
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 1

Cost-Effective App Data Distribution in Edge
Computing

Xiaoyu Xia, Feifei Chen, Qiang He*, Member, IEEE, John Grundy, Senior Member, IEEE, Mohamed
Abdelrazek, and Hai Jin, Fellow, IEEE

Abstract—Edge computing, as an extension of cloud computing, distributes computing and storage resources from centralized cloud
to distributed edge servers, to power a variety of applications demanding low latency, e.g., IoT services, virtual reality, real-time
navigation, etc. From an app vendor’s perspective, app data needs to be transferred from the cloud to specific edge servers in an area
to serve the app users in the area. However, according to the pay-as-you-go business model, distributing a large amount of data from
the cloud to edge servers can be expensive. The optimal data distribution strategy must minimize the cost incurred, which includes two
major components, the cost of data transmission between the cloud to edge servers and the cost of data transmission between edge
servers. In the meantime, the delay constraint must be fulfilled - the data distribution must not take too long. In this paper, we make the
first attempt to formulate this Edge Data Distribution (EDD) problem as a constrained optimization problem from the app vendor’s
perspective and prove its NP-hardness. We propose an optimal approach named EDD-IP to solve this problem exactly with the
Integer Programming technique. Then, we propose an O(k)-approximation algorithm named EDD-A for finding approximate solutions
to large-scale EDD problems efficiently. EDD-IP and EDD-A are evaluated on a real-world dataset and the results demonstrate that
they significantly outperform three representative approaches.

Index Terms—edge computing, optimization, data distribution, cost-effectiveness, edge server network.

F

1 INTRODUCTION

THe world has witnessed exponentially growing mobile
data traffic in this decade promoted by a huge increase

in mobile devices and Internet of Things (IoT) connected
devices [1]. This explosion of mobile data traffic has led
to a wealth of research aiming to relieve the enormous
data transmission loads on networks. Conventional net-
work paradigms facilitated by cloud computing, including
content delivery networks, content-centric networks and
information centric networks, cannot handle the increases
in network latency and network congestion caused by the
rapidly increasing mobile traffic. In recent years, edge com-
puting has emerged as a new computing paradigm that
push computing and storage resources to the edge of the
cloud [2]. These edge servers, each powered by one or many
physical machines, are deployed at base stations or access
points that are geographically close to devices [3]. Vendors
of mobile and IoT applications (referred to as app vendors to-
gether hereafter) can hire computing and storage resources
on edge servers for hosting their apps to serve their own app

• X. Xia, F. Chen and M. Abdelrazek are with School of In-
formation Technology, Deakin University, Geelong, Victoria, Aus-
tralia. E-mail: xiaoyu.xia@deakin.edu.au; feifei.chen@deakin.edu.au; mo-
hamed.abdelrazek@deakin.edu.au.

• Q. He is with School of Software and Electrical Engineering, Swin-
burne University of Technology, Melbourne, Victoria, Australia. E-mail:
qhe@swin.edu.au.

• J. Grundy is with Faculty of Information Technology, Monash University,
Melbourne, Victoria, Australia. E-mail: john.grundy@monash.edu.

• H. Jin is with Services Computing Technology and System Lab, Big Data
Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technolgoy, HuaZhong University of Science and
Technology, China. Email: hjin@hust.edu.cn.

Manuscript received Jan xx, 201x; revised April xx, 201x.

users with low latency [4]. Offloading computation tasks
from app users’ end-devices to nearby edge servers can ease
the computation burden and energy consumption on those
resource-limited end-devices [5], [6], [7], [8]. This is also a
key technology of the 5G mobile network [9].

As edge servers become the entry points to the Internet
for a larger number of mobile and IoT devices, a much
larger proportion of the rapidly increasing mobile traffic
data will be transmitted through those edge servers from
the cloud. From an app vendor’s perspective, caching app
data on edge servers can considerably reduce the latency for
their own users’ data retrieval. In addition, it will largely
reduce the volume of their app data transmitted between
the cloud and its app users. This in turn will decrease
the corresponding data transmission costs [10]. The new
challenges raised by data caching in the edge computing
environment have attracted many researchers’ attention in
recent years [11], [12], [13], [14], [15].

However, existing research efforts have focused on how
to cache data across edge servers to achieve different opti-
mization objectives, e.g., to minimize caching cost [14], to
minimize retrieval latency [15], to guarantee the quality of
transmissions [12], etc. The fact that data transmission from
within the cloud to distributed edge servers may incur ex-
cessive costs is largely ignored. For example, Amazon Web
Services charges up to US$0.09 + US$0.02 to transfer 1GB
data out of its S3 data storage facilities to the internet1. It is a
significant component in the cost structure for app vendors
to consider in the edge computing environment, similar
to a large body of work on cloud computing [16], [17].
Unlike data transmission in cloud computing and wireless

1. https://aws.amazon.com/s3/pricing/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 2

sensor networks [18], [19], [20], [21], app data distribution
in the edge computing environment consists of two major
components: 1) data transmission from the cloud to edge
servers; 2) and data transmission between edge servers.
Both components must be considered in a systematic man-
ner to formulate cost-effective data distribution strategies
for app vendors. We refer to this problem as the edge data
distribution (EDD) problem in this paper.

The scale of an EDD scenario can be very large and find-
ing a solution is not trivial. To help app vendors formulate
cost-effective EDD strategies that minimize the EDD cost
while fulfilling the app vendor’s EDD time constraint, this
paper makes the first attempt to study the EDD problem
from the app vendor’s perspective. The key contributions
of this paper are as follows:

• We formulate and model the EDD problem as a
constrained optimization problem (COP) from the
app vendor’s perspective and prove that it is NP-
hard.

• We develop an optimal approach, namely EDD-IP,
for finding optimal solutions to EDD problems with
the Integer Programming technique.

• We develop an approximation approach named
EDD-A for finding approximate solutions to large-
scale EDD problems rapidly.

• We conduct extensive experiments on a widely-
used real-world dataset to evaluate the proposed
approaches against three representative approaches.

The rest of this paper is organized as follows. Section 2
motivates this research with an example. Section 3 formu-
lates the EDD problem and proves itsNP-hardness. Section
4 presents and analyzes our optimal approach and approx-
imation approach for solving the EDD problem. Section 5
evaluates the proposed approaches experimentally. Section
6 reviews the related work. Section 7 concludes this paper
and points out the future work.

2 MOTIVATING EXAMPLE

Facebook Horizon2 is a representative application that can
significantly benefit from caching their data on edge servers.
Facebook users wearing Oculus headsets can access VR
videos and VR games on Facebook Horizon. Caching popu-
lar VR videos on edge servers will allow Facebook users
covered by those edge servers to access the videos with
minimum latency, which is critical because VR users are
highly latency-sensitive. It will also reduce the data traffic
between the Facebook Horizon server in the cloud and
Facebook Horizon users. However, assuming a similar price
for data transmission asked by Amazon, cost-ineffective
data distribution strategies may cost Facebook Horizon
significantly just to distribute VR videos to edge servers. As
the number of Facebook Horizon users continues to grow,
such extra expense will increase rapidly.

Fig. 1 presents an example EDD scenario with 10 edge
servers in a specific geographic area. Those edge servers are
connected via high-speed links to facilitate data transmis-
sions between them [7], [22]. Let us assume that a Facebook

2. https://www.oculus.com/facebookhorizon

Fig. 1. An example EDD scenario

Horizon VR video is to be cached on 7 of those edge
servers3. There are many possible strategies for distributing
the VR video onto those 7 edge servers. A straightforward
EDD strategy is to transmit this VR video from the cloud to
each individual edge server directly. We refer to such data
transmissions as C2E (cloud to edge server) transmissions
hereafter. Alternatively, the VR video can first be transmitted
from the cloud onto one of the edge servers, which then
transmits the VR video onto other edge servers via the
high-speed links between them. The data transmissions
between edge servers are referred to as E2E (edge server to
edge server) transmissions hereafter. A third possible EDD
strategy is similar to the second one, but the VR video is first
transmitted from the cloud to several of the edge servers
instead of one. Given the same amount of data to transmit,
E2E transmissions cost less than C2E transmissions because
of the much shorter distance between adjacent edge servers
and the zero burden caused by E2E transmissions on the
internet backbone [23]. Therefore, different EDD strategies
incur different costs.

From Facebook’s perspective, it is critical to formulate a
cost-effective data distribution strategy that minimizes the
data distribution cost. While pursing low data distribution
cost, the time taken to distribute the VR video onto all
the 7 edge servers must also be considered. As discussed
above, low latency is one of the major objectives of edge
computing [24]. Thus, an EDD strategy must also fulfill
Facebook Horizon’s time constraint4.

3 PROBLEM FORMULATION

In this section, we first formulate the EDD problem as a
constrained optimization problem (COP), then prove the
NP-hardness of this problem based on the Steiner Tree
problem. The notations used in this paper are summarized
in Table 1.

3.1 Problem Statement
Edge computing is significantly different from cloud com-
puting which facilitates content-centric network and content

3. When different VR videos are to be cached, their distribution
processes are not correlated in terms of transmission cost and transmis-
sion delay. Thus, their corresponding EDD strategies are formulated
individually.

4. Please note that the time constraint for EDD varies from applica-
tion to application.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 3

TABLE 1
Summary of Notations

Notation Description
c cloud node
dlimit delay limit defined by app vendor
dv delay that edge server v obtain data after data

arrives the edge server network
Dv depth of v, equal to dv + 1

Dlimit depth limit, equal to dlimit + 1

E set of links between edge servers
eu,v edge/link between edge server u and v
G graph presenting a particular area
H latency limit defined by app vendor
R set of destination edge servers
γ the ratio of data transmission cost of C2E

and a 1-hop transmission cost of E2E

S set of binary variables indicating the selection of
the initial transit edge servers

sv binary variable indicating whether v is an initial
transit edge server

T set of binary variables indicating the data
distribution path

Tce tree with root c with edges ec,v , ∀v ∈ {Tms − c}
Tedd−a tree returned by Algorithm 2
Tms tree returned by Algorithm 1
Tu,v binary variable indicating data transmitted from u

to v
V set of edge servers
v edge server v
u edge server u

delivery network. In an edge computing environment, adja-
cent edge servers deployed at different base stations and
access points can communicate with their neighbor edge
servers and share their storage resources via high-speed
links [7], [22]. Thus, the edge servers in a particular area
constitute an edge server network, which can be modeled as a
graph where a node represents an edge server and an edge
represents the link between two edge servers.

In this research, the n edge servers in a particular area
are modeled as a graph G. For each edge server v, graph
G has a corresponding node. For each pair of linked edge
servers (u, v), graph G has a corresponding edge eu,v . We
use G(V,E) to represent the graph, where V is the set of
nodes in G and E is the set of edges in G. In the remainder
of this paper, we will speak inter-changeably of an edge server and
its corresponding node in graph G, denoted as v,∀v ∈ V . Let R
denote the set of destination edge servers in graph G, i.e., the
edge servers to which the data are to be transmitted from
the cloud.

Example 1. As discussed above, the edge server network
in Fig. 1 can be modeled as the graph G presented in
Fig. 2, while the destination edge servers are presented
as black nodes and others are white nodes. In graph G,
there are 10 edge servers with 14 edges in total, where
R = {1, 2, 3, 4, 6, 7, 9}.

The fees for data transmissions charged by different
cloud service providers, e.g., Amazon and Google, are dif-

Fig. 2. Graph structure of EDD scenario in Fig. 1

ferent. Amazon even has different pricing models in its
different regions. Similarly, edge infrastructure providers
usually have different pricing models for their E2C trans-
missions and E2E transmissions. Thus, we use a ratio γ to
indicate the difference between the C2E transmission cost
and the E2E transmission cost generically. For example,
γ = 20 indicates that a C2E transmission costs 20 times
as much to transmit a data than an E2E transmission -
C2E transmissions are usually more expensive than E2E
transmissions as discussed in Section 2. In addition, the data
transmission latency between two edge servers is measured
by the number of hops between them in graph G. Thus,
the C2E transmission cost can be converted to γ times of
the 1-hop E2E transmission cost. This way, the optimization
objective and the corresponding constraints in the EDD
problem can be modeled in a more generic manner. Specific
pricing models and network latency models can be easily
integrated to calculate the actual EDD cost and EDD time
consumption, i.e., the total cost and time of transmitting
the data from the cloud to the destination edge servers,
respectively.

There are two possible phases of EDD. 1) The C2E
transmission, where the data is transmitted from the cloud
to one or many of the edge servers in the area, which are
referred to as the ”initial transit edge servers” hereafter. 2)
The E2E transmission, where the data is transmitted from
the initial transit edge servers to the destination edge servers
via other transit edge servers. Please note that an initial tran-
sit edge server is not necessarily a destination edge server.
A destination edge server may also be a transit edge server
because it may transmit the data further to other destination
edge servers. Accordingly, an EDD strategy consists of two
parts, a C2E strategy and an E2E strategy. A C2E strategy
specifies the initial transit edge servers. It is denoted as a
vector S =< s1, ..., sn >, where sv (1 ≤ v ≤ n) indicates
whether edge server v is selected as an initial transit edge
server to receive the data from the cloud directly:

sv =

0 if v is selected as an initial transit edge server
1 if v is NOT selected as an initial transit edge

server
(1)

An E2E strategy is also represented by a vector TE2E =<
T1,1, T1,2, ..., Tn,n >, where Tu,v(u, v ∈ V) denotes whether

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 4

the data is transmitted through edge eu,v in G:

Tu,v =

{
1 if data is transmitted through edge eu,v
0 if data is NOT transmitted through edge eu,v

(2)
Since a valid EDD strategy must connect each destina-

tion edge server v ∈ R to an initial edge server in S through
TE2E , constraint (3) must be fulfilled:

isConnected(v, S, TE2E) = true,∀v ∈ R (3)

The details to fulfil constraint (3) will be discussed later
in Theorem 3.

As discussed above, the EDD time constraint is de-
termined by the app vendor - i.e. application-specific. As
discussed in Section 1, we formulate the EDD problem in a
generic manner. The data transmission latency between two
edge servers is measured by the number of hops between
them in G. Let dlimit denote the app vendor’s EDD time
constraint. Please note that the EDD time constraint here
does not include the C2E latency because it is ensured by
the edge infrastructure provider and does not impact the
formulation of the EDD strategy - it can never be avoided
or reduced by an EDD strategy. Thus, each destination edge
server v’s E2E latency, i.e., the data transmission latency
between v and its connected initial edge server in S must
not exceed this constraint:

0 ≤ dv ≤ dlimit, dv ∈ Z+,∀v ∈ R (4)

Example 2. Take Fig. 2 as an example. Let us assume that
the app vendor’s EDD time constraint is dlimit = 2.
This means that it must not take more than two hops
for a destination edge server to receive the data from an
initial transit edge server. In Fig. 2, if node 3 is the only
edge server selected as the initial transit edge server,
one possible E2E strategy is to select edges {e3,1, e3,6,
e3,7, e1,2, e1,4, e6,9}. This means that in TE2E there is
T3,1 = T3,6 = T3,7 = T1,2 = T1,4 = T6,9 = 1. Accord-
ingly, we can obtain the 7 destination edge servers’ E2E
latency: d3 = 0, d1 = d6 = d7 = 1, d2 = d4 = d9 = 2.

Given an EDD time constraint dlimit, the app vendor’s
optimization objective is to minimize the EDD cost, which
consists of the part incurred by the C2E transmission(s) and
the E2E transmissions:

minimize CostC2E(S) + CostE2E(TE2E) (5)

while fulfilling the EDD time constraint (4).

3.2 Problem Hardness
Now we prove that the EDD problem is NP-hard by
proving Theorem 1 and Theorem 2.
Theorem 1. The EDD problem is NP .

Proof As there are no more than (|V | + |E| + 2|R|)
constraints in total, any solution to this EDD problem can
be validated in polynomial time by checking whether the
solution satisfies the constraints (1), (2), (3) and (4). Thus,
the EDD problem is NP . �

Theorem 2. The EDD problem is NP-hard.

Proof To prove the NP-hardness of the EDD problem,
we first introduce the classic Rooted Minimum Steiner Tree

(RMST) problem. The RMST problem is well-known to be
NP-hard [25], [26], and can be defined as follows. Given
a graph G = (V,E), a set of destination nodes N in G,
and a root node root of the Steiner tree ST . For each edge
e ∈ E, there is a variable Ye to indicate whether it is in
ST (Ye = 1) or not (Ye = 0). Moreover, each edge e has
its own weight We. Function path(n, root, ST) is used to
obtain the possible path from root to the node n through
the edges in E. If node n is the root of ST or not in ST ,
there should not exist a path from root to n, which means
path(n, root, ST) = null. The formulation is presented
below:

object : min
∑
Ye · We (6a)

s.t. : Ye ∈ {0, 1} (6b)
path(n, root, ST) 6= null, ∀n ∈ N (6c)

Now we prove that the RMST problem can be re-
duced to an instance of the EDD problem. The reduc-
tion can be done as follows: 1) add the cloud server as
a node r into G to obtain a new graph G′; 2) add the
edges from node r to every other node in G′; 3) relax
the EDD time constraint dlimit to |V |. Given any instance
RMST (G, root, R,W), we can correspondingly construct
EDD(G′, cloud,R,CostC2E , CostE2E) with the reduction
above in polynomial time where |G| = |G′|, while CostC2E

and CostE2E can be treated as the weights of the edges.
By the reduction, the constraint (4) can be relaxed properly.
As the constraint (6b) in the RMST problem only consid-
ers the edge variables, we can convert constraint (1) to
Sv = Tc,v ∈ {0, 1}. By combining this with constraint (2),
constraint (6b) is fulfilled. Additionally, both constraints (3)
and (6c) ensure that all the nodes in R are connected to root.
Moreover, objective (6a) of RMST is to obtain the minimum
total weight of ST , which can be projected to (5) by mapping
the CostC2E and CostE2E to the weights of edges.

In conclusion, any solution Y always satisfies the RMST
problem if Y satisfies the reduced EDD problem. Therefore,
the EDD problem is reducible from the RMST problem and
it is thus NP-hard. �

4 EDGE DATA DISTRIBUTION STRATEGY FORMU-
LATION

We first present an optimization approach, namely EDD-
IP, to exactly solve the EDD problem formulated in the
previous section. Then, we introduce an O(k)-approximate
approach named EDD-A to solve large-scale EDD problems
approximately, followed by a theoretical analysis of its per-
formance.

4.1 Optimization Approach

The solution to the EDD problem must minimize the EDD
cost while fulfilling the app vendor’s EDD time constraint
Dlimit. Thus, the EDD problem can be modeled as a con-
strained optimization problem (COP).

Following the methodology of the proof of Theorem 3,
we use similar techniques to convert the EDD problem to
an integer program model that can be solved by integer

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 5

(a) EDD-IP solution (b) CMST solution (c) EDD-A solution

Fig. 3. EDD solutions
programming solvers, such as IBM CPLEX Optimizer5 and
Gurobi6. Accordingly, this optimal approach is named EDD-
IP.

Firstly, we add the cloud c into V , then add the edges
from c to each edge server v ∈ V \ c in graph G. Then,
the C2E strategy S =< s1, ..., sn > can be formulated by
selecting edges in graph G, i.e., Tc =< Tc,1, Tc,2, ..., Tc,n >,
where Tc,v (v ∈ V \ c) denotes whether the data is
transmitted from the cloud c to v through the new edge
ec,v . Here, we combine the C2E strategy S and the E2E
strategy TE2E as the data distribution strategy T = <
Tc,1, ..., Tc,n, T1,1, ..., Tn,n >, where variable Tu,v ∈ {0, 1}
(u ∈ {c}∪[1, n], v ∈ [1, n]) indicates whether edge eu,v is in-
cluded in T . Secondly, we implement the definition of depth
in the Steiner tree to represent the order of transmitting
the data. Denote Dv as the depth of edge server v, where
Dv = dv + 1 and Dc = 0. Then, the EDD time constraint
dlimit can be defined as a depth limit Dlimit = dlimit + 1.

After this, we define the variable for each edge server v:

Iv =

{
0 if v is visited during the EDD process
1 if v is NOT visited during the EDD process

(7)

Now, the COP model for the EDD problem is formally
expressed as follows:

min γ
∑
v∈V \c

Tc,v +
∑∑

v,u∈V \c
Tu,v (8)

Iv = 1,∀v ∈ R (9)∑
u∈V
Tu,v = Iv,∀u, v ∈ V \ c (10)

Tu,v ≤ Iu · Iv,∀u, v ∈ V (11)

Iv, Tu,v ∈ {0, 1},∀u, v ∈ V (12)

Dc = 0 (13)

Dc <Dv ≤ Dlimit,∀v ∈ V \ c (14)

Dv −Du = 1,∀u, v ∈ V, Tu,v = 1 (15)

where γ is the ratio that generically indicates the ratio of the
C2E transmission unit cost over the E2E transmission unit
cost, as introduced in Section 3.1.
Example 3. Fig. 3(a) shows the EDD strategy formulated by

EDD-IP with EDD time constraint dlimit = 1. The C2E
strategy specifies that nodes 6 and 4 are selected as the

5. https://www.ibm.com/analytics/cplex-optimizer
6. http://www.gurobi.com/

initial transit edge server. They receive the data from the
cloud and then transmit it to all other destination edge
servers. The EDD strategy selects edges {ec,4, ec,6, e6,3,
e6,7, e6,9, e4,1, e4,2} for data transmissions. The total cost
is 2γ + 6 times of a 1-hop E2E transmission cost.

Theorem 3. EDD-IP computes an optimal solution to the
EDD problem.

Proof Let CC2E and CE2E denote the unit costs of
C2E data transmission and E2E data transmission, respec-
tively. This way, objective (5) can be converted to CC2E ·∑
v∈V \c Tc,v + CE2E ·

∑∑
u,v∈V \cTu,v , with CostC2E(S)

calculated by CC2E ·
∑
v∈V \c Tc,v and CostE2E(TE2E) cal-

culated by CE2E ·
∑∑

u,v∈V \cTu,v . Denote γ = CC2E

CE2E
,

objective (5) can be presented as CE2E · (γ
∑
v∈V \c Tc,v +∑∑

u,v∈V \cTu,v). Since CE2E is a constant, objective (5) can
be transformed to objective (8) by removing CE2E .

There are two situations in Eq. (10): 1) if v is not visited,
any edge pointing to v will not be selected in the C2E
strategy; 2) if v is visited, there must be exactly selected one
edge that points to v. Constraints (9) and (10) ensure that all
the destination edge servers inR are visited during the EDD
process. Constraint (11) ensures that, if edge eu,v is selected,
both edge servers u and v must be selected. Otherwise, eu,v
can never be included into the E2E strategy.

Thus, constraints (9), (10), (11) and (12) collectively en-
sure that every destination edge server v ∈ R is connected
to the cloud server in G, fulfilling (3) in Section 3.1.

Constraint (13) makes sure that the EDD process always
starts from the cloud. In addition, constraint (14) ensures
that the EDD time constraint is fulfilled, while constraint
(15) guarantee the the depth of u is always one less than
that of v, if edge {u, v} exists.

Thus, EDD-IP computes an optimal solution to the EDD
problem. �

As discussed in Section 3.1, specific cost models and
latency models can be easily integrated to calculate the
actual EDD costs and EDD time consumption in real-world
EDD scenarios. For example, given a cost function cost(u, v)
that represents the transmission cost between u and v, the
total EDD cost can be calculated by

∑
v∈V \c Tc,v ·cost(c, v)+∑∑

u,v∈V \cTu,v · cost(u, v). Given a specific latency con-
straint Llimit and a latency function L(u, v) that represents
the latency between u and v via eu,v , constraints (13) (14)
and (15) can be replaced by (16), (17) and (18) respectively:

LT (c, c) = 0 (16)

L(c, v) ≤ LT (c, v) ≤ Llimit,∀v ∈ V \ c (17)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 6

LT (c, v)− LT (c, u) = L(u, v),∀u, v ∈ V, Tu,v = 1 (18)

where LT (c, v) represents the total transmission latency
between c and v via the path from c to v indicated by T .

4.2 Approximation Algorithm
As proven in Section 3.2, the EDD problem is NP-hard.
Finding the optimal solution is intractable in large-scale
EDD scenarios. To address this issue, this section presents
an approximation approach, named EDD-A, for finding ap-
proximate solutions to large-scale EDD problems efficiently.
The approximation ratio of EDD-A is O(k), which means
that the ratio of the EDD cost incurred by EDD-A and that
incurred by the optimal solution is O(k) in the worst case,
where k is a constant.

Similar to the techniques used in Section 4.1, EDD-A is
an approach designed based on the concept of Steiner tree
by adding the cloud server c and the corresponding edges
into G. There are two parts in EDD-A: 1) calculating an ap-
proximate minimum Steiner tree Tms based on a simple but
fast algorithm presented in Algorithm 6 (CMST); 2) splicing
and pruning Tms with the latency constraint H = Dlimit,
based on Algorithm 2.

We first introduce our CMST (Connectivity-oriented
Minimum Steiner Tree) algorithm for calculating the ap-
proximation to the minimum Steiner tree. CMST is based on
the algorithm proposed in [27] which is simple but effective.
In our CMST algorithm, it first collects the nodes closest
(with the lowest cost) to Tms as a set, then selects the one
with the highest connectivity (Lines 3-4 in Algorithm 1).

Algorithm 1 CMST Algorithm
1: Input: G(V,E), R, c
2: Output: A minimum Steiner Tree Tms
3: initialize a tree Tms based on G

⋃
{cloud}, only consist-

ing of the node {cloud};
4: return Tms if all the destination edge servers in R have

been added into Tms, else go to step 3;
5: find a set of edge servers C that are closest to Tms, while
C
⋂
Tms = ∅

6: find edge server v with the highest connectivity in C ,
then add v to Tms;

7: go to step 2.

Example 4. Take Fig. 2 as an example. By applying CMST,
edges {ec,1, e1,2, e1,3, e1,4, e3,6, e3,7, e6,9} are added
into Tms, as shown in Fig. 3(b). The total cost of Tms
is γ + 6. Let us assume that all E2E transmissions must
be finished within one hop (dlimit = 1) to facilitate the
following discussion. This means H = 2. Thus, Nodes
6, 7 and 9 violate this limit. Thus, the EDD-A algorithm
needs to fix such violations.

Algorithm 2 presents the pseudo code of EDD-A. It takes
the minimum Steiner tree Tms returned by Algorithm 1 as
input. Firstly, it initializes Tedd−a by Tms and sets the parent
of cloud server c as null (Line 3). Then, it initializes parents[]
for recording the parent of each node in Tedd−a, d[] for
recording the transmission latency between c and each node
in Tedd−a, and costs[] for recording the transmission costs
between c and each node in Tedd−a. After that, the algorithm

visits each node v that violates the latency limitH and finds
the minimum-cost path [c− s− v]. If path [c− s− v] helps
v eliminate the violation, EDD-A adds path [c − s − v] into
Tedd−a and updates parents[], d[] and costs[] accordingly
(Lines 11-17). If the latency limit is still violated, i.e., the sum
of latency ∆d[s, v] and edge server s’s latency d[s] exceeds
the latency limit H, v will be connected to c directly (Lines
19-21). Next, EDD-A visits each child u of v to update the
shortest paths and the parents for both u and v (Lines 23-33).
Finally, the algorithm prunes the unused edges in Tedd−a
(Line 35), and returns Tedd−a as the final result.

Algorithm 2 EDD-A Algorithm
1: Input: G(V,E), R, c, H, Tms
2: Output: A low-cost Steiner Tree Tedd−a within H
3: Tedd−a ← Tms, parents[c]← null
4: For each edge server v ∈ G, set the parent of v in Tedd−a

as parents[v], the data retrieval latency of edge server v
in Tedd−a as d[v] where d[c]← 0, and the cost from v to
c in Tedd−a as costs[v]

5: for each edge server v in Tedd−a in DFS order do
6: if v /∈ R or d[v] ≤ H then
7: continue
8: end if
9: find the edge server s ∈ {Tedd−a − c} that minimizes

the cost of path [c− s− v].
10: if ∆d[s, v] + d[s] ≤ H then
11: update parents[] and costs[] for edge servers on

path [c − s − v], add path [s − v] into Tedd−a and
update d[]

12: for each edge server u ∈ R do
13: if costs[u] > costs[v] + cost(v, u) then
14: costs[u]← costs[v] + cost(v, u)
15: add path (v, u) into Tedd−a and update d[]
16: end if
17: end for
18: else
19: parents[v]← c
20: costs[v]← cost(c, v)
21: update d[]
22: end if
23: for each child u of v ∈ Tedd−a do
24: if costs[u] > costs[v] + cost(v, u) then
25: parents[u]← v
26: costs[u]← costs[v] + cost(v, u)
27: end if
28: if costs[v] > costs[u] + cost(u, v) then
29: parents[v]← u
30: costs[v]← costs[u] + cost(u, v)
31: end if
32: update d[]
33: end for
34: end for
35: prune unused edges in Tedd−a based on parents[]
36: return Tedd−a

Example 5. Continuing with Example 2, EDD-A selects node
6 to connect with the cloud node c directly by adding
edge ec,6. Now, node 9, i.e., the child of node 6 in Tedd−a,
can obtain the data via 1 hop. After this, EDD-A visits

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 7

node 7 and finds the shortest path [c − 6 − 7]. Thus,
EDD-A adds edge e6,7 into Tedd−a. After running EDD-
A, the result is presented in Fig. 3(c). The total cost now
is 2γ+5, and the EDD time constraint,H = 1, is fulfilled.
In this case, the EDD strategy formulated by by EDD-A
has the same cost as EDD-IP.

In the EDD-A algorithm, the computational overhead
of finding the minimum Steiner tree Tms is O(|R|2). It
takes at most O(|V |2) to read each edge server in Tedd−a
in DFS order and obtain the shortest path by the Dijkstra
algorithm. Thus, the total computational overhead of EDD-
A is O(|R|2 + |V |3) = O(|V |3) = O(n3).

In the rest of this section, we prove that EDD-A is
an O(k)-approximation algorithm based on the following
theorems and lemmas, where k is a constant.
Theorem 4. CMST is a 2-approximation algorithm to calcu-

lating the Steiner minimum tree.

Proof The original idea of CMST is the same as the
algorithm proposed in [27]. The difference between them is
the comparison in the connectivity between the nodes that
have the same cost. This difference does not impact CMST’s
approximation ratio. Thus, CMST is a 2-approximation algo-
rithm, the same as the approximation algorithm presented
in [27]. �

Let us assume a tree Tce that consists of all the edge
servers in Tms and the root c with the edges [c, v], ∀v ∈
{Tms− c}. Denote cost(Tce), cost(Tms) and cost(Tedd−a) as
the total cost of Tce, Tms and Tedd−a accordingly.
Theorem 5. For tree Tedd−a produced by EDD-A, the cost of

Tedd−a is 2γ
H + 1 times of the cost of Tms at most.

Proof Let v0 = c, and vi be the ith edge server,
where i ∈ 1, ...m, that introduces additional paths during
the DFS traversal. Once the shortest path [c − vi], which
is edge [c, vi], is added into Tedd−a, the cost is exactly
costTce

(c, vi) = γ. Moreover, if the path from c to edge
server vi contains edge [c, vi−1] after updating the tree
Tedd−a, we can obtain costTedd−a

(c, vi) ≤ costTce
(c, vi−1) +

costTms
(vi−1, vi). However, if the direct path from c to vi is

added into Tedd−a, it means that d[vi] exceeds H, and there
is costTedd−a

(c, vi) ≥ γ +H = (1 + H
γ) · costTce

(c, vi). Thus,
we can obtain the following equation:

(1 +
H
γ

) · costTce(c, vi) ≤ costTedd−a
(c, vi) ≤

costTce(c, vi−1) + costTms(vi−1, vi)
(19)

Summing (19) for all the m edge servers, we can obtain:

(1 +
H
γ

)
m∑
i=1

costTce
(c, vi) ≤

m∑
i=1

(costTce
(c, vi−1) + costTms

(vi−1, vi, Tms))

(20)

Because of
∑m
i=1 costTce

(c, vi) ≥
∑m−1
i=1 costTce

(c, vi),
there is:

H
γ
cost(Tce) ≤

m∑
i=1

costTms
(vi−1, vi) (21)

where cost(Tce) =
∑m
i=1 costTce(c, vi).

For each edge server v changing the path in Tedd−a
but not adding path [c, v], the update cost, costupdate(v),
must be less than costTce

(c, v). Thus, the total cost after
constructing Tms cannot be more than

∑m
i=1 costTce

(c, vi).
Based on the DFS traversal, each edge is visited twice.

Thus, the total cost of costTms(vi−1, vi) is no more than
twice of cost(Tms):

m∑
i=1

costTms(vi−1, vi) ≤ 2 · cost(Tms) (22)

Thus, the total cost of Tedd−a should be bounded by:

cost(Tedd−a) ≤ cost(Tce)+cost(Tms) ≤ (
2γ

H
+1)·cost(Tms)

(23)
�

Theorem 6. EDD-A is an O(k)-approximation algorithm.

Proof As discussed in Theorem 4, the cost of Tms is at
most twice the cost of the minimum Steiner tree T . However,
the cost of the optimal solution of the EDD problem, OPT ,
cannot be less than that of the minimum Steiner tree. Thus,
we can obtain:
cost(Tedd−a)

cost(TOPT)
≤ cost(Tedd−a)

cost(T)
≤ 2(

2γ

H
+ 1) =

4γ

H
+ 2 (24)

From (24), the approximation ratio of EDD-A is 2 + 4γ
H .

Let k = 2 + 4γ
H . As both γ and H are constant inputs, k is a

constant. Thus, EDD-A is an O(k)-approximation algorithm
where k is a constant. �

Similar to EDD-IP, specific cost and latency models can
also be easily integrated into the EDD-A algorithm. Let
{γ1, γ2, ..., γn} denote the C2E costs, {α1,1, α1,2, ..., αn,n}
as the E2E costs, and L(u, v) as the latency model. Cost
functions cost(c, v) and cost(u, v) can be replaced by γv and
αu,v , respectively, in Algorithm 2, and the latency function
∆d[s, v] can be calculated by L(u, v). Now we prove that
EDD-A is still an O(k)-approximation algorithm in real-
world EDD scenarios with specific cost and latency models.
Theorem 7. EDD-A is an O(k)-approximation algorithm

with specific cost and latency models.

Proof We denote γmax = {γ1, γ2, ..., γn} as the maximum
C2E cost, αmin = {α1,1, α1,2, ..., αn,n} as the minimum E2E
cost, LmaxE2E as the maximum E2E latency and LminC2E as the
minimum C2E latency. In this case, a specific latency limit
Llimit is given by the app vendor to replace H. Let v0 = c,
and vi (i ∈ {1, ...m}) be the ith edge server that introduced
additional paths during the DFS traversal in Algorithm 2.
Once edge [c, vi], is added into Tedd−a, the cost is exactly
costTce

(c, vi) = γi. If the path from c to edge server vi
contains edge [c, vi−1] after updating tree Tedd−a, we can
obtain:

costTedd−a
(c, vi) ≤ costTce

(c, vi−1) + costTedd−a
(vi−1, vi)

(25)
However, if the direct path from c to vi is in Tedd−a, it means
d[i] > Llimit. Given αmin and LmaxE2E , the ratio of cost over
latency for any E2E edge is more than or equals to αmin

Lmax
E2E

.
Denote H′ = αmin

Lmax
E2E

(Llimit − LminC2E), we can obtain:

costTedd−a
(c, vi) ≥ γi +H′ = (1 +

H′

γi
) · costTce

(c, vi)

(26)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 8

Combing (26) and (25), (27) stands:

(1 +
H′

γi
) · costTce

(c, vi) ≤

costTce
(c, vi−1) + costTms

(vi−1, vi)

(27)

Summing (27) for all the m edge servers, we can obtain:
m∑
i=1

(1 +
H′

γi
)costTce

(c, vi)

≤
m∑
i=1

(costTce(c, vi−1) + costTms(vi−1, vi))

(28)

Since γi is always lower than or equals to γmax, we can
obtain:

(1 +
H′

γmax
)
m∑
i=1

costTce(c, vi) ≤
m∑
i=1

(1 +
H′

γi
)costTce(c, vi)

(29)
Because of

∑m
i=1 costTce(c, vi) ≥

∑m−1
i=1 costTce(c, vi)

and (29), there is:

H′

γmax
cost(Tce) ≤

m∑
i=1

costTce
(vi−1, vi) (30)

where cost(Tce) =
∑m
i=1 costTce(c, vi).

Based on Theorem 4, we can obtain k = 2 + 4γmax

H′ . The
corresponding process is omitted here because it is the same
as in Theorems 5 and 6. Thus, Theorem 7 holds. �

5 EXPERIMENTAL EVALUATION

We have experimentally evaluated the performance of EDD-
IP and EDD-A. All experiments were conducted on a
Windows-10 machine equipped with Intel Core i7-8550 pro-
cessor (8 CPUs, 1.80GHz) and 8GB RAM.

5.1 Simulation Settings
5.1.1 Approaches in Comparison
In our experiments, we evaluate the performance of EDD-IP
and EDD-A against three representative approaches:

• EDD-IP: This approach finds the optimal EDD solu-
tions by solving the COP defined in Section 4.1 with
IBM’s CPLEX CP Optimizer.

• EDD-A: This approach finds near-optimal EDD solu-
tions with Algorithm 2 described in Section 4.2.

• Minimum-cost Multi-cast Routing (MMR) [28]: This
approach deals with the data routing problem in
communication networks. It is also based on Steiner
tree and presented as Algorithm 1 in [28].

• Greedy Connectivity (GC): In this approach, we define
the connectivity of edge server as the number of edge
servers in R that have yet to receive the data. This
approach always selects the edge servers with the
highest connectivity to receive data from the cloud,
which will then transmit the data to other destination
edge servers in R, until all the destination edge
servers in R can receive the data within the EDD
time constraint dlimit.

• Random: This approach randomly selects edge
servers to receive the data from the cloud, which then

transmit the data to other destination edge servers in
R , one after another, until all the destination edge
servers in R receive the data within the EDD time
constraint dlimit.

5.1.2 Experiment data
Two sets of experiments are conducted on a widely-used
EUA dataset 7 [29]. This dataset contains the geographical
locations of 1,464 real-world base stations in Melbourne,
Australia. As discussed in Section 3.1, γ is dependent on
specific edge infrastructure providers. In the experiments,
we set γ = 20. The links between edge servers are randomly
generated and to ensure a connected graph, based on the
widely-used Erdös Rényi random graph model [30].

5.1.3 Experiment parameters
To simulate different EDD scenarios, four parameters that
impact the performance of EDD-IP and EDD-A are varied
in the experiments.

• The number of edge servers (n) inG. This parameter
impacts the size of graph G.

• Edge density (density). We define the edge density
with density = |E|/n. This parameter impacts the
density of graph G.

• Ratio of destination edge servers (ratio). This ratio
is calculated by ratio = |R|/n. It determines the
number of destination edge servers in graph G.

• EDD time constraint (limit). Measured by the num-
ber of hops, this parameter indicates the app ven-
dor’s preference for the time taken by the EDD
process.

Table 2 summarizes the parameter settings. There are
two main sets of experiments, Set #1 of small-scale ex-
periments and Set #2 of large-scale experiments. All five
approaches are implemented in Set #1, while EDD-IP is
not implemented in Set #2, because EDD-IP cannot find an
optimal solution to the NP-hard EDD problem in Set #2
within a reasonable amount of time. Every time the value of
a parameter varies, the experiment is repeated for 100 times
and the results are averaged. The last two columns in Table
2 are the number of variables (3n + dn + 2), consisting of
I (n + 1), D (n + 1) and T (dn + n), and the number of
constraints (4n+ 2dn+ ratio ·n+ 1) based on (9), (10), (11),
(13), (14) and (15) in the EDD-IP model presented in Section
4.1.

5.1.4 Performance Metrics
The objective of the EDD problem is to minimize the EDD
cost. Thus, this cost is a significant metric for evaluating
the effectiveness of EDD-IP and EDD-A. In addition, as
discussed in Section 1, the applications in the edge comput-
ing environment are latency-sensitive. It must not take too
much time to find an EDD solution. Thus, the computational
overhead is selected to evaluate the efficiency of EDD-IP and
EDD-A.

• EDD cost (cost), calculated by (5), the lower the
better.

7. https://github.com/swinedge/eua-dataset

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 9

TABLE 2
Parameter Settings

n d ratio limit |variables| in EDD-IP |constraints| in EDD-IP
Set #1.1 10, 15, ..., 35 1.0 0.6 2 42, 62, 82, 107, 137, 142 67, 100, 133, 166, 199, 232
Set #1.2 20 1.0, 1.2, ..., 2.0 0.6 2 82, 86, 90, 94, 98, 102 133, 141, 149, 157, 165, 173
Set #1.3 20 1.0 0.2, 0.4, ..., 1.0 2 82 125, 129, 133, 137, 141
Set #1.4 20 1.0 0.6 1, 2, ..., 5 82 133
Set #2.1 200, 300, ..., 700 2.0 0.6 2 – –
Set #2.2 200 2.0, 2.4, ..., 4.0 0.6 2 – –
Set #2.3 200 2.0 0.2, 0.4, ..., 1.0 2 – –
Set #2.4 200 2.0 0.6 1, 2, ..., 5 – –

• Computational overhead (time), measured by the
time taken by an approach to find the solution, the
lower the better.

5.2 Experimental Results

The results of the experiments are shown in Fig. 4, Fig. 5,
Fig. 6 and Fig. 7, corresponding to the effectiveness and
efficiency evaluation in Set #1 and Set #2.

5.2.1 Experiment Set #1

Through comparison with MMR, GC and random, Fig. 4
demonstrates the effectiveness of EDD-IP and EDD-A in
experiment Set #1 and the impacts of the four parameters. It
can be seen that the EDD strategies formulated by EDD-
IP can distribute the data at the lowest cost, followed by
EDD-A. Across the four subsets of experiments, the average
advantages of EDD-IP are 18.22% over EDD-A, 28.01% over
MMR, 32.54% over GC and 48.34% over Random. The av-
erage advantages of EDD-A are 11.96% over MMR, 17.62%
over GC and 36.87% over Random.

Effectiveness. Fig. 4(a) shows the effectiveness results
of experiment Set #1.1. When the number of edge servers
n increases from 10 to 35, the costs of the EDD strategies
formulated by all five approaches increase, from 41.2 to
134.8 by 227.18% for EDD-IP, from 59.8 to 170.6 by 185.28%
for EDD-A, from 59.8 to 193.2 by 223.08% for MMR, from
61.6 to 201.2 by 226.62% by GC, and from 64.6 to 256.8 by
297.52% for Random. Of all the five approaches, EDD-A
has the lowest overall increase.

Fig. 4(b) shows the results of experiment Set #1.2. Again,
EDD-IP and EDD-A outperform other approaches with
significant margins. The average advantages of EDD-IP are
21.38% over EDD-A, 31.97% over MMR, 40.43% over GC
and 53.17% over Random, while the numbers for EDD-A
are 13.46% over MMR, 24.23% over GC and 40.44% over
Random. As the edge density d increases from 1.0 to 2.0, the
costs decrease for all the approaches. This is because, with
the number of edge servers n fixed, a higher edge density d
gives destination edge servers higher chances to receive the
data within the EDD time constraint. This reduces the cost
incurred by C2E because few destination edge servers have
to receive the data directly from the cloud.

Fig. 4(c) shows the effectiveness results of experiment
Set #1.3, where EDD-IP and EDD-A achieve the best and
second best performance, respectively. The advantage of

EDD-IP over EDD-A is 16.09%. The advantages of EDD-
A over MMR, GC and Random are 13.79%, 17.24% and
44.77%, respectively. As ratio increases from 0.2 to 1.0, all
five approaches need more costs to distribute the data. This
is expected because a larger number of destination edge
servers will certainly incur higher costs of C2E and/or E2E
transmissions.

Fig. 4(d) shows the results of experiment Set #1.4. EDD-
IP outperforms EDD-A by 15.56%, while EDD-A outper-
forms MMR, GC and Random by 11.27%, 11.79% and
28.20%, respectively. As limit increases, the costs of all five
approaches decrease. The main reason is that a less stringent
EDD time constraint relies less on C2E transmissions which
are faster but more expensive than E2E transmissions.

Efficiency. The efficiency results of Set #1 is presented
in Fig. 5. As demonstrated, EDD-A is much more computa-
tionally expensive than all other approaches. This validates
the NP-hardness of the EDD problem - excessive compu-
tational overheads are inevitable for finding the optimal
solutions to large-scale EDD problems. As demonstrated
in Fig. 5(a), in largest-scale EDD scenarios with 700 edge
servers, EDD-IP takes 39.96 seconds to find the optimal
solution in Set #1.1. Moreover, EDD-IP takes up to 71.03
seconds in Set #1.2. When the edge density increases from
1.0 to 2.0, the size of the solution space for EDD-IP to explore
becomes larger quickly. Thus, its computational overhead
increases significantly with the increase in edge density.
Similar phenomena are observed in Fig. 5(c). Interestingly,
the computational overhead of EDD-IP in Fig. 5(d) increases
when the EDD time constraint limit increases from 1 to 3,
then decreases after that. With limit > 3, EDD-IP can find
the optimal solution that requires as few as 1 initial transit
edge servers. This eases the EDD-IP’s pain in inspecting
the possible solutions that require multiple initial transit
edge servers. As a result, EDD-IP’s computational overhead
decreases.

Compared with EDD-IP, the computational overheads
of EDD-A stay at a very low level, taking less than 8.06
seconds in average to find a solution in the entire Set #1. To
further evaluate the performance of EDD-A, we present and
discuss the results of Set #2, i.e., large-scale experiments, in
Section 5.2.2.

5.2.2 Experiment Set #2

Effectiveness. Fig. 6 demonstrates the EDD costs achieved
by EDD-A, MMR, GC and Random in experiment Set #2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 10

10 15 20 25 30 35
Number of Edge Servers

50

100

150

200

250
Co

st
EDD-IP
EDD-A
MMR
GC
Random

(a) cost vs. n (Set #1.1)

1 1.2 1.4 1.6 1.8 2.0
Edge Density

50

75

100

125

150

Co
st

(b) cost vs. d (Set #1.2)

0.2 0.4 0.6 0.8 1.0
Ratio of Destiny Edge Servers

0

50

100

150

200

250

Co
st

(c) cost vs. ratio (Set #1.3)

1 2 3 4 5
Delay Limit (hops)

0

50

100

150

200

Co
st

(d) cost vs. limit (Set #1.4)

Fig. 4. Effectiveness performance in Set #1

10 15 20 25 30 35
Number of Edge Servers

0

10

20

30

40

Co
m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

EDD-IP
EDD-A
MMR
GC
Random

(a) time vs. n (Set #1.1)

1.0 1.2 1.4 1.6 1.8 2.0
Edge Density

0

20

40

60

80
Co

m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

(b) time vs. density (Set #1.2)

0.2 0.4 0.6 0.8 1.0
Ratio of Destiny Edge Servers

0

1

2

3

Co
m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

(c) time vs. ratio (Set #1.3)

1 2 3 4 5
Delay Limit (hops)

0.00

0.25

0.50

0.75

1.00

Co
m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

(d) time vs. limit (Set #1.4)

Fig. 5. Efficiency performance in Set #1

200 300 400 500 600 700
Number of Edge Servers

1000

2000

3000

4000

5000

6000

Co
st

EDD-A
MMR
GC
Random

(a) cost vs. n (Set #2.1)

2 2.4 2.8 3.2 3.6 4
Edge density

400

600

800

1000

1200

Co
st

(b) cost vs. density (Set #2.2)

0.2 0.4 0.6 0.8 1.0
Ratio of Destiny Edge Servers

500

1000

1500

2000

Co
st

(c) cost vs. ratio (Set #2.3)

1 2 3 4 5
Delay Limit (hops)

0

500

1000

1500

2000

Co
st

(d) cost vs. limit (Set #2.4)

Fig. 6. Effectiveness performance in Set #2

200 300 400 500 600 700
Number of Edge Servers

0.0

0.2

0.4

0.6

Co
m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

EDD-A
MMR
GC
Random

(a) time vs. n (Set #2.1)

2.0 2.5 3.0 3.5 4.0
Edge density

0.000

0.005

0.010

0.015

0.020

0.025

Co
m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

(b) time vs. density (Set #2.2)

0.2 0.4 0.6 0.8 1.0
Ratio of Destiny Edge Servers

0.00

0.02

0.04

0.06

Co
m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

(c) time vs. ratio (Set #2.3)

1 2 3 4 5
Delay Limit (hops)

0.00

0.01

0.02

0.03

Co
m
pu

ta
tio

n
Ov

er
he

ad
 (s

)

(d) time vs. limit (Set #2.4)

Fig. 7. Efficiency performance in Set #2

Overall, their performance in achieving a low cost are
similar to Fig. 4 with the same reasons for their performance
changes as discussed in Section 5.2.1. In particular, the
performance of Random is much worse than others in large-
scale EDD scenarios. In Fig. 6(a), the costs increase from
617.4 to 2196.2 by 255.72% for EDD-A, from 655 to 2341.6
by 257.50% for MMR, from 724.4 to 2559.6 by 253.34% for
GC, and from 1138.8 to 6028.8 by 429.40% for Random. Fig.
6(b) shows that the advantages of EDD-A are 10.68% over
MMR, 14.70% over GC and 42.67% by Random on average
in experiment Set #2.2 where the edge density d increases

from 2.0 to 4.0. The performance differences between the
four approaches demonstrated in Fig. 6(c) and Fig. 6(d) are
similar to those demonstrated in Fig. 4(c) and Fig. 6(d).
Thus, it is not discussed in detail here.

Efficiency. Fig. 7 depicts the efficiency of each approach
in experiment Set #2. Even in such large-scale experiments,
EDD-A can find a solution very fast, taking only a maxi-
mum of 0.002 second. It has the highest efficiency as same
as Random in all four approaches. Specifically, compared
with MMR, it takes an average of 0.29 seconds in Set #2.1,
0.02 seconds in Set #2.2, 0.04 seconds in Set #2.3 and 0.03

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 11

seconds in Set #2.4 to find a solution.

5.2.3 Conclusion
The experimental results demonstrated and discussed above
indicate that EDD-IP is suitable for solving EDD problems of
reasonable sizes. To solve large-scale EDD problems, EDD-
A is more practical for its high efficiency in finding solutions
very close to the optimal ones.

5.3 Threats to Validity
5.3.1 Construct Validity
The main threats to the construct validity are threefold:
1) the comparison with MMR, GC and Random may not
suffice to comprehensively evaluate EDD-IP and EDD-A;
2) the dataset used in the experiments may not represent
all real-world scenarios exactly; 3) the performance of our
approaches in real-world EDD scenarios may not be exactly
the same as in our experiments. To minimize these threats,
we varied four setting parameters in both sets of experi-
ments, as summarized in Table 2, to simulate a broad range
of various EDD scenarios. This has allowed us to evaluate
our approaches more comprehensively. Moreover, we eval-
uated EDD-IP and EDD-A by not only the comparison with
three representative approaches but also the demonstration
of how the changes in the setting parameters impacted their
performance. In this way, the experimental results can be
used as guidelines on the estimation of the performance of
our approaches in real-world applications.

5.3.2 External Validity
The main threat to the external validity of the evaluation
is whether EDD-IP and EDD-A can be generalized and
applied in other application scenarios in the edge com-
puting environment. To tackle this threat, we modeled the
problem and evaluated the performance of EDD-IP and
EDD-A in a generic manner - using the number of hops
to represent the data transmission latency between edge
servers and a ratio γ to indicate the difference between the
C2E transmission cost and the E2E transmission cost. In this
way, the evaluation results can be interpreted with specific
latency and cost models. We also varied four parameters to
change the size and the complexity of the EDD problem.
This way, the representativeness and comprehensiveness of
the evaluation are ensured. The above mitigates the threat
to external validity.

5.3.3 Conclusion Validity
The lack of statistical tests, e.g., chi-square tests, is the major
threat to conclusion validity in our paper. To compensate
this threat, we have conducted comprehensive and intensive
experiments to cover various scenarios in different size and
complexity. In addition, every time a parameter changes,
we repeat the experiment for 100 times and calculate the
averaged results. This led to a large number of test cases,
which tend to result in a small p-value in the chi-square tests
and lower the practical significance of the test results [31].
For example, in experiment Set #1 and #2, there were a total
of 4,400 runs. This number is not even close to the number
of observation samples that concern Lin et al. in [31]. This
way, the threat to the conclusion validity due to the lack of
statistical tests might be high but is not significant.

6 RELATED WORK

Edge computing was proposed by Cisco in 2012 as a new
computing paradigm. As an extension of cloud computing,
edge computing distributes cloud-like computing resources
and services to the edge of the cloud [24]. Applications,
services and data can now be deployed on edge servers to
offer end-users ultra-low latency. It offers new opportunities
and in the meantime raises many new challenges, e.g.,
edge server placement, edge user allocation, computation
offloading, edge application deployment, edge data caching
and edge data distribution.

Edge server placement is a fundamental problem in
edge computing. In [32], the authors focused on mini-
mizing the cost incurred during edge server deployment.
They designed a cost-effective method that employs integer
programming to help edge infrastructure providers make
decisions on edge server placements. Similarly, Yin et la. [33]
presented a decision support framework based on flexible
placement, namely Tentacle. It aims to minimize the cost
of edge infrastructure deployment while maximizing the
overall system performance.

The edge user allocation problem in the edge computing
environment was first studied in [29]. The authors of [29]
modeled this problem as a variable sized vector bin packing
problem to maximize the number of allocated app users,
while minimizing the cost of hiring edge servers. He et al.
[3] tackled a similar problem in edge user allocation with the
aim to find a near-optimal solution in an efficient manner.
They proposed EUAGame, a game-theoretic approach that
employs a decentralized algorithm to find the Nash equilib-
rium of the game as the solution to the problem.

The problem of computation offloading has been inten-
sively studied with consideration of edge servers’ energy
efficiency, offloading cost and joint service with caching [5],
[32], [34], [35]. Xu et la. [5] proposed an online algorithm,
namely OREO, to efficiently improve offloading perfor-
mance jointly with service caching. OREO was developed
based on Lyapunov optimization to reduce computation
offloading latency while keeping energy consumption low.
In [36], Wang et al. considered the computation offloading
problem in wireless cellular networks with mobile edge
computing. They modeled this problem as a convex prob-
lem and then decomposed it to be solved in a distributed
manner.

Application deployment is another problem in the edge
computing environment that has attracted increasing at-
tention from researchers. A number of approaches have
been proposed to determine optimal deployment strate-
gies with different objectives, such as maximizing the user
or request coverage [37], minimizing the deployment cost
[38], and maximizing the profit [39]. For example, Wang et
al. [38] focused on an application migration problem and
proposed a Markov decision process based framework for
migrating application instances between edge-clouds, with
the aim to minimize the average migration cost and the
transmission cost over time. Mahmud et al. [39] proposed a
new pricing model deploying applications on fog instances.
They also proposed a user compensation method based on
SLA violation. Based on the new pricing model and the
user compensation method, an approach was proposed to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 12

find optimal application deployment strategies that fulfil
resource constraints like processing cores and memory.

In recent years, researchers have started to propose and
investigate new ideas and techniques for data caching in the
edge computing environment. Cao et al. [14] presented an
optimal auction mechanism to maximize service provider’s
revenue based on cache allocation and user valuation re-
ports. They proposed computationally-efficient approaches
to apply the auction mechanism based on data retrieval
and delivery costs. The authors of [11] proposed a caching
system named Cachier for recognition of applications in an
MEC environment. Cachier coordinates the loading balance
between edge servers and the cloud to minimize the data
retrieval latency in a dynamical manner. Breitbach et al.
proposed a data management system for edge computing
environments by decoupling data placement based on task
scheduling [40]. The system adjusted the data replica place-
ment cost to achieve the balance between data management
overhead and execution delay. In [41], the authors focused
on data-intensive IoT workflows in a collaborative edge and
cloud computing environment. They also formulated the
problem as a 1-0 integer programming model and provided
a variant of the intelligent swarm optimization algorithm to
solve the problem.

However, existing research has not considered the fact
that transmitting the data on cloud and edge computing
infrastructure is also a large component in app vendors’
cost structure in the edge computing environment. Without
considering this component, app vendors will not be able
to realistically evaluate the costs of caching their app data
on edge servers. To the best of our knowledge, this paper
makes the first attempt to solve the edge data distribution
(EDD) problem from the app vendor’ perspective in the
edge computing environment. Its aim is to minimize the
cost of distributing data from the cloud to edge server,
with consideration of the costs incurred during C2E and
E2E transmissions, while fulfilling the app vendor’s time
constraint for data distribution.

7 CONCLUSION

In this paper, we formulated the edge data distribution
(EDD) problem in the edge computing environment as a
constrained optimization problem from the app vendor’s
perspective. We proved that the EDD problem is NP-hard.
To solve this problem, we proposed an optimal approach
named EDD-IP based on the Integer Programming tech-
nique to minimize the cost incurred during data distribu-
tion. As the EDD problem is NP-hard, we also provided
an approximation approach named EDD-A for finding ap-
proximate solutions to large-scale EDD problems efficiently.
Extensive experiments were conducted on a widely-used
real-world dataset to evaluate the performance of the pro-
posed approaches. The results showed that our approaches
significantly outperformed the representative approaches in
various EDD scenarios.

This research has established the foundation for the EDD
problem and opened up a number of future research direc-
tions. In our future work, we will consider the robustness
and fault-tolerance of EDD strategies, and more dynamic
and heterogeneous aspects of edge servers.

ACKNOWLEDGEMENT

This research is partially funded by Australian Re-
search Council Discovery Projects (No. DP170101932 and
DP180100212). Grundy is supported by Laureate Fellowship
FL190100035.

REFERENCES

[1] A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten,
H. Tullberg, M. A. Uusitalo, and M. Schellman, “The foundation
of the mobile and wireless communications system for 2020 and
beyond: Challenges, enablers and technology solutions,” in IEEE
77th Vehicular Technology Conference, 2013, pp. 1–5.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[3] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, pp. 515–529, 2019.

[4] T. X. Tran, M.-P. Hosseini, and D. Pompili, “Mobile edge com-
puting: Recent efforts and five key research directions,” IEEE
COMSOC MMTC Commun.-Frontiers, vol. 12, no. 4, pp. 29–33,
2017.

[5] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions, 2018, pp. 207–215.

[6] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[7] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,” IEEE
Transactions on Wireless Communications, vol. 16, no. 3, pp. 1397–
1411, 2017.

[9] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, “Mobile edge com-
puting empowered energy efficient task offloading in 5g,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6398–6409,
2018.

[10] J. Zhao, W. Gao, Y. Wang, and G. Cao, “Delay-constrained caching
in cognitive radio networks,” IEEE Transactions on Mobile Comput-
ing, vol. 15, no. 3, pp. 627–640, 2015.

[11] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in 37th IEEE Interna-
tional Conference onDistributed Computing Systems, 2017, pp. 276–
286.

[12] X. Zhang and Q. Zhu, “Hierarchical caching for statistical qos
guaranteed multimedia transmissions over 5g edge computing
mobile wireless networks,” IEEE Wireless Communications, vol. 25,
no. 3, pp. 12–20, 2018.

[13] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5g networks with mobile edge computing,”
IEEE Wireless Communications, vol. 25, no. 3, pp. 80–87, 2018.

[14] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism
for mobile edge caching,” in 38th IEEE International Conference on
Distributed Computing Systems, 2018, pp. 388–399.

[15] R. Halalai, P. Felber, A.-M. Kermarrec, and F. Taı̈ani, “Agar: A
caching system for erasure-coded data,” in 37th IEEE International
Conference onDistributed Computing Systems, 2017, pp. 23–33.

[16] Y. Wang, B. Veeravalli, and C.-K. Tham, “On data staging algo-
rithms for shared data accesses in clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 4, pp. 825–838, 2012.

[17] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data
processing and sharing for hybrid cloud-edge analytics,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 9, pp.
2004–2017, 2018.

[18] Y. Liu, M. Dong, K. Ota, and A. Liu, “Activetrust: Secure and
trustable routing in wireless sensor networks,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 9, pp. 2013–2027,
2016.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 13

[19] K. Gai, L. Qiu, M. Chen, H. Zhao, and M. Qiu, “Sa-east: security-
aware efficient data transmission for its in mobile heterogeneous
cloud computing,” ACM Transactions on Embedded Computing Sys-
tems, vol. 16, no. 2, pp. 1–22, 2017.

[20] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid
method for minimizing service delay in edge cloud computing
through vm migration and transmission power control,” IEEE
Transactions on Computers, vol. 66, no. 5, pp. 810–819, 2016.

[21] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “Iot-based big
data storage systems in cloud computing: perspectives and chal-
lenges,” IEEE Internet of Things Journal, vol. 4, no. 1, pp. 75–87,
2016.

[22] H. Guo and J. Liu, “Collaborative computation offloading for
multi-access edge computing over fiber-wireless networks,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526,
2018.

[23] M. ETSI, “Mobile edge computing - introductory technical white
paper,” 2014.

[24] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores,
D. Carrera, J. L. Pérez, D. Montero, P. Chacin, A. Corsaro et al., “A
new era for cities with fog computing,” IEEE Internet Computing,
vol. 21, no. 2, pp. 54–67, 2017.

[25] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of computer computations. Springer, 1972, pp. 85–103.

[26] F. K. Hwang and D. S. Richards, “Steiner tree problems,” Networks,
vol. 22, no. 1, pp. 55–89, 1992.

[27] H. Takahashi, “An approximate solution for the steiner problem
in graphs,” Math. Japonica., vol. 6, pp. 573–577, 1990.

[28] G. Xue, “Minimum-cost qos multicast and unicast routing in
communication networks,” IEEE Transactions on Communications,
vol. 51, no. 5, pp. 817–824, 2003.

[29] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in International Conference on
Service-Oriented Computing, 2018, pp. 230–245.

[30] P. Erdös and A. Rényi, “On random graphs publ,” Math. debrecen,
vol. 6, pp. 290–297, 1959.

[31] M. Lin, H. C. Lucas Jr, and G. Shmueli, “Research commen-
tary—too big to fail: large samples and the p-value problem,”
Information Systems Research, vol. 24, no. 4, pp. 906–917, 2013.

[32] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heterogeneous
cloudlet deployment and user-cloudlet association toward cost
effective fog computing,” Concurrency and Computation: Practice
and Experience, vol. 29, no. 16, p. e3975, 2017.

[33] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao, and
F. Li, “Edge provisioning with flexible server placement,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp.
1031–1045, 2016.

[34] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing
systems,” IEEE Transactions on Wireless Communications, vol. 17,
no. 3, pp. 1784–1797, 2018.

[35] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile
computation offloading,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, 2017, pp. 1–9.

[36] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 16, no. 8, pp. 4924–4938, 2017.

[37] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s
hard to share: Joint service placement and request scheduling in
edge clouds with sharable and non-sharable resources,” in 38th
International Conference on Distributed Computing Systems. IEEE,
2018, pp. 365–375.

[38] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K.
Leung, “Dynamic service placement for mobile micro-clouds with
predicted future costs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 4, pp. 1002–1016, 2016.

[39] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Profit-aware application placement for integrated fog–cloud
computing environments,” Journal of Parallel and Distributed Com-
puting, vol. 135, pp. 177–190, 2020.

[40] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker, “Context-
aware data and task placement in edge computing environments,”
in 2019 IEEE International Conference on Pervasive Computing and
Communications. IEEE, 2019, pp. 1–10.

[41] Y. Shao, C. Li, and H. Tang, “A data replica placement strategy
for iot workflows in collaborative edge and cloud environments,”
Computer Networks, vol. 148, pp. 46–59, 2019.

Xiaoyu Xia received his Master degree from The
University of Melbourne, Australia in 2015. He
is a PhD candidate at Deakin University. His
research interests include edge computing, ser-
vice computing and software engineering.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia in
2015. She is a lecturer at Deakin University. Her
research interests include software engineering,
cloud computing and green computing.

Qiang He received his first PhD degree
from Swinburne University of Technology, Aus-
tralia, in 2009 and his second PhD degree
in computer science and engineering from
Huazhong University of Science and Tech-
nology, China, in 2010. He is a senior lec-
turer at Swinburne. His research interests in-
clude service computing, software engineering,
cloud computing and edge computing. More
details about his research can be found at
https://sites.google.com/site/heqiang/.

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from the
University of Auckland, New Zealand. He is cur-
rently Australian Laureate Fellow and a profes-
sor of software engineering at Monash Univer-
sity, Melbourne, Australia. He is an associate
editor of the IEEE Transactions on Software En-
gineering, the Automated Software Engineering
Journal, and IEEE Software. His current inter-
ests include domain-specific visual languages,
model-driven engineering, large-scale systems

engineering, and software engineering education. More details about
his research can be found at https://sites.google.com/site/johncgrundy/.

Mohamed Abdelrazek is an Associate Pro-
fessor of Software Engineering and IoT at
Deakin University. Before joining Deakin Uni-
versity in 2015, he worked as a senior re-
search fellow at Swinburne University of Tech-
nology and Swinburne-NICTA software innova-
tion lab (SSIL). Before 2010, he was the head of
software development department at Microtech.
More details about his research can be found at
https://sites.google.com/site/mohamedalmorsy/.

Hai Jin is a Cheung Kung Scholars Chair Pro-
fessor of computer science and engineering at
Huazhong University of Science and Technology
(HUST) in China. Jin received his PhD in com-
puter engineering from HUST in 1994. His re-
search interests include computer architecture,
virtualization technology, cluster computing and
cloud computing, peer-to-peer computing, net-
work storage, and network security.

