplicated corpora. We consider
this alarming finding to be relevant for further investigation in the field of ML-based Android
malware detection since Android samples may also contain duplicated features, which are often
extracted from Android apps’ code snippets and metadata such as permissions or resource files.
Indeed, it casts doubts on threats to validity on all research achievements in this area. Our work,
in this paper, echoes this concern and attempts to clarify the effect of sample duplication on the
performance of malware detectors.

Our investigations start with a review of recent state-of-the-art approaches in ML-based malware
detection. Through this we identify some artifacts whose duplications in the datasets may not be
obvious to experimenters. We then discuss theoretically the possible effect of sample duplication on
learning models. Then, we quantify the extent of sample duplication in widely-used app malware
datasets. Finally, we perform large scale experimental analyses of the effect of duplication by
considering two learning scenarios for malware detection – binary classification of maliciousness
as a supervised learning problem, and malware family clustering as an unsupervised learning
problem. Based on our experiment findings, we provide a discussion on the quality of the current
malware datasets as well as on the validity of their recorded performance in the literature.
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Our experimental exploration reveals that (1) widely-usedmalware datasets include a considerable
amount of duplicate data samples. Given recent studies on the adverse effect of duplicate code
for machine learning models of code, many promising results and findings in the literature
are potentially threatened by this issue of duplication bias. With comprehensive experiments
covering different types of dataset samples, we have shown that (2) the impact of duplicates in
commonly-used datasets remains marginal. This is for the typical supervised learning models
that are proposed for app malware detection, no matter 10-fold cross-validation or in-the-wild
experiments are applied. (3) the marginal impact is consistent across different machine learning
models trained on different algorithms including RandomForest and SVM. (4) We have shown
that unlike supervised learning for which insignificant impact is observed for malware detection,
the impact of sample duplication on unsupervised learning (especially on malware clustering)
is however quite significant. Based on these empirical findings, no matter how significant the
impact of sample duplication might be, we appeal to the community that our fellow researchers
and practitioners should always take sample duplication into consideration when performing
future machine learning (via either supervised or unsupervised learning) based Android malware
detections.

The remainder of this paper is organized as follows. Section 2 explains the problem scope of this
work and Section 3 presents a preliminary study regarding the duplication phenomenon in publicly
released Android malware datasets. After that, Section 4 presents our experimental design while
Section 5 reports the corresponding experimental results. Later, Section 6 discusses the possible
implications of this work and its potential limitations. Section 7 discusses the related work and
finally Section 8 concludes this paper.

2 PROBLEM SCOPING
We provide key background information for helping readers better understand our study. Notably,
we recall the main usage scenarios of machine learning in the field of malware detection and discuss
different levels of app details that are recurrently leveraged to constitute learning datasets. Finally,
we introduce the duplication bias problem.

2.1 Machine Learning based Malware Detection
Machine learning is relied upon to perform malware detection at a large scale in many published
toolsets and experiments. There are mainly two scenarios: binary classification models are trained
to predict the maliciousness of an app. These are generally a supervised learning scenario where
the entire dataset is labeled for the experiments. In contrast, the problem of malware family
identification is often modeled as an unsupervised learning scenario, i.e., samples are grouped
together based on their similarity.

Table 1 enumerates a few examples of key published work in the field of machine learning based
malicious behaviour analysis. A key observation from this table is that for the large majority of
approaches, feature engineering targets code artifacts. Our study will thus focus on code-related
samples.

For the purpose of our study, we focus on four levels of artifacts that may be subject to duplication
when they constitute the learning datasets: (1) the APK samples (i.e., the whole app packages), (2)
the DEX code (i.e., the entire code within the app package), (3) the Opcode Sequence (i.e., the
low-level machine language instructions), and (4) the API calls (i.e., only the specific parts of the
code that interact with the framework and access sensitive physical resources).
In practice, datasets used for learning are composed of samples of each of the aforementioned

types and can include duplicates. This may subsequently lead to duplication bias (cf. Section 2.2).
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Table 1. Sample approaches involving machine learning for malicious Android apps analyses.

Year Venue Approach features Detection scenario
2019 TASE CDGDroid [69] CFG, DFG Family classification
2018 TOSEM RevealDroid [27] API calls, reflection, native binaries Bi- and family classification
2017 CODASPY McLaughlin et al. [47] Opcode sequence Bi-classification
2016 NDSS MaMaDroid [46] API calls Bi-classification
2016 IST Wu et al. [63] API calls Bi-classification
2015 ICSE MUDFLOW [11] Sensitive data flows One-class classification
2015 ICSE Holland et al. [28] API calls, permissions Bi-classification
2014 NDSS DREBIN [8] API calls, permissions, etc. Bi-classification
2014 SIGCOMM Droid-Sec [68] API calls, permissions, dynamic behavior Bi-classification
2013 SecureComm DroidAPIMiner [2] API calls Bi-classification

APK. Android apps are distributed in the form of packages (APKs). Every app version has a
distinct APK file. Malware datasets shared in the literature are generally formed by collecting APKs
from a variety of sources such as the official Google Play store and other alternative third-party
markets. The state-of-the-art machine learning based malware classifiers are usually proposed to
flag Android malware at the APK level.

DEX. DEX file (i.e., Dalvik Executable) is the core file of an Android app that contains the actual
programming code to be executed on a hosting Android device OS. By default, the DEX file is named
as classes.dex in given Android apps. In this work, we consider DEX duplication exists in a dataset
as long as the same DEX file appears in different apps (i.e., the hash value of the classes.dex file is
identical between two different apps). For example, in the Drebin dataset, there are 128 different
app samples that share the same package name, namely com.soft.android.appinstaller, for which
their DEX hashes are the same despite their APK hashes being different.

Opcode Sequence. Bilar et al. [13] assert that opcodes (which can be disassembled from DEX
files) can act as a predictor, since the distribution of malware opcode frequencies significantly
differs from that of non-malicious software. In our manual observation, we found that different
DEX files can indeed result in identical opcode sequences. These can be fulfilled by, for example,
altering only the resource files of given Android apps, where some resources files in Android are
used to set the constant values of certain variables or define the names of specific widgets. This
type of change will lead to different DEX files but will not impact the actual code compiled to
DEX files. Thereby, they will not impact the disassembled opcode sequences. In this work, we
consider opcode sequence duplication to exist as long as different apps share the same opcode
sequence. This is no matter whether the corresponding DEX files are identical or not. As an example,
there are three app samples, namely com.brianrileyar.girlonfire, com.brianrileyar.fieldrunners, and
com.brianrileyar.sonic, sharing the same opcode sequences but with different DEX hashes.

API Call. We go one step further to identify more fine-grained duplications in malware datasets.
To this end, we look at the API calls (which can be extracted from an app’s opcode) of Android apps,
since APIs are one of themost important constituent parts of the apps. Even if two apps have different
opcode sequences, these two apps may still have the same sequence of API calls, which may in turn
lead to identical features when APIs are exclusively considered. In this work, we consider API call du-
plication to exist as long as there are a number of apps that access into the same number of APIs, and
each API is called in the identical sequence and times. For example, in the Drebin dataset, the samples
with package names, com.evilsunflower.reader.evilShenger, com.evilsunflower.reader.evilQichang,
com.evilsunflower.reader.evilGuigu, and com.evilsunflower.reader.evilLiangxing, share the same
API calls, although their opcode sequences are different.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



On the Impact of Sample Duplication in Machine Learning based Android Malware Detection 1:5

2.2 Duplication in Machine Learning Datasets
Machine learning experiments require datasets to train models that provide recommendations on
new and unseen samples. The standard expectation is that the models will generalize well to those
new samples: the training process faithfully models the true distribution of the data as it will be
observed by the particular application execution scenario. As discussed by Allamanis [4], in order
for the machine learning model to generalize to the true data distribution1, it needs to be trained
on data independently drawn from that distribution. Unfortunately, sample duplicates commonly
violate this assumption with varying consequences as duplicated samples will not introduce new
knowledge to the learning models.
Sample duplication, in the domain of malware detection, refers to the idea that some learning

data samples (e.g., the APK, the DEX code, etc.) appear multiple times within a corpus. The feature
vectors subsequently extracted from the duplicated samples will likely be duplicated as well. Such
duplication creates an issue as it biases the data distribution. Actually, a common practice in
machine learning experiments is to split any existing dataset into two parts: a training set that is
used to train the machine learning model and a test set where the performance of the model is
measured. Since duplicated datasets are randomly distributed to the training set, the algorithms
tend to learn different probability distributions, which may result in different results. Moreover,
the splitting process may put the same samples (e.g., duplicated ones) into both training set and
test set, leading also to biased learning.

Definitions: Assume a dataset 𝐷 of app information samples that is split into a training and a
test set. Conceptually, we can distinguish three types of duplicates: (1) “in-train” duplicates, i.e.,
samples duplicated within the training set; (2) “in-test” duplicates, i.e., duplicates within the test
set; and (3) “cross-set” duplicates, i.e., samples that appear both in training and test sets.

We borrow the terms of Allamanis to define the Duplicate bias [4]:

In machine learning, a measured quantity 𝑓 , such as the loss function minimized during
training or a performance (e.g., precision) metric, is usually estimated as the average of the
metric computed uniformly over the training or test set(s). Specifically, the estimate of 𝑓 over
a dataset 𝐷 = {𝑥𝑖 } is computed as

𝑓 =
1
|𝐷 |

∑
𝑥𝑖 ∈𝐷

𝑓 (𝑥𝑖 ) (1)

Duplication biases this estimate because some𝑤𝑥𝑖 will appear multiple times. Specifically,
we can equivalently transform 𝐷 as a multiset 𝑋 = {(𝑥𝑖 , 𝑐𝑖 )} where 𝑐𝑖 ∈ N+ is the number of
times that the sample 𝑥𝑖 is found in the dataset. Therefore, we can rewrite Equation 1 as

𝑓 = (1 − 𝑑) 1
|𝑋 |

∑
𝑥𝑖 ∈𝑋

𝑓 (𝑥𝑖 )︸           ︷︷           ︸
unbiased estimate 𝑓

+𝑑 1
|𝐷 | − |𝑋 |

∑
𝑥𝑖 ∈𝑋

(𝑐𝑖 − 1) 𝑓 (𝑥𝑖 )︸                              ︷︷                              ︸
duplication bias 𝛽

(2)

where 𝑑 =
|𝐷 |− |𝑋 |

𝐷
=

∑
𝑐𝑖−|𝑋 |
𝐷

is the duplication factor where |𝑋 | is the number of unique 𝑥𝑖
in 𝑋 . Thus 𝑑 is the proportion of the samples in the dataset that are duplicated (𝑐𝑖 > 1). By
rewriting the above equation as 𝑓 = (1 −𝑑) 𝑓 +𝑑𝛽 we see that the larger the duplicate factor 𝑑 ,
the larger the effect of the duplication bias 𝛽 .

1True data distribution is different from real-world data distribution since the former one should contain no duplicated
samples while the latter one could.
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From a machine learning perspective, the duplication bias in the training loss causes a model
to overweight some training samples (the in-train duplicates). During testing, the duplication
bias will skew the reported performance metric. Furthermore, we expect cross-set duplicates
to artificially improve any metric taking advantage of the fact that multiple samples that are
seen during training also appear in the test set, giving the illusion that the model generalizes,
where in fact it memorized duplicates.

3 PUBLISHED DATASETS FOR MALWARE DETECTION
Our study aims at uncovering potential issues of stat-of-the-art ML-based malware detection
approaches due to duplication bias. To this end, we first focus on investigating the presence of
duplicates within commonly-used Android malware datasets in the described in the literature.
Towards investigating the impact of sample duplication in ML-based Android malware detection,
we are interested in knowing, in the first place, if sample duplication indeed exists in common
Android Malware datasets. Our research question is thus:

RQ1: Does the duplication phenomenon, which has been revealed in big code modeling
datasets, occur in Android malware datasets?

3.1 Study Datasets
Android Malware Detection and Analysis has received much attention for many years. The research
community has collected and updated from various sources a variety of datasets that provide a
ground truth for evaluating technical approaches to app malware analysis. Table 2 summarizes
four representative ones2 and provides some descriptive statistics about their size and diversity in
terms of numbers of malware families that are represented. We then give a brief introduction to
these four exemplar datasets.

Table 2. Statistics of Selected Android malware datasets.

Dataset #. Malware Collecting Period Release Date #. Families
Genome 1,260 2010 → 2011 2012 49
Drebin 5,560 2010 → 2012 2014 179𝛼
AMD 24,553 2010 → 2016 2017 71
RmvDroid 9,133 2014 → 2018 2019 56
𝛼 adware is excluded from this dataset.

• Genome.TheGenome project is a seminal work in the research of Androidmalware detection.
As part of this project, Zhou et al. [70] publicly released a dataset of 1,260 malicious apps
covering the majority of existing Android malware families (specifically, 49 families that
were manually labeled by security analysts). The release dates of the app samples range
from August 2010 to October 2011. Nowadays, Genome is considered to be obsolete, as
most malware signatures have been well understood and malware writers are devising new
techniques to hide malicious behavior (both from static checkers and dynamic monitoring).

• Drebin. To foster research on Android malware and to enable comparison among different
detection approaches, Arp et al. [8] released the Drebin Android malware dataset in 2014,

2These datasets have beenwidely used by our community to evaluate the effectiveness of malware detection and classification
approaches [60].
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for which they built as part of their work on “explainable malware detection”. The Drebin
dataset contains 5,560 malicious apps that are collected between August 2010 and October
2012. This dataset also includes the samples from the Genome dataset. The 5,560 malicious
apps are categorized by Drebin maintainers into 179 families. Unlike the families labeled in
the Genome project, which are labeled mainly by practitioners, the malware samples in the
Drebin dataset are labeled by the authors of the Drebin approach themselves based on the
output of different anti-virus scanners. The authors took steps to manually unify the output
of these anti-virus scanners.

• AMD. AMD is a carefully-labeled and well-studied Android malware dataset [61]. In addi-
tion to 24,553 samples assembled from 2010 to 2016, the dataset also includes a manually
documented behavioral description of its malware samples. Based on the results of anti-virus
scanners, the malware samples of this dataset are categorized into 135 variants within 71
malware families.

• RmvDroid. Released in 2019, RmvDroid [60] is the latest malware dataset that was released
for complementing existing datasets, which are often outdated, unreliable, and lacking details
of app metadata such as description, reviews, etc. The RmvDroid dataset contains 9,133 app
samples that are associated with 56 malware families and were all caught after being exposed
in the official Android market (i.e., Google Play).

Table 3 further enumerates some representative state-of-the-art approaches that have leveraged
these datasets to train malware classification models. The last three columns of this table further
illustrate the performance (i.e., precision, recall, and F1 score, respectively) achieved by those
approaches. The fact that all the approaches have achieved over 97% F1 score (or 96% precision, 95%
recall) suggests that these datasets selected in this work are representative and hence are suitable
to fulfil our experiments.

Table 3. The performance achieved by some representative state-of-the-art approaches that have leveraged
these datasets to train malware classification models.

Dataset Approach Precision(%) Recall(%) F1 score(%)
Genome Fan et al. [22] 99.67 95.85 97.72
Drebin DANdroid [48] 98.4 98.9 98.6
AMD Li et al. [35] 99.22 99.16 99.19
RmvDroid Fan et al. [22] 96.54 97.77 97.15

3.2 Duplication in Malware Datasets
An Android app is identified in the official market based on its unique package name, which
prevents users from installing different versions of a given app on their device. However, since
malicious code can be inserted during app updates, app versions may be considered as different
samples within the real-world distribution of apps. Therefore, maintainers of datasets generally
rely on hash values of APK files to ensure that sample APKs are unique.

Cross-dataset APK duplication. Although commonly-used datasets do not include duplicated
APKs (the samples are often named by their SHA256 hash value), we note that the datasets are
often redundant from one to another. This redundancy should be made clear to researchers who
are interested in combining multiple datasets to fulfil their experiments [22, 65]. We hence provide
in Table 4 statistics of cross-dataset duplications. We note that APK redundancy exists in all the
considered malware datasets. The duplication rate varies from as small as 1% to as large as 97%,
although those malware datasets are all collected via different methods. Even though Drebin authors
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have claimed that it included all the Genome samples, due to some outlier cases, we cannot observe
a 100% duplication rate for these two datasets.

Table 4. APK duplication between Selected Android malware datasets. The duplication rate is calculated via
the following formula: |𝐷𝑎𝑡𝑎𝑠𝑒𝑡1∩𝐷𝑎𝑡𝑎𝑠𝑒𝑡2 |

𝑚𝑖𝑛 ( |𝐷𝑎𝑡𝑎𝑠𝑒𝑡1 |, |𝐷𝑎𝑡𝑎𝑠𝑒𝑡2 |) .

Dataset1 Dataset2 #. Cross Duplication Rate Dataset1 Dataset2 #. Cross Duplication Rate
AMD RmvDroid 2,618 28.67% AMD Genome 365 28.97%
Drebin Genome 1,229 97.54% Drebin RmvDroid 40 0.72%
AMD Drebin 559 10.05% Genome RmvDroid 26 2.06%

Within-dataset duplication. While researchers appear to ensure that datasets are not duplicated
at the APK level, we note that the relevant in-APK components may be duplicated. For example,
including several repackaged versions of a given app, where only layout and image changes are
applied, will lead to a duplicated dataset of code (Dex) clones. Similarly, looking at lower-level
details that constitute the samples for learning, one might discover new duplications that prevent
to faithfully model the distribution of data that practitioners have to deal with. Fig. 1 summarizes
the statistics of duplication for dex code, opcode sequence, and API calls in all the four selected
datasets.
We note that Dex code duplication concerns between 2.6% of samples (the RmvDroid dataset)

and 40% of samples (the Drebin dataset). For the case of the Drebin dataset, this means that for 40%
of its app samples, there exists at least one other sample in the dataset that shares the same DEX
file with them. Although the percentages are substantial, they are far less than the percentages of
duplication for Opcode sequences (minimum of 30%) and API calls (minimum of 40%). Distribution
of the number of samples in each duplication are further provided in Fig. 2 to provide more insights.
The median values of all the distributions3 shows that at least half of the duplications happen on
only two samples, indicating the selected datasets are quite diverse despite the existence of sample
duplication. The fact that the maximum values of all the distributions are always less than five also
backs up this indication.

Table 5. Malware Family intersection between selected Android malware datasets. The intersection rate is
calculated via the following formula: |𝐷𝑎𝑡𝑎𝑠𝑒𝑡1∩𝐷𝑎𝑡𝑎𝑠𝑒𝑡2 |

𝑚𝑖𝑛 ( |𝐷𝑎𝑡𝑎𝑠𝑒𝑡1 |, |𝐷𝑎𝑡𝑎𝑠𝑒𝑡2 |) .

Dataset1 Dataset2 #. Same Families Intersection Rate Dataset1 Dataset2 #. Same Families Intersection Rate
AMD RmvDroid 12 21.43% AMD Genome 5 10.87%
Drebin Genome 18 39.13% Drebin RmvDroid 10 17.86%
AMD Drebin 21 29.58% Genome RmvDroid 5 10.87%

3.3 Family representation in datasets (a.k.a. family duplication)
During our analyses, we have found that although datasets include samples from a large variety of
malware families, the intersections of families between the selected datasets are relatively small. As
summarized in Table 5, the intersection rate ranges from 10.87% to 39.13%. The actual distribution
of the size of malware families is often highly imbalanced. For instance, in the Drebin dataset,
within the 179 families that are enumerated, some are represented with a single APK sample, while
other families include hundreds of samples, as illustrated in Fig. 3. This imbalance, if ignored,
may introduce biases to malware clustering approaches and hence the performance of ML-based
malware classifications. Indeed, as argued by Yu et al. [67], in practice, samples in a dataset may have
3The only difference is Dex in the RmvDroid dataset, for which the median value is also quite close to 2.
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Fig. 1. Within-dataset sample duplication in the selected malware datasets.
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Fig. 2. Distribution of the number of samples in each duplication (Samples without duplication are ignored).

different importance when conducting clustering-based approaches. Therefore, it is important to
properly adjust the sample distributions (or weights) when clustering a dataset. Unfortunately, the
same phenomenon occurs for RmvDroid, AMD, and Genome datasets. For the sake of characterizing
the imbalance among various families, we counted the malware samples from the top 10 families of
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each dataset and made a comparison with the whole dataset, as shown in Fig 4. For all the malware
datasets, the top-10 family samples account for over 70% of the total samples. As shown in Table 6,
samples in some malware families may have been highly duplicated (could be over 90%) as Android
malware developers tend to create new malware by repackaging existing ones.

Fig. 3. Family distribution of the Drebin dataset.
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Fig. 4. Imbalanced distribution of malware families in the selected four datasets.
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Table 6. Sample duplication in the top-10 malware families of the selected Android datasets.

Drebin AMD RmvDroid
Family Dex Opcode seq API call Family Dex Opcode seq API call Family Dex Opcode seq API call

FakeInstaller 82.27% 84.86% 85.62% Airpush 1.05% 36.23% 42.97% Airpush 2.37% 43.28% 48.93%
DroidKungFu 18% 34.93% 44.98% Dowgin 4.73% 22.62% 26.2% Mecor 0 88.83% 91.48%

Plankton 0.32% 18.72% 22.88% FakeInst 82.7% 85.29% 88.38% Plankton 0 12.59% 19.88%
Opfake 80.91% 86.79% 87.11% Mecor 0.27% 97.58% 97.91% Adwo 0.28% 10.64% 39.5%

GinMaster 2.95% 3.24% 3.24% Youmi 0.69% 16.94% 23.94% Youmi 0 11.35% 21.31%
BaseBridge 60.91% 74.55% 77.58% Fusob 89.83% 89.83% 94.25% Mobidash 30.97% 78.13% 82.39%
Iconosys 0 41.45% 50.66% Kuguo 1.58% 21.85% 25.77% Kuguo 0.26% 3.6% 4.63%

Kmin 42.18% 67.35% 70.07% BankBot 58.91% 80.87% 83.7% Gappusin 0.65% 6.1% 18.74%
FakeDoc 68.18% 69.7% 69.7% Jisut 72.71% 85.35% 91.21% Viser 0.34% 9.52% 13.27%
Geinimi 15.22% 21.74% 26.09% DroidKungFu 18.68% 33.88% 45.05% Dowgin 2.38% 7.48% 9.18%

RQ-1 Answer

Duplication is commonplace in malware datasets used in the published literature. It occurs
for samples at a different artefact level when leveraged for machine learning based malware
detection. Duplication may concern up to 40% of Dex code samples in datasets that are widely
used for experimental validation of detection techniques, or up to 97% in certain malware
families, which may significantly bias evaluation results.

4 STUDY DESIGN
We now present the detailed design of our empirical study, including the research questions
we aim to answer (Subsection 4.1), the machine learning algorithms we will leverage in this
work (Subsection 4.2), the features we plan to extract from Android apps (Subsection 4.3), and the
evaluationmetrics wewill leverage to categorize the performance ofmachine learning classifications
(Subsection 4.4).

4.1 ResearchQuestions
Machine learning techniques for malware detection have been largely assessed using common
datasets that include duplicated artefacts. We conduct several experiments to assess for any potential
duplication bias, specifically the extent of sample duplication impact on the performance of state
of the art ML-based Android malware detectors. To that end, we propose three additional refined
research questions that explore cases of both supervised and unsupervised learning approaches.

• RQ2: What is the impact of malware sample duplication on supervised learning for building
Android malware detectors?

• RQ3: Is the impact of sample duplication influenced by a specific underlying supervised
learning algorithm?

• RQ4: Are unsupervised learning models impacted by sample duplication bias in a similar
way to supervised learning models?

4.2 Machine Learning Algorithms
We now present the machine learning algorithms that are leveraged in this work to implement
Android malware predictors. Using several state-of-the-art malware detection approaches described
in the literature, we train binary classification models to predict malicious content of sample apps.
Specifically, we have focused on the following four algorithms. We first leverage SVM to answer
RQ2 (cf. Section 5.1) and then leverage all the four algorithms to empirically compare the impact of
duplication bias on different machine learning algorithms (cf. Section 5.2).
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• Support Vector Machine (SVM) is a widely used supervised machine learning algorithm
that attempts to perform binary classifications by finding the hyperplane that effectively
separates data points associated with two classes [14]. In malware detection tools, SVM has
been one of the key long term algorithms that have been explored. Even state of the art
approaches such as Drebin have achieved high performance by relying on SVM [8].

• Decision Trees (DT) infers classification rules from a set of unordered and irregular cases. It
performs classification using branch structure, using a tree as a form of expression. According
to the survey of Safavian et al. [55], decision trees have been successfully used in many
diverse areas. Aung et al. [10] have used decision trees to classify Android applications as
malicious or benign by focusing on their permission features.

• The K-Nearest Neighbor (KNN) algorithm identifies the closest K instances (from the
training dataset) based on a certain distance metric and from which it picks up the most
common class tag among to form the prediction result. The study of Firdausi et al. [23]
shows that simple machine learning algorithms such as KNN can be used to detect malicious
applications effectively and efficiently.

• Random Forest (RF) is a classification algorithm that builds multiple decision trees from
which the final output is converged by voting the results yielded by individual trees. Several
tools for Android app analysis have used RF for malware classification. For example, Alam et
al. [3] have largely relied on RF in their study. Sanz et al. [56] have found that RF produces the
best classifier among all the algorithms including Sequential Minimal Optimization (SMO) [1],
KNN, etc.

4.3 Feature engineering
Machine learning-based classification relies on data to learn what characteristics could suggest
that a given sample likely belongs to a given class. For example, in malware detection, the learning
algorithms must be “told” what characteristics are associated with each malicious or benign sample
in the dataset. Such characteristics are known as the feature set and implemented as a feature vector.
Arp et al. [8] proposed one of the most comprehensive feature sets for Android malware detection,
which has proved effective in the state of the art Drebin approach. They focused on features that
can be extracted with a lightweight static analysis approach in order to scale their tool to thousands
of samples. Such features are based on the Manifest file in the apk (i.e., AndroidManifest.xml) as
well as the disassembled DEX code. In the end, eight (8) aspects are considered to produce 8 sets of
strings:

• S1: Hardware components. Malicious behavior in Android malware often involves access
to specific hardware components such as the camera or the GPS. Related features statically
extracted based on access requests made can be derived from the manifest file.

• S2: Requested permissions. Malicious apps tend to request specific permissions more
frequently, such as SEND_SMS, CAMERA, READ_CONTACTS than that of benign apps [56].
Hence permission requests from the Manifest file could be a good indicator to differentiate
malware from goodware.

• S3: App components. Activities, services, content providers and broadcast receivers that
are declared in the manifest file are the four types of existing components that define different
specific interfaces to the system. Some components may be statistically more leveraged by
malicious apps than by benign apps.

• S4: Filtered intents. An Intent is a messaging object used to exchange data between app
components. Malware may use it to listen to particular intents to achieve malicious purposes,
e.g., malware could hijack the SMS_RECEIVED system intent to listen to users’ SMS messages.
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• S5: Restricted API calls. A typical case of identifying malicious behavior is the use of
restricted API calls without requesting required permissions, i.e., the application has a
high probability of gaining external permissions through an exploit of privilege escalation
vulnerability. Such restricted critical calls can be detected from the disassembled code.

• S6: Used permissions. After harvesting the restricted API calls (as shown in S5), one can
calculate the actual permissions required by the app accessed those APIs. This permission set
might be different from the one explicitly declared by app developers in the manifest (cf. S2).

• S7: Suspicious API calls.Certain API calls may cause exposure to sensitive data or resources
and are often exploited by Android malware. API calls for sensitive data access, network
communication, sending and receiving SMS messages, executing external commands and
frequently used for obfuscation are gathered.

• S8: Network addresses. In many cases, malicious apps eventually need to fetch external
data (e.g., download dynamically loaded code) or to leak data outside the app. These activities
require network communication with specific hosts. Thus, IP addresses, hostnames and URLs
gathered from the disassembled code can be characterized for malicious behavior prediction.

The aforementioned feature set covers a wide range of characteristics of Android apps and has
been adopted widely by the research community [2, 20, 27, 47]. Our experiments in this work
directly leverage this comprehensive feature set to build relevant classifiers that match the typical
performance recorded in the literature. Consecutively, our study focuses on the impact of sample
duplication bias on these classifiers. We note that the eventual size of the feature set in each
experiment is dependent on the app dataset selected for training.

4.4 Evaluation Metrics
For a binary classification problem, the ML model ultimately needs to predict whether a given
sample belongs to one of two classes (i.e., generally is positive or negative). In our case, we consider
the classes malware and goodware. A confusion matrix is often used to establish the performance
of a classification model, based on four measurements:

(1) True Positive (𝑇𝑃 ), i.e., the number of malware samples are flagged as malicious by the
ML model,
(2) False Negative (𝐹𝑁 ), i.e., the number of goodware samples are flagged as benign by the
ML model,
(3) True Negative (𝑇𝑁 ), i.e., the number of malware samples are flagged as benign by the ML
model, and
(4) False Positive (𝐹𝑃 ), i.e., the number of goodware samples that are flagged as malicious by
the ML model.

Based on these enumerations, we can compute the following three metrics (cf. 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 ,
and 𝐹1 𝑆𝑐𝑜𝑟𝑒) that are commonly taken as indicators for evaluating ML-based approaches, and are
defined as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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5 EXPERIMENTAL RESULTS
In this section, we detail the experimental results we observed for answering our four research
questions from Section 4.1. The four research questions cover both 10-fold cross-validation (RQ2)
and holdout experiments (RQ 2-3), supervised learning (RQ 2-3) and unsupervised learning (RQ4)
approaches, as well as a comparison of different machine learning algorithms (RQ3).

5.1 RQ2: Impact of Duplication Bias on Malware Classifiers
Our experiments to assess the impact of duplication bias in malware datasets follow the ML-based
approach for malware detection proposed by Arp et al. [8] (i.e., we train the machine learning
model through the famous SVM algorithm). We leverage the common datasets used in the Android
malware detection literature (namely Drebin, AMD and RmvDroid) and investigate the impact
of all the three levels of duplications (i.e., DEX file, Opcode Sequence, and API Call) in machine
learning based malware detection. To better characterize the impact of duplication bias, following
the general practice of state-of-the-art works [5, 52], we answer this research question in two
experimental settings: (1) 10-fold cross-validation (also known as in-the-lab experiments), which
is a widely used statistical method for estimating the capability of machine learning models. (2)
in-the-wild experiments, which attempt to evaluate the capability of machine learning models in a
real-world setting, i.e., training the model based on a known dataset and use the model to predict
unknown dataset. Below we now describe these two experiments in detail.

5.1.1 10-fold Cross-validation. In 10-fold cross-validation, the dataset is randomly divided into 10
equal-size sample sets. Among the 10 subsets, one of them is retained as the test set for validating
the performance of the machine learning model, which is then trained on the remaining 9 subsets.
This process is then repeated 10 times with each of the subsets used exactly once as the test set.
The performance measurements of these 10 validations are then averaged to compute the final
performance metric of the classification approach.

Experimental Setup. Given a malware dataset and a duplicated sample type, we set up two
experiments: one without sample duplication while another one with sample duplication. These two
experiments form a controlled group for evaluating the difference brought by sample duplication
to the machine learning-based classifications. To better distinguish the settings, we set up six
experiments, two for each duplication type, for each malware dataset, as detailed below.

• E1/E2: Without/With DEX Duplication. These two settings evaluate the performance of
machine learning approaches w.r.t. DEX duplication. For E1, i.e., without DEX duplication,
the training set is formed by taking into account all the non-duplicated samples from the
original dataset. For E2, we randomly select the same number of samples (as that of E1) from
the original dataset to form the training set. Since the original dataset contains duplicated
samples, the randomly selected subset will likely contain duplicated samples as well. Indeed,
the chance to randomly select a set of |𝐸1| (i.e., 3,559) apps from the original dataset (i.e.,
5,560 apps) that the selection is identical to E1 is low.

• E3/E4: Without/With Opcode Sequence Duplication. Similar to E1/E2 except that op-
code sequence duplication is used instead of dex file.

• E5/E6: Without/With API Call Duplication. Similar to E1/E2 except that API call dupli-
cation is used instead of dex file.

Since we are interested in conducting binary classifications (i.e., malware or goodware) and two
of the three considered datasets do not come with benign apps (the datasets contain malware only),
we relied on the AndroZoo repository [6, 37, 43] to collect benign samples to train the machine
learning model. AndroZoo is a growing collection of Android apps collected from several sources,
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Table 7. SVM-based Android malware detection via 10-fold cross validation. To support binary classification,
we randomly select the same number of benign apps like that of malware to form the training set (i.e., #.
malware *2).

Dataset Type Setting Training Set # Features # Duplicated Malware Goodware
Vectors (Ratio) Precision(%) Recall(%) F1 score(%) Precision(%) Recall(%) F1 score(%)

Drebin

Dex E1 (Without Duplication) 3,559*2 48,026 949 (26.66%) 96.56 94.91 95.72 95.03 96.62 95.81
E2 (With Duplication) 3,559*2 43711 2,019 (56.72%) 97.82 95.84 96.81 95.96 97.85 96.89

Opcode seq E3 (Without Duplication) 2,859*2 44,494 455 (15.91%) 96.2 94.58 95.38 94.71 96.28 95.48
E4 (With Duplication) 2,859*2 40,305 1,338 (46.8%) 97.21 95.24 96.21 95.37 97.28 96.31

API call E5 (Without Duplication) 2,646*2 39,388 316 (11.94%) 96.18 93.91 95.02 94.11 96.28 95.17
E6 (With Duplication) 2,646*2 35,117 1,162 (43.93%) 97.12 95.1 96.09 95.24 97.19 96.2

AMD

Dex E1 (Without Duplication) 19,205*2 185,011 3,299 (17.18%) 98.05 95.64 96.78 95.87 98.04 96.9
E2 (With Duplication) 19,205*2 172,507 4,730 (24.63%) 98.21 95.92 96.99 97.19 97.06 97.06

Opcode seq E3 (Without Duplication) 12,863*2 143,889 1,545 (12.01%) 97.78 95.77 96.71 96 97.79 96.84
E4 (With Duplication) 12,863*2 122,438 4,629 (35.99%) 98.14 96.13 97.07 96.34 98.14 97.19

API call E5 (Without Duplication) 11,735*2 135,485 1,015 (8.65%) 97.48 94.93 96.09 95.32 97.5 96.32
E6 (With Duplication) 11,735*2 114,330 3,895 (33.19%) 97.85 96.13 96.94 96.31 97.86 97.04

RmvDroid

Dex E1 (Without Duplication) 8,893*2 100,998 1,398 (15.72%) 97.79 98.45 98.11 98.44 97.73 98.07
E2 (With Duplication) 8,893*2 100,100 1,561 (17.55%) 97.81 98.49 98.14 98.48 97.75 98.11

Opcode seq E3 (Without Duplication) 6,122*2 77,693 432 (7.06%) 96.79 98.25 97.5 98.23 96.67 97.42
E4 (With Duplication) 6,122*2 71,079 1,011 (16.51%) 97.15 98.4 97.75 97.77 97.72 97.72

API call E5 (Without Duplication) 5,453*2 73,467 273 (5.01%) 96.35 98.06 97.18 98.02 96.23 97.1
E6 (With Duplication) 5,453*2 62,587 1,030 (18.89%) 97.3 98.33 97.89 98.32 97.23 97.75

including the official Google Play app market. It currently contains over 10 million Android APKs.
Each of them has been scanned by over 70 anti-virus products hosted on VirusTotal4. We consider
an app to be benign as long as none of the anti-virus products (hosted on VirusTotal) flags it
as malware. Specifically, for each experimental setting, we randomly select the same number of
goodware (as that of malware) to form the training set, as unbalanced training sets may introduce
biases to machine learning based classifications. Furthermore, to avoid potential biases introduced
by our random sampling, we ensure that there are no repackaged app pairs between the selected
malware and goodware samples (i.e., do not share the same package names). We also conduct each
experiment setting 10 times and report the average performance as the output. These settings apply
to all the experimental results reported in this paper.

Result. Table 7 summarizes the 10-fold cross-validation results. Following the experimental
setup, for each dataset, we perform six different experiments (i.e., E1 → E6): two experiments for a
given sample duplication type. As indicated in the fourth column, different duplication types will
result in a different number of samples for training, which subsequently leads to a different number
of features (as shown in the fifth column). Generally, the more training samples considered, the
larger the feature sets extracted.
The last six columns in Table 7 further illustrate the classification results for predicting both

malware and goodware of the SVM-based malware detection approach. Based on these results, we
can observe the following interesting findings:

Finding-2.1: When predicting goodware, no matter which metric is considered, or which dupli-
cation type is concerned, the performance achieved via training datasets containing duplicated
samples is always higher than that of datasets without duplicated samples.

Finding-2.2: Regarding malware prediction, the results are more or less similar to that of
goodware.
These two findings suggest that machine learning models tend to achieve higher performance

if there are overlaps between the training sets and test sets. Indeed, when performing 10-fold
cross-validations, duplicated samples will likely be divided into both training and test sets. This
verdict further implies that machine learning approaches, in practice, should be trained on datasets
that are as comprehensive and representative as possible. The more representative samples we can
include in the training set, the more likely there will be similar samples in the test set, and thereby

4https://www.virustotal.com/gui/
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Fig. 5. The correlation between feature size and the classification results (i.e., Precision, Recall, and F1 score).
Each dot represents one experiment.

the higher the performance machine learning approaches could achieve. Nevertheless, we argue
that researchers, when reporting the performance of their machine learning approaches, should
make it clear if sample duplication exists in their dataset.
Interestingly, as demonstrated in Table 7, the performance difference between a controlled

experimental pair E1 and E2, no matter which metric is concerned, is always smaller than 1.32%.
This evidence suggests that the actual impact brought by sample duplication is insignificant. In other
words, the validity of state-of-the-art malware detection approaches may not be severely threatened
due to sample duplication of their training dataset. Nevertheless, we argue that duplicates (1) should
still be removed to avoid unnecessary biases in machine learning-based classifications, or (2) be
kept if a clear and convincing argument can be given.

Fig. 5 further illustrates the correlation between feature sizes and the performance of the machine
learning approach. The fact that 𝑅 − 𝑣𝑎𝑙𝑢𝑒 is positive for all the cases shows that the performance
of the 10-fold cross-validation is generally aligned with the size of features considered. Nonetheless,
some of the positive correlation is quite weak and yet not significant, given a significance level of
𝛼 = 0.0015. This finding further confirms that the impact brought by sample duplication might be
marginal to the performance of machine learning approaches.

5.1.2 In-the-wild Experiments. As advocated by Allix et al. [5], when conducting machine learning-
based Android malware detection, in-the-lab experiments, such as using 10-fold cross-validation,
may not be reliable to justify the performance of the machine learning models. There is also a need
to validate the performance of the machine learning models in a real-world setting, i.e., in-the-wild
experiments such as training on a dataset while testing on another dataset. In our second research
question, we re-evaluate the impact of sample duplication for machine learning-based malware
detection approaches through a so-called in-the-wild experimental setting.

Experimental Setup. As illustrated in Fig. 6, given a malware dataset, we create two subsets,
namely 𝑁𝐷 and 𝐷 . We put all samples one by one that do not introduce duplication into 𝑁𝐷 , and
those that involve duplication into 𝐷 . As a result, all the samples in 𝑁𝐷 do not contain duplicated
samples while all the samples in 𝐷 have duplicated versions presented in 𝑁𝐷 . We then randomly

5There is one chance in a thousand that the difference between the datasets is due to a coincidence.
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select a small set of samples, 𝑌 , in 𝑁𝐷 to form the test set6 and prepare the training set in two
settings, noted as S1 and S2 in Fig. 6).

Y
ND

D

Test Set
30% ND

S1: Train Set
70% ND

S2: Train Set
35% ND + X

X

X = D or 
|X| = 35%|ND|

Fig. 6. The experiment design of ML-based Malware Detection. 𝑋 stands for the set of samples selected from
|𝐷 | while 𝑌 stands for the set of apps selected for fulfilling the test set, which is kept the same for both 𝑆1
and 𝑆2.

In this experiment, we set𝑌 as 30% of the samples in 𝑁𝐷 (i.e., 30% of samples with no duplication).
Consequently, the training malware set contains |70%𝑁𝐷 | samples (i.e., either𝑁𝐷−𝑌 or 35%𝑁𝐷+𝑋 ,
where 𝑋 can be calculated via the following formula.

𝑋 =

{
𝐷, |𝐷 | <= |35%𝑁𝐷 |
𝐾, 𝐾 ∈ 𝐷 𝑎𝑛𝑑 |𝐾 | = |35%𝑁𝐷 |

In rare cases, if |𝐷 | < 35%|𝑁𝐷 |, meaning that we cannot select the same number of apps from
the set of 𝐷 to form the training set with duplication, we simply select all the apps in the 𝐷 set to
form the training malware set. Recall that we aim at conducting binary classification in this work.
Therefore, we need to add goodware to the training set as well. To this end, we randomly select the
same number of goodware (i.e., |70%𝑁𝐷 |) from Google Play to form the final training set.
Furthermore, instead of arbitrarily stipulating the values of hyper-parameters for the machine

learning model, we leverage the grid search technique to automatically find suitable values for
those hyper-parameters. Grid search is a popular pre-process step that explores all the possible
parameter combinations to pinpoint an optimal combination for the model.

Result. Table 8 summarizes our experimental results for the experiments conducted for answer-
ing RQ2, for which SVM binary classification is applied to all the three representative datasets.When
a different duplication type is involved, the total number of non-duplicated and duplicated samples
will be different. In all datasets, Dex duplication yields the largest number of non-duplicated sam-
ples, followed by Opcode Sequence and API Call, respectively. The different size of non-duplicated
samples subsequently causes different training and test sets, which further yields different numbers
of features for the machine learning classification. The number of features is dependent on the
selected training dataset. Different apps may contribute to different features, although the same
extraction strategy is applied.

• Finding-2.3: Unlike the results we obtained previously, i.e., via 10-fold cross-validation,
in this experiment, as highlighted in the table, training set with sample duplications often
achieves a higher precision yet lower recall for predicting malware than such settings without

6It is worth noting that the test set will have no impact on the performance of machine learning models. We kept the test
set duplication-free to avoid potential biases.
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Table 8. Experimental results of SVM-basedmalware classification. |𝑁𝐷 |means the number of non-duplicated
samples (after excluding duplicated ones). To enable binary classification, the train and test sets are fitted
with randomly selected goodware.

Dataset Type Setting |𝑁𝐷 | Training Set Test Set # Features # Duplicated Malware Goodware
Vectors (Ratio) Precision(%) Recall(%) F1 score(%) Precision(%) Recall(%) F1 score(%)

Drebin

Dex E1 (Without Duplication) 3,559 2,491*2 1,068*2 34,799 581 (23.32%) 93.4 96.81 95.08 96.69 93.16 94.89
E2 (With Duplication) 3,559 2,491*2 1,068*2 31,299 1,341 (53.85%) 94.34 95.31 94.82 95.27 94.27 94.77

Opcode seq E3 (Without Duplication) 2,859 2,001*2 858*2 33,398 255 (12.74%) 91.37 96.38 93.81 96.17 90.9 93.46
E4 (With Duplication) 2,859 2,001*2 858*2 29,843 864 (43.17%) 92.92 94.54 93.73 94.44 92.8 93.61

API call E5 (Without Duplication) 2,646 1,852*2 794*2 30,289 206 (11.12%) 91.89 95.71 93.76 95.53 91.55 93.5
E6 (With Duplication) 2,646 1,852*2 794*2 26,942 756 (40.81%) 92.76 94.74 93.74 94.63 92.6 93.6

AMD

Dex E1 (Without Duplication) 19,205 13,444*2 5,761*2 135,015 2,745 (20.42%) 97.6 99.55 98.56 99.54 97.55 98.54
E2 (With Duplication) 19,205 13,444*2 5,761*2 111,349 5,838 (43.42%) 97.91 99.33 98.61 99.32 97.88 98.59

Opcode seq E3 (Without Duplication) 12,863 9,004*2 3,859*2 107,270 909 (10.1%) 97.09 99.43 98.25 99.42 97.02 98.2
E4 (With Duplication) 12,863 9,004*2 3,859*2 90,748 3,058 (33.96%) 97.2 99.17 98.17 99.16 97.13 98.13

API call E5 (Without Duplication) 11,735 8,215*2 3,520*2 101,418 585 (7.12%) 97.3 99.32 098.3 99.3 97.24 98.26
E6 (With Duplication) 11,735 8,215*2 3,520*2 85,655 2,569 (31.27%) 97.2 99.41 98.29 99.39 97.14 98.25

RmvDroid

Dex E1 (Without Duplication) 8,893 6,225*2 2,668*2 73,911 898 (14.43%) 96.85 98.99 97.9 98.96 96.78 97.86
E2 (With Duplication) 8,893 3,353*2 2,668*2 73,211 1,066 (31.79%) 96.86 98.97 97.9 98.95 96.79 97.86

Opcode seq E3 (Without Duplication) 6,122 4,285*2 1,837*2 58,773 247 (5.76%) 95.1 99.4 97.2 99.37 94.88 97.07
E4 (With Duplication) 6,122 4,285*2 1,837*2 50,276 869 (20.28%) 95.73 98.85 97.26 98.81 95.59 97.17

API call E5 (Without Duplication) 5,453 3,817*2 1,636*2 52,695 160 (4.19%) 95.85 98.84 97.32 98.8 95.72 97.24
E6 (With Duplication) 5,453 3,817*2 1,636*2 44,554 680 (17.82%) 96.15 98.55 97.34 98.51 96.06 97.27

duplication involved in the training sets. This finding implies that, with duplication samples
in the training set, the classifier is more conservative and less likely to flag a given app as
malware, resulting in a lower false-positive rate and hence a higher false-negative rate. In
opposite, without sample duplication, the classifiers are able to achieve better recalls. This
could be explained by the fact that more diverse samples of malware7 are learned by the
classifiers, making them more knowledgeable to pinpoint unknown ones.

• Finding-2.4: Different datasets will yield different classification results, which are further
aligned with the size of the training dataset, which is similar to the result obtained via 10-fold
cross-validation. In our experiment, AMD has the largest training dataset and achieves the
best performance in terms of distinguishing malware from benign ones. The impact of sample
duplication on machine learning-based malware detection can vary from dataset to dataset.
For example, the performance yielded by the AMD dataset is more stable than that of the
Drebin dataset, which yields a larger range of vibration of results. This observation further
suggests that the dataset quality is very important for machine learning based Android
malware detection.

RQ-2 Answer

When performing 10-fold cross-validation for Android malware detection, sample duplication
has a positive impact on the performance of classification results. We hence advocate that
practitioners and researchers should pay attention to sample duplication when conducting
ML-based classification results. Nevertheless, the fact that the performance difference is quite
small suggests that the impact brought by sample duplication to machine learning approaches
might be marginal.
When performing in-the-wild experiments for predicting malware, sample duplication also
impacts the performance of ML-based classification results. The fact that the performance of
ML models varies from dataset to dataset further suggests that the dataset quality is important
for ML-based Android malware detection approaches. Nonetheless, similar to that of 10-fold
cross-validation, the impact of sample duplication on the machine learning models is marginal.
We argue that duplicates (1) should still be removed to avoid unnecessary biases in machine
learning-based classifications, or (2) be kept if a clear and convincing argument can be given.

7Given fixed number of malware, the more duplicated malware samples included, the less diverse and representative the
malware set will be.
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Fig. 7. Distribution of performance differences between 10-fold cross validation and the holdout experiments.

5.2 RQ3: Impact of Duplication Bias on Different ML Algorithms
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Fig. 8. Experiment results with different ML algorithms on Drebin dataset.

As elaborated in Section 4.2, there are various machine learning algorithms recurrently leveraged
by researchers for detecting Android malware. Specifically, we further consider three supervised
machine learning algorithms, namely Decision Tree (DT), RandomForest (RF), and K-Nearest
Neighbors (KNN).

Experimental Setup. The experimental setup for answering this research question is the
same as the one leveraged for answering RQ2 (e.g., 𝐸1 → 𝐸6) except that the machine learning
algorithms are now altered to DT, RF, and KNN, respectively. Similar to the experiments of SVM-
based classification, we also leverage grid search to automatically stipulate hyper-parameter values
for the newly selected machine learning algorithms.

Results. Fig. 8, Fig. 9, and Fig. 10 illustrate these experimental results. For each dataset, the
precision, recall, and F1 score values are presented, and for each experimental setting, four machine
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Fig. 9. Experiment results with different ML algorithms on AMD dataset.
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Fig. 10. Experiment results with different ML algorithms on RmvDroid dataset.

learning algorithm results are comparatively illustrated. Based on these results, we summarize the
following findings.

• Finding-3.1:When different evaluation metrics are considered, the performance of different
machine learning algorithms is also different, although they are applied to the same dataset.
Indeed, for precision, KNN yields the worst performance for Drebin and RmvDroid datasets,
while DT yields the worst performance for the AMD dataset. For recall, RF yields the worst
performance for all the three considered datasets. For F1 scores, SVM always achieves the
best performance compared to the other ML algorithms.

• Finding-3.2: Sample duplication has diverse impacts on these different machine learning
algorithms. As shown in Fig. 8-10, in the 36 controlled experimental groups – four machine
learning algorithms are evaluated in each pair, e.g., SVM, DT, RF, and KNN in E1/E2, Precision
of Drebin – DT appears to be impacted differently in 6 groups while SVM in 4 groups. There
is no impact observed for RF and KNN.

Table 9 further summarizes the accuracy of the experiments. Accuracy is usually considered to
be one of the most important metrics for checking if a machine learning classifier can be adopted
in practice, as the cost of errors can be huge, e.g., requiring huge efforts for practitioners to review
the results manually. Interestingly, as highlighted by the Δ column, which calculates the difference
between two experimental settings (e.g., E2-E1), for almost all of the cases, the differences are
positive. The machine learning classifiers trained based on a dataset without duplicated samples are
generally more accurate than such classifiers that are trained with datasets containing duplicated
samples. A possible explanation for this effect could be that, compared to the latter case, the
former setting contains more diverse malware samples, i.e., more malware characteristics, which
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Table 9. Accuracy of the classification with different experimental settings.

Dataset Type Setting # Features Δ # Duplicated Accuracy(%)
Vectors (Ratio) SVM Δ DT Δ KNN Δ RF Δ

Drebin

Dex E1 (Without Duplication) 34,799 -3,500 581 (23.32%) 94.99 -0.2 92.27 -1.56 91.1 -1.51 92.88 -1.64E2 (With Duplication) 31,299 1,341 (53.85%) 94.79 90.71 89.59 91.24

Opcode seq E3 (Without Duplication) 33,398 -3,555 255 (12.74%) 93.64 0.02 89.91 -1.83 88.62 -1.29 91.42 -0.61E4 (With Duplication) 29,843 864 (43.17%) 93.66 88.08 87.33 90.81

API call E5 (Without Duplication) 30,289 -3,347 206 (11.12%) 93.63 0.04 87.96 0.24 88.02 -0.12 90.29 -0.73E6 (With Duplication) 26,942 756 (40.81%) 93.67 88.2 87.9 89.56

AMD

Dex E1 (Without Duplication) 135,015 -23,666 2,745 (20.42%) 98.55 0.03 92.36 -0.49 96.13 -1.49 92.48 -0.24E2 (With Duplication) 111,349 5,838 (43.42%) 98.58 91.87 94.64 92.24

Opcode seq E3 (Without Duplication) 107,270 -16,522 909 (10.1%) 98.22 -0.06 96.42 -0.92 95.61 -0.94 94.98 -0.43E4 (With Duplication) 90,748 3,058 (33.96%) 98.16 95.5 94.67 94.55

API call E5 (Without Duplication) 101,418 -15,763 585 (7.12%) 98.28 -0.01 95.94 -0.63 95.55 -0.52 95.7 -1.48E6 (With Duplication) 85,655 2,569 (31.27%) 98.27 95.31 95.03 94.22

RmvDroid

Dex E1 (Without Duplication) 73,911 -700 898 (14.43%) 97.88 0 95.88 0.13 95.73 -0.08 95.67 -0.65E2 (With Duplication) 73,211 1,066 (31.79%) 97.88 96.01 95.65 95.02

Opcode seq E3 (Without Duplication) 58,773 -8,497 247 (5.76%) 97.14 0.08 95.29 -1.85 94.36 -0.27 95.1 -1.89E4 (With Duplication) 50,276 869 (20.28%) 97.22 93.44 94.09 93.21

API call E5 (Without Duplication) 52,695 -8,141 160 (4.19%) 97.28 0.02 95.57 -2.45 93.64 -0.1 94.22 -1.28E6 (With Duplication) 44,554 680 (17.82%) 97.3 93.12 93.54 92.94

could make the classifier more powerful in locating new samples. Nevertheless, the performance
difference is still within a small range, no matter which machine learning algorithm is used.

RQ-3 Answer

Sample duplication can have diverse impacts on the performance of different machine learning
models. However, no matter which machine learning algorithm is concerned, the impact seems
to be marginal.

5.3 RQ4: Impact of Duplication Bias on Unsupervised Malware Clustering
In previous subsections, we have explored the impact of sample duplication on supervised learning
approaches, w.r.t. three types of sample duplications that may have been overlooked by many
state-of-the-art ML-based Android malware detection approaches. In this section we now explore
the impact of sample duplication on unsupervised learning approaches, with a special focus on the
duplication of malware families. The reason why unsupervised learning is selected is that it is one
of the most common techniques used by researches to identify Android malware families [17, 18].

Experimental Setup. Fig. 11 illustrates the process we followed to prepare the training sets for
setting up the experiments in answering this last research question. The first step for setting up
the experiments is to perform malware family analysis to identify the family of a given malware.
Fortunately, all the datasets have been released with family labels associated with their samples. In
this work, we directly leverage those labels to conduct our experiments.
Given a dataset, once the family labels are identified for all its malware, we rank the families

based on the number of malware they are assigned to. For the sake of simplicity, and to better
present the experimental results, we choose the top-10 families to form our experiments. For the
malware of the top-10 families, given a duplication type, we separate the malware samples into
two sets: ND (all the samples are non-duplicated from each other) and D (all the samples are
duplicated to that of ND), following the same strategy we leveraged for setting up the experiments
in answering RQ2. Based on this distribution, we form 2 experiments: one without duplicated
samples (i.e., 𝑆1′, the ND set is directly leveraged) while another does contain duplicated samples
(i.e., 𝑆2′ contains samples from both ND and D and the size is equal to that of 𝑆1′).

Finally, for these three types of duplication, we set up six experiments, two for each duplication
type and form a control group.
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Fig. 11. Training Sets Preparation for ML-based malware family classification.

• 𝐸1′/𝐸2′: Two datasets respectively contain or do not contain DEXDuplication, i.e., 𝐸1′ utilizes
𝑆1′ and 𝐸2′ utilizes 𝑆2′.

• 𝐸3′/𝐸4′: Similar to 𝐸1′/𝐸2′ except that opcode sequence duplication is used instead of DEX
Duplication.

• 𝐸5′/𝐸6′: Similar to 𝐸1′/𝐸2′ as well except that in this time API call duplication is used instead
of DEX Duplication.

Recall that our dataset for this experiment is formed by 10 families of apps. We hence set the final
cluster numbers to 10, 𝑘 = 10 for both K-means and Gaussian Mixture Model (GMM) [54] clustering
algorithms8, allowing for a better and clearer evaluation of the capability of the unsupervised
learning models. In this setting, the learning model will group the input dataset into 10 clusters
(e.g., clusters 1→ 10). Unfortunately, apart from grouping data samples into clusters, unsupervised
learning approaches do not label the yielded clusters. To this end, after the clustering approach, we
further leverage a straightforward approach to label the clusters. Specifically, given a cluster, we
compare it to the inputted 10 family sets. We leverage the Jaccard similarity coefficient to calculate
the distance between the given cluster and the original 10 malware family sets. Jaccard similarity
coefficient is a simple yet well-known metric that has been frequently leveraged to calculate the
similarity of sample sets, including the similarity of clusters categorized by unsupervised learning
approaches [44, 53]. Given two clusters A, B, the Jaccard Index can be calculated as the ratio of
the size of the intersection of A and B to the size of the union of A and B (cf. the formula below).
The corresponding Jaccard index can be a value between 0 and 1, with 0 indicating no overlap (i.e.,
the two clusters are totally different) and 1 complete overlap (i.e., the two clusters are exactly the
same) between the two clusters.

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

Results. Table 10 summarizes the experimental results of applying unsupervised learning
approaches to cluster Android malware families, concerning Dex duplication in the training samples
(i.e., 𝐸1′ and 𝐸2′). The ten selected malware families are shown in the first row of the table and the
clustering results are enumerated in the second column, simply named as cluster 1 → 10. The value
in each cell shows the Jaccard index between the samples in a cluster and the samples in a given
family. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 indicates that there is no overlap between the cluster and the given family.

8Two of the most popular clustering algorithms. GMM can be regarded as an optimized version of the K-means model. In
this work, we include two clustering algorithms to avoid potential biases.
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Table 10. Jaccard distance between clustering results and the original family samples on Drebin.

Setting Cluster No. FakeInstaller DroidKungFu Plankton Opfake GinMaster BaseBridge Iconosys Kmin FakeDoc Geinimi Label
Cluster 1 0.356 0 0 0.2218 0 0.0629 0.0031 0.0569 0 0 FakeInstaller
Cluster 2 0.0045 0.1726 0.1048 0.0155 0.2859 0.0866 0.0148 0 0.0065 0.1058 GinMaster
Cluster 3 0 0.1917 0 0 0.0115 0.0042 0 0 0 0 DroidKungFu
Cluster 4 0 0 0.7929 0 0 0 0 0 0 0 Plankton

K-means E1’ Cluster 5 0 0 0 0 0 0 0.625 0 0 0 Iconosys
(Without Duplication) Cluster 6 0.2752 0 0 0.2208 0 0 0.1569 0 0 0 FakeInstaller

Cluster 7 0 0 0 0 0.2644 0 0 0 0 0 GinMaster
Cluster 8 0 0.4607 0 0 0 0 0 0 0 0 DroidKungFu
Cluster 9 0 0 0 0 0 0 0 0 0.881 0 FakeDoc

Cluster 10 0 0 0 0 0 0.205 0 0.5635 0 0 Kmin
Cluster 1 0.5855 0 0 0.1261 0 0 0 0 0 0 FakeInstaller
Cluster 2 0.0327 0.297 0 0.0215 0.2336 0.0309 0.0036 0 0.0022 0 DroidKungFu
Cluster 3 0 0.5814 0 0 0 0 0 0 0 0 DroidKungFu
Cluster 4 0 0 0.7127 0 0 0 0 0 0 0 Plankton

K-means E2’ Cluster 5 0 0 0 0 0 0 0.625 0 0 0 Iconosys
(With Duplication) Cluster 6 0 0.0133 0.2429 0 0.1939 0.0024 0 0 0 0.0027 Plankton

Cluster 7 0 0 0 0 0.2705 0 0 0 0 0 GinMaster
Cluster 8 0 0 0 0 0 0.6822 0 0 0 0 BaseBridge
Cluster 9 0 0 0 0 0 0.085 0 0 0.2929 0.55 Geinimi

Cluster 10 0.0859 0 0 0.2628 0 0.0079 0.1571 0.336 0 0 Kmin
Cluster 1 0.0064 0.0934 0.0622 0.0586 0.5248 0.0561 0.0091 0.0172 0.0091 0.0174 GinMaster
Cluster 2 0 0 0.6902 0 0 0 0 0 0 0 Plankton
Cluster 3 0.4676 0 0 0.1501 0 0.0022 0.0968 0.2104 0 0 FakeInstaller
Cluster 4 0 0 0 0.0035 0 0 0.4658 0 0 0.3646 Iconosys

GMM E1’ Cluster 5 0 0.159 0 0 0 0 0 0 0 0 DroidKungFu
(Without Duplication) Cluster 6 0 0.1405 0 0 0 0.0049 0 0 0 0 DroidKungFu

Cluster 7 0 0 0 0 0 0.5273 0 0 0.2791 0 BaseBridge
Cluster 8 0 0 0.1926 0 0 0 0 0 0 0 Plankton
Cluster 9 0 0.5164 0 0 0.0016 0 0 0 0 0 DroidKungFu

Cluster 10 0 0 0 0.1368 0 0 0 0 0 0 Opfake
Cluster 1 0 0.0655 0.0021 0.0045 0.5714 0.0407 ‘ 0.0147 0 0.0054 0.0149 GinMaster
Cluster 2 0 0 0.3579 0 0 0 0 0 0 0 Plankton
Cluster 3 0.4711 0 0 0.082 0 0.0021 0.0734 0 0.1153 0.2051 FakeInstaller
Cluster 4 0 0 0 0 0 0 0.6316 0 0 0 Iconosys

GMM E2’ Cluster 5 0 0.3839 0 0 0 0 0 0 0 0 DroidKungFu
(With Duplication) Cluster 6 0 0.5174 0 0 0 0 0 0 0 0 DroidKungFu

Cluster 7 0 0 0 0.0994 0 0.449 0 0.3761 0 0 BaseBridge
Cluster 8 0 0 0.6388 0 0 0 0 0 0 0 Plankton
Cluster 9 0 0 0 0 0.2705 0 0 0 0 0 GinMaster

Cluster 10 0.0044 0 0 0.3684 0 0 0.0743 0 0 0 Opfake

For each cluster, we calculate its Jaccard indexes to all malware families and label it based on the
family that achieves the largest index value. Let us take the second row as an example, for cluster 1
in 𝐸1′, we calculate 10 Jaccard indexes respectively for the 10 considered malware families, among
which we obtain five positive indexes. Since the largest index goes to FakeInstaller, i.e., samples in
this cluster are closer to the FakeInstaller family than others, we label this cluster as FakeInstaller.

To better present the difference between the two settings – with or without duplicated samples
– we visualize the results in Fig. 12. Each ellipse represents a malware family. If the family is no
longer identified after clustering, it will be highlighted with dotted lines. The families are connected
through directed edges. Each directed edge represents a mis-clustering from source family to the
target family. The mis-clustered sample numbers are further displayed as the weight of the edge,
and which is also reflected by the thickness of the edge. For example, in the graph of 𝐸1′ in Fig. 12,
there is an edge from Kmin to FakeInstaller. The weight (14/85) indicates that there are 14 out
of 85 Kmin malware being recognized as FakeInstaller malware. Fig. 13 further illustrates the
visualization of misclassified malware families for all the other experimental settings (for the results
returned by K-means only, the results returned by GMM are more or less the same and hence are
not displayed to save space). From these visualized experimental results, Table 12 and Table 13
highlight the major differences returned by K-means and GMM, respectively.
Finally, we leverage MoJoFM [62], a Mojo distance based effectiveness metric, to measure the

effectiveness of the selected two clustering models. The MoJoFM metric provides a more objective
evaluation of the performance of clustering approaches, and can provide a single number as output
that is simple to interpret and compare. Table 11 summarizes the experimental results. No matter
which datasets or experimental settings are concerned, the differences between the MoJoFM scores
achieved by K-means and GMM are not significant. However, no matter which clustering algorithms
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Fig. 12. Visualization of the misclassified malware families (for 𝐸1′/𝐸2′ of the Drebin dataset). The coloured
shapes represent the retained families. The shapes with dotted lines represent such families that are not
identified by the clustering approach.

Table 11. The MoJoFM Distance between the clustering results and the original partition.

Type Setting Drebin AMD RmvDroid
K-means(%) GMM(%) K-means(%) GMM(%) K-means(%) GMM(%)

Dex E1’ (Without Duplication) 67.64 69.68 83.42 75.69 66.4 67.76
E2’ (With Duplication) 76.24 75.62 79.11 77.72 65.85 68.35

Opcode seq E3’ (Without Duplication) 70.07 76.35 81.26 81.75 57.72 61.81
E4’ (With Duplication) 73.76 78.34 75.02 74.55 58.38 58.83

API call E5’ (Without Duplication) 79.4 77.38 93.15 80.21 61.34 59.33
E6’ (With Duplication) 82.2 78.57 72.62 77.36 58.69 58.16

are concerned, there is a clear difference between a controlled pair of experimental settings (e.g.,
without or with duplicated samples).

Finding-4.1: Sample duplication can indeed impact the performance of unsupervised learning
models. For example, as shown in Fig. 12, given the same unsupervised learning model, e.g., K-
means, the same malware dataset is clustered into 7 and 8 families (i.e., the colored shapes) for 𝐸1′
and 𝐸2′ (without and with dex duplication), respectively.
Finding-4.2: The unidentified malware families are almost always different between the two

experimental settings in a controlled pair. Indeed, as shown in the fifth column of Table 12 and
Table 13, only one out of 9 pairs achieves the same result. This evidence suggests that, unlike that
of supervised learning models, the impact of sample duplication on unsupervised learning models
is quite significant.
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Fig. 13. Visualization of the misclassified malware families (for all the other experimental settings).

Finding-4.3: The impact of sample duplication in unsupervised learning based malware classifi-
cations is independent of clustering algorithms. Likely, no matter which clustering algorithms are
selected, the clustering results will be impacted by experimental settings without or with duplicated
samples.
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Table 12. Summary of major misclassified results with K-means. Since the number of samples selected from
the Drebin dataset is smaller than the other two datasets, the number of errors obtained for the Drebin
dataset is also fewer than that of the others.

Dataset Type Setting #.Mistakes (Ratio) Unidentified Families Top 3 Error

Drebin

Dex E1’ (Without Duplication) 771 (34.02%) BaseBridge, Geinimi, Opfake DroidKungfu-189/547->GinMaster,
Plankton-129/623->GinMaster, Opfake-
104/117->FakeInstaller

E2’ (With Duplication) 565 (24.93%) FakeDoc, Opfake GinMaster-144/329->DroidKungFu,
GinMaster-101/329->Plankton, Opfake-
77/117->Kmin

Opcode seq E3’ (Without Duplication) 538 (29.5%) BaseBridge, FakeDoc, Geinimi, Iconosys, Opfake Plankon-115/508->GinMaster, Iconosys-
88/89->FakeInstaller, Opfake-81/81-
>FakeInstaller

E4’ (With Duplication) 408 (22.37%) Iconosys, Kmin, Opfake DroidKungFu-84/434->GinMaster,
Plankton-71/508->GinMaster, Iconosys-
57/89->Geinimi

API call E5’ (Without Duplication) 295 (17.46%) BaseBridge, Kmin, Opfake Plankton-67/482->GinMaster,
DroidKungFu-60/367->GinMaster,
BaseBridge-43/74->GinMaster

E6’ (With Duplication) 297 (17.57%) Kmin, Opfake DroidKungFu-80/367->GinMaster,
Plankton-60/482->GinMaster, Kmin-
44/44->Geinimi

AMD

Dex E1’ (Without Duplication) 2,821 (17.05%) BankBot, FakeInst, Fusob, Jisut Youmi-796/1290->Dowgin, Airpush-
500/7756->Dowgin, FakeInst-356/375-
>DroidKungFu

E2’ (With Duplication) 4,626 (27.95%) BankBot, FakeInst, Fusob, Kuguo, Youmi Airpush-1250/7756->Dowgin, Kuguo-
1179/1180->Dowgin, Youmi-946/1290-
>Dowgin

Opcode seq E3’ (Without Duplication) 1,953 (18.33%) BankBot, Fusob, Jisut, Mecor, Youmi Youmi-526/1079->Airpush, Youmi-
461/1079->Dowgin, Airpush-228/4998-
>Dowgin

E4’ (With Duplication) 2,386 (22.4%) BankBot, Fusob, Mecor, Youmi Youmi-634/1079->Dowgin, Airpush-
347/4998->Dowgin, Youmi-239/1079-
>Airpush

API call E5’ (Without Duplication) 697 (7.24%) BankBot, Fusob, Jisut, Mecor Kuguo-124/890->Dowgin, Dowgin-
89/2496->Airpush, Fusob-73/73-
>Dowgin

E6’ (With Duplication) 3,140 (32.61%) BankBot, FakeInst, Fusob, Jisut, Kuguo, Mecor Kuguo-886/890->Dowgin, Airpush-
800/4470->Dowgin, Youmi-491/988-
>Dowgin

RmvDroid

Dex E1’ (Without Duplication) 2,646 (34.05%) Dowgin, Gappusin, Kuguo, Viser Airpush-510/2883->Adwo, Youmi-
428/643->Adwo, Gappusin-426/456-
>Adwo

E2’ (With Duplication) 2,889 (37.18%) Dowgin, Gappusin, Kuguo, Viser Airpush-630/2883->Adwo, Youmi-
430/643->Adwo, Gappusin-430/456-
>Adwo

Opcode seq E3’ (Without Duplication) 2,180 (42.27%) Dowgin, Gappusin, Mobidash, Viser Airpush-366/1675->Kuguo, Gappusin-
326/431->Kuguo, Youmi-307/570-
>Kuguo

E4’ (With Duplication) 1,924 (37.31%) Dowgin, Mobidash, Viser Youmi-329/570->Gappusin, Airpush-
314/1675->Gappusin, Dowgin-249/272-
>Gappusin

API call E5’ (Without Duplication) 1,738 (38.29%) Dowgin, Mobidash Airpush-275/1509->Gappusin, Youmi-
253/506->Gappusin, Dowgin-194/267-
>Gappusin

E6’ (With Duplication) 1,879 (41.4%) Dowgin, Gappusin, Mobidash, Viser Airpush-302/1509->Kuguo, Gappusin-
272/373->Kuguo, Dowgin-242/267-
>Kuguo

RQ4 Answer

Sample duplication has an impact on the performance of unsupervised machine learning models.
The impact can be observed in all of our experiments with either different malware datasets
or different duplication types. Furthermore, unlike supervised learning for which insignificant
impact is observed, the impact of sample duplication on unsupervised learning is quite significant,
and such an impact is independent of the underline selected learning algorithms.

6 DISCUSSION
We now discuss the results of supervised learning with feature section (Subsection 6.1) and the
experiment setting with realistic malware/goodware distribution in the test set (Subsection 6.2). We
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Table 13. Summary of major misclassified results with GMM.

Dataset Type Setting #.Mistakes (Ratio) Unidentified Families Top 3 Error

Drebin

Dex E1’ (Without Duplication) 577 (25.46%) Kmin, FakeDoc, Genimi DroidKungfu-100/547->GinMaster,
Kmin-73/85->FakeInstaller, Plankton-
73/623->GinMaster

E2’ (With Duplication) 405 (17.87%) Kmin, FakeDoc, Genimi DroidKungFu-54/547->GinMaster,
Kmin-85/85->BaseBridge, Genimi-
72/78->FakeInstaller

Opcode seq E3’ (Without Duplication) 386 (21.16%) Opfake, BaseBridge, Iconosys, Kmin GinMaster-64/328->DroidKungFu,
Iconosys-65/89->GinMaster, Opfake-
51/81->Genimi

E4’ (With Duplication) 517 (28.34%) Opfake, Iconosys, Kmin, FakeDoc, Genimi DroidKungFu-89/434->GinMaster,
Geinimi-72/72->GinMaster, Plankton-
52/508->GinMaster

API call E5’ (Without Duplication) 411 (24.32%) Opfake, BaseBridge, Kmin, Genimi DroidKungFu-109/367->GinMaster,
BaseBridge-67/74->GinMaster, Genimi-
64/68->FakeInstaller

E6’ (With Duplication) 389 (23.02%) Iconosys, Kmin, Genimi GinMaster-91/328->DroidKungFu,
Iconosys-74/75->Opfake, Genimi-66/68-
>Opfake

AMD

Dex E1’ (Without Duplication) 4,258 (25.73%) FakeInst, Fusob, BankBot, Jisut, DroidKungFu Dowgin-1265/3222->Kuguo, Youmi-
632/1290->Kuguo, Airpush-536/7756-
>Kuguo

E2’ (With Duplication) 3,277 (19.8%) Youmi, Fusob, BankBot, Jisut, DroidKungFu Youmi-734/1290->Airpush, Dowgin-
705/3219->Kuguo, Youmi-529/1288-
>Dowgin

Opcode seq E3’ (Without Duplication) 3,465 (32.53%) Mecor, Kuguo, BankBot, Jisut, DroidKungFu Airpush-828/4998->Youmi, Kuguo-
600/937->Dowgin, Dowgin-467/2617-
>Youmi

E4’ (With Duplication) 2,345 (22.01%) Mecor, Fusob, Kuguo, BankBot, Jisut Kuguo-691/937->Youmi, Airpush-
460/4998->Youmi, Youmi-256/1079-
>Dowgin

API call E5’ (Without Duplication) 1,969 (20.45%) Mecor, Fusob, Kuguo, BankBot, Jisut Kuguo-830/890->Dowgin, Airpush-
381/4470->Dowgin, Youmi-201/988-
>Dowgin

E6’ (With Duplication) 2,487 (25.83%) Mecor, Youmi, BankBot, Jisut Youmi-524/988->Dowgin, Airpush-
438/4470->Dowgin, Kuguo-255/890-
>Dowgin

RmvDroid

Dex E1’ (Without Duplication) 2,612 (33.62%) Dowgin, Gappusin, Viser Airpush-614/2883->Kuguo, Gappusin-
345/456->Kuguo, Youmi-320/643-
>Kuguo,

E2’ (With Duplication) 2,423 (31.18%) Dowgin, Gappusin, Kuguo Kuguo-365/388->Airpush, Gappusin-
309/456->Airpush, Airpush-277/2879-
>Viser

Opcode seq E3’ (Without Duplication) 2,115 (41.01%) Dowgin, Gappusin, Mobidash, Viser Gappusin-302/431->Kuguo, Airpush-
265/1675->Kuguo, Dowgin-247/272-
>Kuguo

E4’ (With Duplication) 2,169 (42.06%) Dowgin, Mobidash, Mecor, Gappusin Gappusin-285/431->Kuguo, Dowgin-
241/272->Kuguo, Airpush-240/1675-
>Kuguo

API call E5’ (Without Duplication) 1,870 (41.2%) Dowgin, Mobidash Kuguo-328/371->Airpush, Youmi-
241/506->Gappusin, Dowgin-231/267-
>Airpush

E6’ (With Duplication) 2,173 (47.87%) Dowgin, Gappusin, Adwo Airpush-269/1507->Viser, Gappusin-
263/373->Kuguo, Dowgin-240/267-
>Kuguo

then stress the importance of considering sample duplication for machine learning (Subsection 6.3),
and summarize the effect of parameter turning for ML-based malware detectors (Subsection 6.4)
and the potential threats to validity of our study (Subsection 6.5).

6.1 Supervised Learning with Feature Selection
Recall that we have directly leveraged the features proposed by Arp et al. [8] to evaluate the impact
of sample duplication in machine learning based Android malware detection. The set of features
eventually considered in this work is hence comprehensive, which may subsequently overfit the
learning algorithm. Towards verifying this hypothesis, we replicate one of our previous experiments
by integrating feature selection into the working process. Specifically, for the experiment conducted
in Section 5.1.2, after the full feature set is extracted, we introduce a feature selection step into our
approach aiming at retaining only such features that have importance weights higher than a given
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Table 14. Experimental results (over the Drebin dataset) with feature selection applied. The features are
selected only if their importance weights are higher than the average weights calculated based on the full
feature set.

Type Setting |𝑁𝐷 | Training Test # Original # Selected Malware Goodware
Set Set Features Features Precision(%) Recall(%) F1 score(%) Precision(%) Recall(%) F1 score(%)

Dex E1 (Without Duplication) 3,559 2,491*2 1,068*2 34,799 10,485 92.6 97.28 94.88 97.14 92.22 94.62
E2 (With Duplication) 3,559 2,491*2 1,068*2 31,299 8,970 93.62 95.07 94.34 94.99 93.52 94.26

Opcode seq E3 (Without Duplication) 2,859 2,001*2 858*2 33,398 10,024 90.5 96.73 93.51 96.49 89.85 93.05
E4 (With Duplication) 2,859 2,001*2 858*2 29,843 8,789 92.23 94.78 93.48 94.63 92.01 93.3

API call E5 (Without Duplication) 2,646 1,852*2 794*2 30,289 9,250 92.42 95.33 93.85 95.18 92.18 93.66
E6 (With Duplication) 2,646 1,852*2 794*2 26,942 8,011 92.99 94.36 93.67 94.28 92.89 93.58

threshold. In this experiment, we set the threshold to be the average weights calculated based on
the full feature set. Table 14 illustrates the new experimental results. The seventh column presents
the numbers of selected features, which are significantly smaller (over 50%) than that of the original
features (as shown in the sixth column). Nonetheless, by comparing with the experimental results
shown in Table 8 (that obtained without involving feature selection), the experimental results are
not significantly impacted by involving feature selection to the process. This evidence suggests
that the selection of a large number of features has a limited impact on the experimental results of
this work.

6.2 Realistic Malware/Goodware Distribution in Test Set
For all the experiments conducted in the evaluation section, we have followed many of the existing
works by fulfilling the test datasets with balanced apps (i.e., containing the same number of
malware and goodware). Unfortunately, this setting does not reflect the actual distribution of
malware/goodware in the real world. Subsequently, the corresponding experimental results may
not be able to represent the actual performance achievable in practice. We hence design additional
experiments to check if such more realistic settings will impact our experimental findings. To the
best of our knowledge, there is no ground truth about the actual distribution of malware/goodware,
and it is non-trivial to obtain that in practice. Pendlebury et al. [52] have attempted to estimate
such a ratio based on samples collected from the public AndroZoo dataset, which contains over 8
million apps at the time of their study. Eventually, they conclude that a reasonable estimation of
malware to goodware distribution could be 1:9.

In this work, we take this distribution ratio to fulfil the additional experiments, i.e., by preparing
new test/training datasets. For the sake of simplicity, since only the Drebin dataset has been
provided with benign samples, we replicate the experiment (as presented in Section 5.1.2) on the
Drebin dataset only. The machine learning models are trained with the same algorithm and with the
same dataset when a balanced training dataset is concerned or with the newly prepared unbalanced
dataset. Table 15 summarizes the new experimental results. Interestingly, for the experiment of
Unbalanced Training Set, Unbalanced Test Set, the experimental results are comparable to that
achieved by Balanced Training Set, Balanced Test Set. When a balanced training set is concerned, i.e.,
Balanced Training Set, Unbalanced Test Set, while retaining very high recall of detecting malware as
such, the precision has significantly decreased compared to the experimental results achieved by an
unbalanced training set or a balanced test set. Nevertheless, similar to the findings we summarized
previously, based on these new experimental results, differences can still be observed between
such experiments trained with or without duplicated samples. This result once again suggests
that sample duplication should be carefully considered (and avoided) when performing machine
learning based Android malware detection.
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Table 15. Experimental results of SVM-based malware classification obtained based on realistic malware/-
goodware distribution (i.e., 1:9).

Type Setting Training Set Test Set # Features # Duplicated Malware Goodware
Vectors (Ratio) Precision(%) Recall(%) F1 score(%) Precision(%) Recall(%) F1 score(%)

Balanced Training Set, Unbalanced Test Set

Dex E1 (Without Duplication) 2,491*2 1,068+9,612 34,799 581 (23.32%) 58.36 97.19 72.93 99.7 93.08 96.28
E2 (With Duplication) 2,491*2 1,068+9,612 31,299 1,341 (53.85%) 63.66 95.06 76.25 99.48 94.58 96.97

Opcode seq E3 (Without Duplication) 2,001*2 858+7,722 33,398 255 (12.74%) 60.75 96.62 74.59 99.54 92.16 95.71
E4 (With Duplication) 2,001*2 858+7,722 29,843 864 (43.17%) 65.2 94.74 77.24 99.3 93.65 96.39

API call E5 (Without Duplication) 1,852*2 794+7,146 30,289 206 (11.12%) 59.53 95.33 73.29 99.36 91.77 95.41
E6 (With Duplication) 1,852*2 794+7,146 26,942 756 (40.81%) 62.68 94.31 75.31 99.23 92.87 95.94

Unbalanced Training Set, Unbalanced Test Set

Dex E1 (Without Duplication) 2,491+22,419 1,068+9,612 34,799 581 (23.32%) 90.82 91.75 91.28 99.18 99.07 99.13
E2 (With Duplication) 2,491+22,419 1,068+9,612 31,299 1,341 (53.85%) 92.16 88.5 90.29 98.86 99.25 99.05

Opcode seq E3 (Without Duplication) 2,001+18,009 858+7,722 33,398 255 (12.74%) 88.93 90.9 89.9 98.85 98.58 98.72
E4 (With Duplication) 2,001+18,009 858+7,722 29,843 864 (43.17%) 90.87 86.76 88.76 98.34 98.91 98.63

API call E5 (Without Duplication) 1,852+16,668 794+7,146 30,289 206 (11.12%) 90.9 89.41 90.15 98.66 98.86 98.76
E6 (With Duplication) 1,852+16,668 794+7,146 26,942 756 (40.81%) 92.34 86.07 89.09 98.25 99.09 98.67

6.3 The importance of sample duplication for machine learning.
In this work, we experimentally show that sample duplication indeed impacts the performance
of machine learning-based Android malware detection approaches, w.r.t. both supervised and
unsupervised learning models. This result aligns with the results reported by Miltiadis Allamanis in
investigating the adverse effects of code duplication in machine learning models of code [4]. In this
work, we would like to emphasize that the impact of duplication on Android malware detection is
quite marginal for supervised ML approaches. Unfortunately, the rationale behind this marginal
impact is unclear at the moment. In our future work, we plan to fill this gap by conducting advanced
explainable machine learning techniques.

Nonetheless, we argue that sample duplication could introduce biases depending on theML-based
classification approaches that may be used. We hence advocate that practitioners and researchers
should pay more attention to sample duplication in their ML-based classifications. Ideally, sam-
ple duplications could be taken as a machine learning parameter, which needs to be explicitly
communicated when reporting the performance of given machine learning approaches. Indeed,
just like any other parameters of ML algorithms, such as 𝑘 for the K-means algorithm, sample
duplication rate is essential for supporting the reproducibility of the ML approaches. To help
practitioners and researchers better communicate the sample duplications in their datasets for
that of Android-oriented approaches, we further present to the community a prototype tool for
characterizing duplicated samples in an Android app dataset. This tool further provides options for
users to exclude duplicated samples from their datasets. We have made our prototype tool available
online at https://github.com/carol233/duplication.

6.4 The effect of parameter turning for ML-based malware detectors
As empirically revealed by Allix et al. [5] in their large-scale empirical assessment of machine
learning based malware detectors, no matter in which settings – 10-fold cross-validation or training
on one set and test another set – RandomForest always achieves the best precision compared
with other machine learning algorithms (including C4.5, RIPPER, SVM [5]). This empirical finding,
surprisingly, is different from the one that we observed in this work. We hence go one step deeper
to check the possible reasons behind this difference. We followed the “Drebin” approach to set up
our experiments, for which an additional “grid-search” step is adopted by searching for suitable
parameter values for our learning algorithms. This is in contrast to the approach of Allix et al., who
simply used the default options. Therefore, in this work, we re-launch all the experiments with the
“grid-search” feature disabled. In this circumstance, RandomForest indeed jumps up to be the best
learning algorithm for predicting Android malware. This contradictory result suggests that it is
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vital to tune ML algorithm parameter values when performing machine learning based malware
classification. The algorithm that works best out of the box in default mode may not be the most
suitable one if parameter turning is concerned [16, 24, 58]. This implication is further backed up by
the fact that SVM rather than RaondomForest is adopted by the “Drebin" approach, although the
RandomForest algorithm is frequently reported as one of the best algorithms in the literature.

6.5 Threats to Validity
The main threat to construct validity of our study concerns the exhaustiveness of classification
algorithms we selected and the experiments we set up in this work. Although we have selected four
well-known algorithms and both in-the-lab and in-the-wild experimental settings, which have also
been frequently leveraged by other researchers to achieve similar purposes, they may not be entirely
suitable for predicting Android malware [59]. Nonetheless, the four algorithms yield more or less
similar results suggest that our findings are not specific to a particular learning algorithm. Another
threat to construct validity lies in the process of preparing training/test datasets [58]. In this work, to
ensure a balance between the size of training and test datasets, we choose a threshold of 30% to form
the test set. This threshold may not be representative of this study. Ideally, to be fully conclusive,
we would need to experiment with more thresholds. However, this is not the main focus of this
work, we leave it as future work. Furthermore, when preparing the training and testing datasets for
evaluating the impact of sample duplication for supervised learning approaches, as shown in Fig. 6,
there might be chances that some samples in the testing set have their duplicated counterparts set in
the training set. This setting may lead to slightly higher classification performance as the malware
detector could learn some malware information in advance. A more realistic setting would be to
limit the testing samples to not include duplicated versions of the apps in the training set. An ideal
approach could be to take app release time into consideration when preparing the training/testing
set, e.g., testing apps are all released after the testing set, which is an ideal situation since the
malware detector cannot learn from future samples, as suggested by Li et al [40]. Nevertheless, this
is also not the main focus of this paper, we leave it as future work.
Yet another threat to construct validity concerns the feature extraction process of this work.

Recall that, in this work, we directly leverage the feature set of the “Drebin” approach to train
our machine learning models. However, the authors do not make their feature extraction scripts
publicly available. To this end, we had to resort to the re-implementation of Annamalai Narayanan9
to extract features from Android apps. Our re-implementation may not be identical to that of
the original authors. Nonetheless, our re-implementation has been successfully adopted by both
the authors themselves and many of our fellow researchers working in this community [49, 64].
Furthermore, the features extracted by the “Drebin” approach are mainly based on syntactic rules
(e.g., the appearance of certain strings), which may not be able to characterize the semantic features
of Android apps. Subsequently, the machine learning results might be impacted. In our future work,
we plan to alleviate this impact by leveraging semantic features such as the ones extracted based
on Android apps’ graph representations [21] and advanced deep learning algorithms such as the
ones driven by neural networks.
The key threat to internal validity concerns possible errors in the implementation of our ex-

perimental tools and scripts used to run the experiments and gather experimental results. To
reduce this threat, we have carefully reviewed the code and scripts of our toolchain to ensure that
the implemented functions meet our expectations. We have further manually checked a random
selection of experimental results to verify their accuracy.

9https://github.com/MLDroid/drebin
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One threat to the external validity of our study concerns the representativeness of the malware
datasets that we selected. Although we have included four common malware datasets from the
literature, our results may still not be generalisable to other malware datasets. Nonetheless, the
fact that our experimental findings are similar among the selected datasets shows that the external
validity of our work is likely to be reasonable. Also, to avoid potential biases, we restrict the test
dataset to contain unduplicated samples only when conducting the supervised learning experiments,
which unfortunately may not reflect the real-world situation as it is likely to have duplicated
samples in a real-world dataset. Nevertheless, since this decision will not impact the capability
of the classifier (which only relies on the training dataset) and the duplication rate in practice is
not significant, such a decision should only bring limited threats to our experiments and hence
could be neglected. In this work, the performance of our family clustering experiments is directly
related to the authenticity of malware labels, which unfortunately may not be reliable, as often
discussed by other researchers [25, 30, 57]. To mitigate this threat, we have directly leveraged the
malware labels provided by the malware datasets, which have already been leveraged by various
prior research projects.

7 RELATEDWORK
Machine learning-based Android malware classification has been a hot topic in the software
engineering and security community. Below we summarize some representative prior work.

Androidmalware detection.Machine learning has been extensively leveraged by practitioners
and researchers to detect Android malware [50, 66]. One of the most common algorithms leveraged
by researchers for achieving this purpose is RandomForest, which has been reported by researchers
as one of the best algorithms for conducting binary classification. As an example, Alam et al. [3]
have empirically demonstrated that RandomForest is optimal by comparing its accuracy with
BayesNet, Logistic Regression, DT, etc. Later on, Allix et al. [5] have also empirically confirmed this.
In their experiment, they experimentally show that RF achieves the best performance compared
with C4.5, RIPPER, and SVM. A similar result has also been backed up by Li et al. [38] as well.
In this work, although different datasets and feature sets are concerned, we achieve more or less
similar results, i.e., RandomForest is among the best algorithm for precisely discriminating malware
from goodware.

As discussed in the previous section, with “grid-search” enabled to optimise parameters, SVM in
many cases can achieve an even better performance than that of RandomForest. Hence, SVM has
also been a very common machine learning algorithm for training to predict Android malware. For
example, Naser et al. [51] built a malware detector based on the features statically extracted from
Android APKs. One of the most famous works that leverage SVM to predict Android malware is
the one presented by Arp et al. [8]. They proposed the Drebin approach, for which they extract
machine learning features from Android APKs (or DEX files) into eight feature sets. In our work,
aiming at exploring the effect of sample duplication on machine learning based malware detectors,
we leveraged the same feature sets and included SVM as one of our four evaluated machine learning
algorithms. In many of our experimental settings, SVM indeed performs the best compared to that
of other machine learning algorithms.
Most of the aforementioned approaches extract features statically from Android DEX files,

which contain the core app code of the apps. In our work we have thus empirically explored the
impact of DEX duplication on machine learning approaches. Apart from the DEX file, we have
also included two extra duplication types involving app opcode and API calls. These two types
have been frequently leveraged by other researchers to form feature sets for learning the malicious
behaviors of Android apps. Indeed, as an example, Jerome et al. [32] have proposed an ML-based
malware detection approach based on opcode sequences in 2014. Similar to their work, Canfora
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et al. [15] and McLaughlin et al. [47] also respectively present machine learning based malware
detection approaches based on features statically extracted from the raw Dalvik bytecode (i.e.,
opcode sequences). Since similar opcode sequences can be extracted from different apps, i.e., opcode
sequence duplication, the performance of the approaches mentioned above might be impacted.
Similar to opcode sequences, Android APIs have also been recurrently leveraged as features

for machine learning based Android malware analysis. For example, in 2013, Aafer et al. [2] have
performed a thorough analysis that leverages critical API calls as features to evaluate the difference
among selected classification algorithms. In their experiments, they employed four algorithms,
including DT, C4.5, KNN, and linear SVM. Their experimental results reveal that KNN is the best
algorithm for predicting malware when API calls are considered as features. This finding is quite
different from ours as we experimentally show that RF and SVM are among the best algorithms.
We note that our experiments are done on different datasets and use different feature sets, although
API calls are considered by both approaches. Similarly, in 2016, Wu et al. [63] leveraged the use of
dataflow-related API-level features to improve the performance of a KNN detector. We observe
that approaches of leveraging API calls as features may be impacted by API call duplication if the
authors do not carefully sanitize their training dataset.

In addition to traditional machine learning models, researchers have also started to leverage deep
learning models to detect Android malware. In 2014, Yuan et al. [68] built a deep learning model
with more than 200 features extracted from both static and dynamic analysis and stated that deep
learning techniques are especially applicable for Android malware detection. Likewise, in 2018,
Karbab et al. [33] proposed an Android malware detection and family identification framework,
MalDozer, which also leverages deep learning techniques to predict Android malware. In this work,
we only focus on investigating the effect of sample duplication on traditional machine learning
models. We nonetheless believe deep learning models are also relevant to the sample duplication
concerns that we highlighted in this work. We plan to explore this direction in our future work.

Android malware family classification. In addition to machine learning-based malware
detection, practitioners and researchers have also spent a significant amount of effort to identify
the family of Android malware [27]. For example, Garcia et al. [27] proposed a novel approach for
detecting malware families. By leveraging features extracted from specific Android API usages,
reflective calls, and native binaries, they designed and implemented a prototype tool RevealDroid
to achieve this purpose.
Most state-of-the-art approaches leverage unsupervised learning to identify Android malware

families. The rationale behind this is that similar malware (belonging to the same family) will
be grouped into the same cluster. As an example, Bayer et al. [12] have identified and grouped
malware exhibiting similar behavior with a scalable clustering method. Similarly, in 2013, Hu
et al. [29] designed and implemented a framework, namely MutantX-S, to cluster samples into
families based on code instruction sequences efficiently. They have also proven that MutantX-S is
highly accurate in detecting previously unknown malware. In 2015, Aresu et al. [7] created Android
malware clusters by analyzing specific statistical information related to the HTTP traffic.

The above papers used clustering methods to aggregate malware with similar malicious behavior,
which is of great significance for obtaining the family classification labels of malware. Unfortu-
nately, none of these approaches has taken into account the sample duplication problem in their
experimental setting, and thereby their performance might not be reliable.

Bias in machine learning. Apart from applying machine learning techniques to characterize
Android malware, researchers have also started to investigate the potential biases that appear in the
working processes of machine learning-based techniques. Pendlebury et al. [52] recently presented
a study discussing the potential biases in two dimensions: space (referred to as spatial bias) and
time (referred to as temporal bias). Spatial bias is caused by the unrealistic setting of the ratio of
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benign to malware samples in training and test data. Temporal bias refers to the integration of
future knowledge about test data into the training stage. Similarly, Li et al. [40] have experimentally
shown that time inconsistency introduces significant biases to machine learning based malware
detection approaches.
In 2018, Li et al. [36] presented a study demonstrating that more features used by a machine

learning approach do not necessarily mean better performance. In a recent work reported by Irolla
et al. [31], 49.35% of the samples in the Drebin dataset have at least one more sample containing
the same sequence of opcode. This result is in line with the findings of this work. Indeed it actually
motivated us to investigate the potential impact of such duplication on the performance of machine
learning approaches.

To the best of our knowledge, our work is the first to investigate the impact of sample duplication
onmachine learning-based Android malware detection approaches. However, studies on the adverse
effects of code duplication inmachine learningmodels have also been carried out. Allamanis et al. [4]
presented a technical report describing the impact of multiple file-level (near-)clones appearing
in large corpora of code. They discussed the biases introduced mathematically and empirically
proved that code duplication can lead to overestimating the performance when evaluating machine
learning models. Different from their work, our work in this paper targeting Android malware at
the bytecode level.

8 CONCLUSION
In this paper, we empirically investigated the impact of sample duplication on machine learning-
based Android malware detection approaches. We started by recognizing common sample duplica-
tion types in well known and used Android malware datasets. We then took into account these
sample duplication types to train distinctive machine learning models to classify Android malware.
We conducted our experiments on three common malware datasets. Our experimental results
show that sample duplication does indeed impact the performance of machine learning-based
malware detection approaches. An in-depth exploration further revealed that this finding applied
to not only in-the-lab experiments (i.e., 10-fold cross-validation) but also in-the-wild analyses
(i.e., trained on one dataset and then tested on another). This finding also applies to experiments
that were conducted using different machine learning algorithms, including both supervised and
unsupervised learning approaches.
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