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Abstract—In the edge computing (EC) environment, edge servers are deployed at base stations to offer highly accessible computing
and storage resources to nearby app users. From the app vendor’s perspective, caching data on edge servers can ensure low latency
in app users’ retrieval of app data. However, an edge server normally owns limited resources due to its limited size. In this paper, we
investigate the collaborative caching problem in the EC environment with the aim to minimize the system cost including data caching
cost, data migration cost and quality-of-service (QoS) penalty. We model this collaborative edge data caching problem (CEDC) as a
constrained optimization problem and prove that it is NP-complete. We propose an online algorithm, called CEDC-O, to solve this
CEDC problem during all time slots. CEDC-O is developed based on Lyapunov optimization, works online without requiring future
information, and achieves provable close-to-optimal performance. CEDC-O is evaluated on a real-world data set, and the results
demonstrate that it significantly outperforms two representative approaches.
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1 INTRODUCTION

THe world has witnessed an exponential growth of mo-
bile devices including mobile phones, wearable devices,

tablets, smart vehicle and Internet-of-Things (IoT) devices
over the last decade [1]. The enormous network traffic
often causes network congestion and increases network
latency. To address this issue, edge computing (EC), a new
computing paradigm, has emerged to distribute computing
capacities from centralized cloud to distributed edge servers
[2]. Each edge server is powered by one or more physical
devices and is attached to a base station or an access point
that is geographically close to app users’ mobile devices.
Mobile and IoT application vendors (referred to as app ven-
dor hereafter) can host their apps on edge servers (referred
to as edge apps hereafter) to ensure low latency and high-
quality services for their app users by hiring computing
and storage resources on edge servers [3]. Computation
tasks can be offloaded from mobile devices to nearby edge
servers to reduce the computation overhead and energy
consumption on those mobile devices [4], [5], [6], [7]. This is
a key technology that facilitates the 5G mobile network [8].

As a rapidly increasing number of app users begin to
access edge apps, more mobile data will be transmitted
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through edge servers between the cloud and app users’
mobile devices. From an app vendor’s perspective, caching
those data, especially popular ones like viral videos and
posts from Facebook1 and Twitter2, will significantly reduce
network delay in app users’ retrieval of app data. App
users can retrieve data from nearby edge servers instead
of from the remote cloud servers if the data are already
cached on those edge servers. In addition, caching data on
edge servers can also considerably reduce the amount of
data transferred between the cloud and the mobile devices,
which consequently lower app vendors’ cost of data transfer
under the pay-as-you-go pricing scheme.

Data caching techniques have been widely implemented
in many different domains, from hardware cache, e.g., CPU
[9], GPU [10], memory [11], disks [12], to software cache,
e.g., web [13], database [14], etc. In the network domain,
data caching has also been intensively studied to leverage
its advantages in saving bandwidth consumption, reducing
network latency and minimizing access costs [15], [16],
[17]. In the last few years, many researchers have investi-
gated network cache from different perspectives, e.g., cache
allocation and replacement strategies [18], coded caching
[19], request routing [20], and information-theoretic caching
[21], [22]. As a new computing paradigm, EC offers new
opportunities and raises new challenges for data caching.
The fundamental objective and mechanism are to cache
popular data on edge servers so that nearby app users can
retrieve the cached data with low latency. This is especially
important for latency-sensitive applications, e.g., interactive
gaming, real-time navigation, augmented reality, etc. In
addition, caching data on edge servers can also lift the traffic
burden on the Internet backbone by reducing the amount of
mobile traffic data transmitted between the cloud and app

1. https://www.facebook.com/
2. https://www.twitch.tv/
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users’ mobile devices significantly [23].
Given a set of popular data, from an app vendor’s

perspective, a straightforward solution is to cache them
all on every edge server in a particular area to minimize
the latency in its app users’ data retrieval in that area.
In addition to data latency, the app vendor also needs to
consider the cost of hiring storage resources on edge servers
for data caching based on the pay-as-you-go pricing model.
The cost also occurs during data transmission and migration
among the network. Thus, from an app vendor’s perspec-
tive, it is critical to find a collaborative data caching strategy
that minimizes the total system cost with limited storage
spaces on edge servers while fulfilling the above mentioned
constraints in the edge computing environment, including
server capacity constraint, server coverage constraint and
server adjacency constraint. Over time, a lot of data will
be cached on the edge servers and new data will replace
old data. An app vendor’s hired storage resources on edge
servers and its cached app data constitute an edge caching
system. In the long-term, how to keep an app vendor’s edge
caching system stable over time across multiple time slots is
the key problem to be solved in this paper.

We refer to this data caching problem in the EC environ-
ment collaborative edge data caching (CEDC) problem. To the
best of our knowledge, this work is the first attempt to solve
this CEDC problem from the app vendor’s perspective. The
key contributions of this work are as follows:

• We model and formulate the CEDC problem as a
constrained optimization problem from the app ven-
dor’s perspective.

• We prove that the CEDC problem is NP-complete.
• We propose an online algorithm named CEDC-O

based on Lyapunov optimization to solve the CEDC
problem cross multiple time slots without requir-
ing future information, and prove the performance
bounds of this algorithm.

• We evaluate the performance of our algorithm by ex-
tensive simulations conducted on a real-world data
set.

The rest of the paper is organized as follows. Section 2
presents an example to illustrate and motivate the CEDC
problem. Section 3 presents the system model, formulates
the CEDC problem and proves its NP-completeness. Sec-
tion 4 presents the CEDC-O algorithm and theoretically
analyzes its performance bounds. Section 5 evaluates the
CEDC-O algorithm experimentally. Section 6 reviews the
related work, followed by the conclusion in Section 7.

2 MOTIVATING EXAMPLE

EC is significantly different from cloud computing which
facilitates the content-centric network and the content deliv-
ery network. In the EC environment, adjacent edge servers
deployed at different base stations can communicate with
their neighbor edge servers and transmit data via high-
speed links [4], [24]. App users’ workloads in a particu-
lar area can be transferred and balanced across the edge
servers covering that area [4]. This architecture overcomes
the single-point failure problem encountered by the one
with the macro base station [25]. Thus, the edge servers in

Fig. 1: An example scenario for edge computing

a particular area can constitute a graph, namely edge server
network, where a node represents an edge server and an edge
represents the link between two edge servers.

Fig. 1 shows an example of a typical edge environment
involving a set of mobile devices, {m1, ...,m6}, and edge
servers, {v1, ..., v4}. Mobile devices connect to edge servers
to retrieve data. Compared to cloud servers, the storage
resources on an edge server are usually limited due to their
limited sizes [26]. This intensifies the competition between
app vendors for computing and storage resources on edge
servers, making it extremely expensive and, in most cases
impossible, for an app vendor to cache all its app data on
every edge server. In such an environment, the common
practice for an app vendor is to reserve a number of cache
spaces on each edge servers for caching its most popular
data. This is a fundamental difference between cloud com-
puting and EC because the computing and storage resources
available in the cloud are often assumed to be virtually un-
limited. The limited resources on edge servers are referred
to as the server capacity constraint. Furthermore, data caching
in the EC environment differs from data caching in the
cloud computing environment as well as other conventional
distributed computing environments with its two unique
constraints, i.e., server coverage constraint and server adjacency
constraint:

Server coverage constraint: An edge server covers a
specific geographical area so that app users’ mobile devices
within its coverage area can connect to it via LTE or Radio
Network [27]. In a particular area, a number of edge servers
are usually deployed in a distributed manner so that they
can cover different geographical areas. The coverage areas
of adjacent edge servers usually partially overlap to avoid
blank areas not covered by any edge servers. For example,
mobile device m1 in Fig. 1 can directly access edge server v2
and v3 while m2 can only access edge server v1 directly.

Server adjacency constraint: An app user can retrieve
cached app data from its nearby edge servers (referred to
as local edge servers hereafter) if the data is cached on any
of these edge servers. Otherwise, the data can be retrieved
from those local edge servers’ neighbor edge servers, i.e., edge
servers that are directly linked to them via high-speed links
[24]. Either way, it is faster than retrieving the data from a
remote cloud server [24]. Take m1 in Fig. 1 as an example.
This device can access the caches in its local edge servers v2
and v3, or its neighbor edge servers v1 and v4, or the remote
cloud. The only difference is the data retrieval latency, which
is represented by the different colors of the links in Fig. 1.
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3 SYSTEM MODEL

In this section, we first introduce the system architecture
for edge data caching, then define the three components of
system cost, including data caching cost, data migration cost
and QoS penalty based on the constrains discussed in Sec-
tion 2. The notations adopted in this section are summarized
in Table 1.

TABLE 1: Notations in our System Model

Notation Description
Ai available cache spaces on edge server i
C(λt) total system cost in time slot t
CD(λt) cost of data storage in time slot t
CM(λt) cost of data migration in time slot t
CP (λt) QoS penalty in time slot t
cl unit cost of data latency
cmc unit cost of data migration from cloud
cms unit cost of data migration from edge server
cs unit cost of data storage
d requested data d
D finite set of requested data
E finite set of links between edge servers
G graph presenting the edge server network
li,j hops between edge server vi and vj
lti,d lowest latency to migrate data d for vi from the edge

server network in time slot t
ltm,d lowest latency of for mobile m to retrieve d from the

edge server network in time slot t
lT latency limit accepted by the app vendor
L long-term average latency constraint
m mobile device m
M set of mobile devices
Mj set of mobile devices covered by server vj
t time slot t
T infinite set of time
V set of edge servers
vi edge server i
X t

i,d binary variable indicating whether data d has been
already cached on edge server vi at the beginning of
time t

Yt
i,d binary variable indicating whether edge server i can

retrieve data d from a neighbor edge server or the
remote cloud

λt data caching strategy in time slot t
λti,d binary variable indicating whether data d will be

cached on edge server vi at the end of time t
τ tm,d binary variable indicating whether the mobile device

m requests for data d in time slot t
ρ ratio of cmc over cs
η ratio of cms over cs
ω ratio of cp over cs

3.1 System Architecture
In this research, we model the edge server network within
a specific area as a graph G(V,E) where V = {v1, ..., vn}
is the set of nodes and E = {e1, ..., ek} is the set of edges
in G. In this graph, each node v ∈ V represents an edge
server, while each edge e ∈ E represents the link between

two edge servers in G. In the remainder of this paper, we will
speak inter-changeably of an edge server and its corresponding
node in G, both denoted by v.

To quantify the optimization objective and constraints in
the CEDC problem in a generic manner, we measure the
data sizes and cache spaces by the number of data units,
and the data retrieval latency with the number of hops.
Take Fig. 1 as an example. The cost of caching data d on
all the four edge servers is 4. When data d is only cached on
edge server v3, Device 1 can retrieve the data from its local
edge server v3 via 0 hop, while Device 1 can retrieve the
data from its neighbor edge server v4 via 1 hop. This way,
these models can be easily extended by integrating specific
pricing models and latency models from edge infrastructure
providers.

Given a set of data D required by app users in a specific
area in time slot t, a data caching strategy to cover those
data requests can be presented as λt = {λt1, ..., λtn}, where
λti = {λti,d,∀d ∈ D}. λti,d denotes whether data d is cached
on edge server vi:

λti,d =

{
0 if data d is not cached on vi in time slot t
1 if data d is cached on vi in time slot t

(1)

Let us denote τ tm,d as whether the request for data d from
the app user’s mobile device m exists in time slot t:

τ tm,d =


0 if the m’s request for data d does

not exist in time slot t
1 if the m’s request for data d exists in t

(2)

Since the data requests arrive randomly in the stochastic
EC environment, we model the data request arrivals as
an independent and identical distribution, similar to many
studies in the fields of edge computing, cloud computing
and wireless networking [28], [29], [30].

As mentioned in Section 1, the storage resources on
an edge server is usually limited. Thus, the competition
between app vendors usually makes it impossible for an
app vendor to cache all its app data on every edge server.
Thus, the number of data cached in any time slot t on each
edge server vi cannot violate the available server capacity
constraint:∑

d∈D
λti,d ≤ Ai,∀t = {0, ..., T − 1}, i = {1, ..., n} (3)

3.2 Data Retrieval Latency
The data retrieval latency in the edge server network con-
sists of two components: the latency between the device and
its nearby edge server, and the latency between its local edge
server and neighbor edge server. As the first component is
extremely small in the 5G network and not influenced by the
data caching strategy, it is not considered in the formulation
of the data caching strategy. Thus the network delay in
retrieving data d for the app user’s mobile device m in time
slot t is calculated as follows:

ltm,d = min{li,j , λti,d = 1, vi ∈ V },∀m ∈Mj (4)

where vi is the edge server caching data d and vj is the edge
server covering the app user’s mobile device m, and li,j is
the number of hops between vi and vj .
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Fig. 2: System Cost: data caching cost, migration cost and
latency cost.

We denote lT as the latency limit specified by the app
vendor. If the latency ltm,d is higher than lT , mobile device
m will access the data directly from the remote cloud. In this
way, the delay in m’s retrieval of data d from the remote
cloud server c in time slot t is calculated as ltm,d = lc,m,
where lc,m > lT is the latency between c and m.

3.3 System Cost
From the app vendor’s perspective, a key performance
indicator for its edge caching system is the total system cost
produced by the data caching strategy.

Fig. 2 depicts the key elements of the system cost model.
Data caching cost is measured based on the storage resources
hired by the app vendor in each time slot. Data migration
cost is produced by migrating data from the cloud or the
neighbor edge servers to the local edge servers. QoS penalty
is the third component of the system cost, occurring when a
user has to retrieve data from the cloud server with a high
latency.

3.3.1 Data caching cost
It is calculated by how many cache spaces hired by the app
vendor. As mentioned above, the cache spaces are measured
by the number of data units. Thus, the data caching cost in
time slot t can be calculated as follows:

CD(λt) =
∑
vi∈V

∑
d∈D

csλ
t
i,d (5)

where cs is the unit cost of hiring data resources on an edge
server for data caching.

3.3.2 Data migration cost
As transferring new data from the remote cloud to an
edge server or between edge servers to be cached incurs
additional network delay, data migration cost is incurred
and is calculated based on the number of new cached data.
Here, we denote X ti,d = 0 if data d is already cached on edge
server vi at the start of time slot t, otherwise X ti,d = 1:

X ti,d = 1− λt−1i,d (6)

Similar to (4), we denote lti,d = min{li,j , λt−1j,d = 1,∀vj ∈
V } as the lowest latency for edge server vi to obtain data d
in time slot t, over the edge server network. We denote the

unit cost of data migration from the cloud to the app user’s
mobile device by cmc, and the unit cost of data transmission
from a neighbor edge server to mobile device by cms. If
the cost of data migration over the edge server network is
higher than that from the remote cloud (cms · lti,d > cmc), vi
will retrieve the data from the remote cloud directly. Here
we denote the source of a requested data as Yti,d ∈ {0, 1}:

Yti,d =

{
0 if cms · lti,d > cmc
1 if cms · lti,d ≤ cmc

(7)

Thus, we obtain the data migration cost as follows:

CM(λt) =
∑
vi∈V

∑
d∈D

λti,dX ti,d((cms·lti,d−cmc)Yti,d+cmc) (8)

We denote ρ as the ratio of cmc over cs and η as the ratio
of cms over cs, then we obtain:

CM(λt) =
∑
vi∈V

∑
d∈D

csλ
t
i,dX ti,d((η·lti,d − ρ)Yti,d + ρ) (9)

3.3.3 QoS Penalty
As mentioned in Section 2, the data can be retrieved from
local edge servers or neighbor edge servers. Either way,
it is faster than retrieving the data from a remote cloud
server [24]. Thus, the quality-of-service (QoS) is impacted
significantly for users who cannot retrieve data from any
available edge servers within lT . Thus, the QoS penalty
occurs when a user has to retrieve data from the remote
cloud server or from an edge server with a limit-violating
latency. Here, we denote θtm,d ∈ {0, 1} to indicate whether a
QoS penalty is applied to m’s retrieval of data d:

θtm,d =

{
1 if ltm,d > lT
0 if ltm,d ≤ lT

(10)

Please notice that lc,m > lT ,∀m ∈ M . This way, θtm,d is
always 1.

We denote cp as the unit cost incurred by QoS penalty,
determined by the app vendor based on its priority for its
app users’ QoS. The QoS penalty in time slot t, as part of
system cost, is calculated as:

CP(λt) =
∑
m∈M

∑
d∈D

cpθ
t
m,d =

∑
m∈M

∑
d∈D

ω · csθtm,d (11)

where ω is the ratio of cp over cs.

3.4 Problem Formulation And Hardness
With the consideration of the system architecture in Section
3.1 and the costs presented in Section 3.3, the total system
cost is calculated by summing all the aforementioned costs:

C(λt) = CD(λt) + CM(λt) + CP(λt)

= cs(
∑
vi∈V

∑
d∈D

λti,d(1 + X ti,d((η − ρ)Yti,d + ρ))

+
∑
m∈M

∑
d∈D

ω · csθtm,d

(12)

In a CEDC scenario, from the app vendor’s perspective,
it is important to minimize the system cost incurred by
caching data on edge servers, migrating data across edge
servers and failing to serve users on edge servers. While
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pursing this optimization objective, it is also necessary to
stabilize the time-averaged system latency perceived by the
users in the long term. Thus, an app vendor usually has
a long-term average system latency constraint for requests
served by edge servers, denoted by L. Thus, the following
inequality must be fulfilled:

lim
T→∞

1

T

T−1∑
t=0

∑
m∈M

∑
d∈D θ

t
m,d · ltm,d∑

m∈M
∑
d∈D θ

t
m,d

≤ L (13)

In the stochastic EC environment, data requests ran-
domly arrive and leave [28]. Thus, the app vendor’s long-
term system performance usually outweighs its immediate
short-term system performance. Thus, we formulate the
CEDC problem over multiple time slots as a constrained
optimization problem (COP):

P1 : min lim
T→∞

T−1∑
t=0

C(λt)

s.t. :(1), (3), (4), (6), (13)

Now, we demonstrate that the COP of CEDC problem in
a single time slot t isNP-complete by proving the following
theorems.

Theorem 1. The COP of CEDC in time slot t is NP .

Proof As there are (1+ |M |+2|V |)|D| constraints in total,
any solution to the COP can be validated in polynomial time
by checking whether the solution satisfies the constraints (1),
(3), (6) and (4). Thus, the CEDC problem is NP . �

Theorem 2. The COP of CEDC in time slot t is NP-complete.

Proof To prove this problem is NP-complete, we first in-
troduce the weighted k-set packing problem. The weighted
k-set packing problem is known to be NP-complete [31].
Given a universeU with elements ∀e ∈ U , a setU ′ of subsets
of U and an integer number k. The subset X is a packing,
where X ⊆ U ′. All sets x ⊆ X are pairwise disjoint. Let
W(x) be the weight of the set x and k be the maximum
number of selected sets. The formulation is displayed below:

object : max
∑
x∈X
W(x)Tx (14a)

s.t. :
∑
x∈X
Tx ≤ k (14b)

Tx ∈ {0, 1},∀x ∈ X (14c)∑
e∈U
Te ≤ 1 (14d)

Next, we prove that the weighted k-set packing prob-
lem can be reduced to an instance of the COP of CEDC
problem. We define the elements based on the data re-
quests from app user’s mobile devices. The reduction can
be done as follows: 1) adding the cloud server vcloud as
a node into the graph; 2) adding edges from vcloud to
all other nodes in the graph; 3) setting the storage cost
incurred on vcloud to 0; 4) setting lT = L = |V |. After
the above reduction, constraint (13) can be ignored. Given
any instance WeightedKSet(X,U, k,W(x)), we can con-
struct CEDC(V,M, n,Benefits(i, d)) with the reduction
above in polynomial time while |X| = |V |, |U | = |M |

and n = k. The function Benefits(i, d) is calculated as
the reduced QoS penalty minus the data caching cost if
data d is cached on edge server vi. As the constraint
(14b) restricts the total number of selected sets, we can
project (3) in the CEDC problem to that constraint. Based
on (4), the latency in mobile device m’s retrieval of data
d is the lowest latency between m and any edge server
with d in the cache. Thus, constraint (14d) can be ful-
filled. Moreover, we can convert our original objective (12)
to CD(λt) + CL(vcloud) −

∑
vi∈V

∑
d∈D λ

t
i,dBenefits(i, d).

Then, we can project our converted objective to the objective
(14a). Thus, the COP of CEDC problem in time slot t is
reducible from the weighted k-set packing problem, and it
is NP-complete.

�

4 ONLINE CACHING ALGORITHM DESIGN

To solve the CEDC problem optimally, the complete infor-
mation about the system over all the time slots must be
known. However, this cannot be realistically fulfilled for
real-world scenarios. To practically fulfil the app vendor’s
long-term latency constraint (13), we need to convert P1, a
non-convex problem, to a linear and convex problem. To do
so, we propose an Online Collaborative Edge Data Caching
(CEDC-O) algorithm based on Lyapunov optimization [32]
for finding near-optimal solutions to the CEDC problem
in individual time slots without future information. The
notations adopted in this section are summarized in Table 2.

TABLE 2: Notations in our Algorithm Design

Notation Description
C value of system cost produced by λ
C′ value of system cost produced by λ′

Copt value of system cost produced by λopt
Cmin smallest system cost of all possible solutions
Cmax largest system cost of all possible solutions
DP(t) Lyapunov drift-plus-penalty function
Lavg(λt) average system latency in time slot t
L(σ(t)) Lyapunov function, calculated by 1

2
σ2(t)

Q constant value equal to 1
2
L2

Q′ constant value equal to Q+ γ · (Cmax − Cmin)

γ positive parameter adjusting the trade-off between
system cost C(λt) and the average latency Lavg(λt)

λ solution obtained by CEDC-O
λt λ in time slot t
λ′ feasible solution fulfilling (21)
λ′t λ′ in time slot t
λ∗ feasible solution fulfilling (27)
λ∗t λ∗ in time slot t
λopt optimal solution to P1 over all time slots
λtopt λopt in time slot t
σ(t) accumulated latency in time slot t

∆(σ(t)) Lyapunov drift function

4.1 Online Collaborative Edge Data Caching Algorithm
We provide an online algorithm, named CEDC-O, based on
Lyapunov optimization, to convert the long-term optimiza-
tion problem P2 to optimization problems in individual
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time slots. The most significant characteristic of CEDC-O is
that it only requires the information in the current time slot
rather than the complete information in all the time slots
when solving P2. While trying to minimize the system cost,
the app vendor also needs to stabilize the system latency
to ensure low-latency data access for its users. Thus, in this
paper, the system metric to stabilize by CEDC-O is the time-
averaged system latency perceived by the users over the
long term.

Lyapunov optimization is typically applied in the com-
munication and queuing systems. With the application of
Lyapunov optimization, the problems can be formulated
as problems that optimize the time averages of certain
objectives subject to some time average constraints, and they
can be solved with a common mathematical framework that
is intimately connected to queuing theory [32]. Unlike the
typical application of Lyapunov optimization that models
the problem as a queuing network, we define the accumu-
lated latency in Definition 1 to stabilize the system latency
over time.

Definition 1 (Accumulated Latency). Accumulated latency
σt is the overdue delay accumulated over t time slots,
calculated as:

σ(t+ 1) = max{σ(t) + Lavg(λt)− L, 0} (15)

where Lavg(λt) =
∑

m∈M

∑
d∈D θtm,d·l

t
m,d∑

m∈M

∑
d∈D θtm,d

, and σ(0) = 0

because there is no latency at the very beginning.

Based on Definition 1, the accumulated latency will
increase if the latency is over L in the previous time slot.
This can be employed as a penalty to adjust the data
caching strategy to stabilize the system latency over time as
specified by (13). Now, we can convert the long-term latency
constraint (13) to a new constraint based on accumulated
latency:

lim
T→∞

1

T

T−1∑
t=0

E[σ(t)] ≤ 0 (16)

Given (15), a Lyapunov function can be defined as
L(σ(t)) , 1

2σ
2(t). It indicates the system stability measured

by its accumulated latency L(σ(t)). Here, the Lyapunov
drift ∆(σ(t)) is applied in each time slot to enhance the
system stability:

∆(σ(t)) = E[L(t+ 1)− L(t)|σ(t)]

=
1

2
E[σ2(t+ 1)− σ2(t)|σ(t)]

=
1

2
E[(Lavg(λt)− L)2|σ(t)] + σ(t)E[Lavg(λt)− L|σ(t)]

≤ Q+ σ(t)E[Lavg(λt)− L|σ(t)]
(17)

where Q = 1
2L

2 because of Lavg(λt) ≥ 0.
As we obtain the upper bound of the Lyapunov drift

function, we introduce the penalty in our CEDC-O algo-
rithm based on the total cost objective (12). We denote γ as a
positive parameter in Lyapunov optimization for adjusting
the trade-off between the system cost C(λt) and the number
of time slots needed to converge the time-averaged latency

back to L when (13) is violated. Here, we introduce the
Lyapunov drift-plus-penalty function DP(t), defined as:

DP(t) = ∆(σ(t)) + γ · E[C(λt)|σ(t)] (18)

In each time slot, the data caching strategy is formulated
to minimize the total cost C(λt) and to keep the system
stable, and we can get the upper bound of this function
by:

DP(t) ≤ Q+ σ(t)E[Lavg(λt)− L|σ(t)] + γ · E[C(λt)|σ(t)]
(19)

The pseudocode of the CEDC-O algorithm is presented
in Algorithm 1. In each time slot, the data caching strategy
is formulated by finding the optimal solution to P2:

P2 : min(Q+ σ(t)(Lavg(λt)− L) + γ · C(λt))
s.t. : (1), (3), (6), (4), (15)

Algorithm 1 CEDC-O Algorithm

1: Input: G = (V,E),M,A = {A1, ..., An},L, cs, ρ, η, ω
2: Output: data caching strategy λ = {λ1, ..., λT }
3: σ(0) = 0, t = 0
4: repeat
5: Observe the data requests τ t = {τ tm,d|∀m ∈ M,d ∈

D}
6: Find the solution λt, where:

λt = arg min(Q+σ(t)(Lavg(λt)−L)+γ ·C(λt)) (20)

7: Observe Lavg(λt) and update σ(t) based on (15)
8: t = t+ 1
9: until t = T

In Algorithm 1, no further information is required to
solve P2 except the data requests in the current time slot. Af-
ter implementing the drift-plus-penalty function, our CEDC-
O algorithm considers the additional term σ(t)(Lavg(λt) −
L), while Q is a constant. This drift-plus-penalty helps
stabilize the system’s average latency Lavg(λt) around L.
Once Lavg(λt) exceeds L, a penalty is applied to P2 and
drives the CEDC-O algorithm to lower the system latency.
Moreover, when σ(t) increases, minimizing Lavg(λt) is of
high significance in stabilizing the system and converging
Lavg(λt) to the long-term budget (16). This is validated
experimentally in Section 5.

4.2 Performance Analysis
Now, we analyze the performance of the CEDC-O algorithm
based on the following theorems.
Theorem 3. The time-averaged system cost of CEDC-O

algorithm is bounded by O( 1
γ ).

Proof Let us assume that the optimal solution to P1 is
λopt = {λ0opt, ..., λT−1opt }. The average system cost of λopt
is Copt = 1

T

∑T−1
t=0 E[C(λtopt)|σ(t)]. The following inequality

has been proven in [32]:

∃λ′t,E[Lavg(λ′t)− L|σ(t)] ≤ θ, θ → 0+ (21)

The CEDC-O algorithm provides the solution that min-
imizes P2 from all feasible decisions including λ′ which
contains λ′t. Thus, we can obtain:

E[C(λ′t)|σ(t)] ≤ E[C(λtopt)|σ(t)] (22)
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After applying (21) to (19), we can obtain:

∆(σ(t)) + γ · E[C(λ′t)|σ(t)]
(19)
≤ σ(t)E[(Lavg(λ′t)− L)|σ(t)] + γ · E[C(λ′t)|σ(t)] +Q

(22)
≤ σ(t)E[(Lavg(λ′t)− L)|σ(t)] + γ · E[C(λtopt)|σ(t)] +Q
(21)
≤ θ · σ(t) + γ · E[C(λtopt)|σ(t)] +Q
= γ · E[C(λtopt)|σ(t)] +Q

(23)

Based on (17) and (23), we sum all the ∆(σ(t)) for all
time slots and get:

E[L(σ(T ))− L(σ(0))] + γ ·
T−1∑
t=0

E[C(λ′t)|σ(t)]

≤ γ ·
T−1∑
t=0

E[C(λtopt)|σ(t)] + T · Q = γ · T · Copt + T · Q

(24)

Denote C′ as the value of system cost incurred by data
caching strategy λ′. Considering the facts that L(σ(T )) ≥ 0
and L(σ(0)) = 0, we can obtain:

C′ ≤ 1

T
(E[L(σ(T ))− L(σ(0))] + lim

T→∞

T−1∑
t=0

E[C(λ′t)|σ(t)])

≤ Copt +
Q
γ

(25)

Based on (20), the performance C of solution λ provided
by our CEDC-O algorithm always outperforms that of λ′.
The distance of the time-averaged system cost between λ
and λopt is:

C − Copt ≤ C′ − Copt ≤
Q
γ

(26)

Thus, the time-average system cost of our CEDC-O algo-
rithm is bounded by O(Qγ ) = O( 1

γ ). �

Theorem 4. By applying the CEDC-O algorithm, the time-
average accumulated latency is bounded by O(γ).

Proof Based on (15) and (16), we assume that there exist
λ∗t and a positive value δ to fulfill:

E[Lavg(λ∗t)− L|σ(t)] ≤ −δ (27)

Denote Cmin and Cmax as the smallest and largest system
cost respectively. From (19), we obtain:

∆(σ(t)) + γ · Cmin ≤ Q+ γ · Cmax
+σ(t)E[Lavg(λ∗t)− L|σ(t)]

(28)

DefineQ′ = Q+γ ·(Cmax−Cmin). We have the following:

∆(σ(t))≤ Q′ + σ(t)E[Lavg(λ∗t)− L|σ(t)]
(27)
≤ Q′ − δ · σ(t)

(29)

By adding expectation to both sides of (29), we obtain:

E[∆(σ(t))] = E[L(σ(t))−L(σ(t−1))] ≤ Q′−δ·E[σ(t)] (30)

The time-average accumulated latency can be obtained
by the sum of (30) of each time slot divided by the number
of total time slots T :

1

T
lim
T→∞

T−1∑
t=0

E[σ(t)] ≤
Q′ − 1

T E[L(σ(T ))]

δ
≤ Q

′

δ
(31)

Considering the fact that O(Q
′

δ ) = O(γ), the time-
average accumulated latency of CEDC-O algorithm is
bounded by O(γ). �

Based on Theorem 3, our CEDC-O algorithm finds the
optimal solution to problem P2 when γ → ∞. However,
with the increase in γ, the accumulated latency increases.
The CEDC-O algorithm then needs more time slots to
converge the time-averaged system latency so that the con-
straint (13) can be fulfilled. The performance analysis of
the CEDC-O algorithm is also experimentally validated in
Section 5.

5 SIMULATION

We experimentally evaluate the performance of CEDC-O
and the impacts of different parameters on its performance.
All simulations were conducted on a Windows-10 machine.

5.1 Settings

5.1.1 Data set
The simulations are conducted based on the widely-used
real-world EUA data set [2]. This data set contains the
geographical locations of 125 cellular base stations and 816
mobile users around those base stations in the Melbourne
central business district area. In all sets of simulations,
a certain number of edge servers are randomly selected
from the data set. In each time slot, the total number of
app users’ data requests is randomly generated following
a normal distribution X ∼ N (µ′, σ′2), where µ′ is |M |2
and σ′ is |M |4 , to cover 99.99% possibility. All the data
requests are independently and identically distributed. The
links between edge servers are randomly generated but we
ensure that the edge servers constitute a connected graph.

To reflect the advantage of EC over cloud computing in
terms of latency, the latency between the cloud and the app
user’s mobile devices in this graph area is 20 hops. This
number is area-specific and does not impact the experimen-
tal results significantly as long as it is adequately large. To
run the simulations realistically, we adopt AWS’s Snowball
Edge Pricing3, and set cmc to $0.016, cms to $0.008 and cs
to $0.04 caching per piece of data. The available storage
space of each edge server is randomly generated separately
following a normal distribution X ∼ N (µ, σ2), where µ
is the half number of maximum cache spaces and σ is 1,
to build the standard normal distribution covering all the
possibilities.

5.1.2 Benchmark approaches
We compare our new CEDC-O algorithm with four
representative approaches: Delay-Oriented, Online-Optimal,
Revenue-Oriented and Coverage-Oriented:

3. https://aws.amazon.com/snowball-edge/pricing/
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TABLE 3: Parameter Settings

n |D| MS ω lT L γ

Set #1 8 4 5 0.25 2 2 1
Set #2 5,6,7,8,9,10 4 5 0.25 2 0.8 1
Set #3 8 2,3,4,5,6 5 0.25 2 0.8 1
Set #4 8 4 2,3,4,5,6 0.25 2 0.8 1
Set #5 8 4 5 0.15,0.20,0.25,0.30,0.35 2 0.8 1
Set #6 8 4 5 0.25 0,1,2,3,4 0.8 1
Set #7 8 4 5 0.25 2 0.4,0.8,1.2,1.6,2 1
Set #8 8 4 5 0.25 2 0.8 0.5,1.0,1.5

• Delay-Oriented data caching approach (DO): this ap-
proach always finds the optimal solution to minimize
the total data latency of all users. The data caching
strategy is found by this approach. Since This ap-
proach originated from [28].

• Online-Optimal data caching approach (OO): this ap-
proach finds the optimal solution to the CEDC prob-
lem based on P1 in each individual time slot. Since
(13) is a long-term latency constraint, we use (32) as
a constraint to drive OO in individual time slots:∑

m∈M
∑
d∈D θ

t
m,d · ltm,d∑

m∈M
∑
d∈D θ

t
m,d

≤ L (32)

• IPEDC [33]: this approach minimizes the data
caching cost to cover nearby users. Since some of
the users may not be covered in our scenarios, we
modify the original IPEDC approach to cover as
many users as possible without violating the latency
constraint (32).

• Maximum Revenue data caching approach (MR) [34]:
This approach calculates the data caching revenue
the benefits minus the costs produced by the data
caching strategy in the EC environment. It always
finds the optimal solution with the maximum data
caching revenue. To perform a fair comparison in
CEDC scenarios, latency constraint (32) is included
into MR.

5.1.3 Parameter settings
to analyze the performance of our CEDC-O comprehen-
sively, we conducted seven sets of simulations to observe
its performance in different CEDC scenarios. In each set of
simulations except Set #1, we change one setting parameter
and fix the other six. The simulation settings are summa-
rized in Table 3. This way, we can compare the performance
of the three approaches and observe how the changes in the
setting parameters impact the performance of CEDC-O. The
total number of time slots is 300 in all the simulations. Each
time a setting parameter varies as follows, the simulation is
repeated 20 times and the results are averaged:

• Number of edge servers (n). This parameter impacts
the size of graph G and varies from 5 to 10 in steps
of 1.

• Number of data (|D|). The total number of data to be
cached over G, varies from 2 to 6 in steps of 1.

• Number of maximum cache spaces (MS). This pa-
rameter impacts the available cache spaces on edge
edge server and varies from 2 to 6 in steps of 1.

• Ratio of cp over cs (ω) in (11). This parameter indi-
cates the app vendor’s priority for QoS and increases
from 0.15, 0.20, 0.25, 0.30 to 0.35.

• Latency limit (lT ). This parameter varies from 0 to
4 in steps of 1. Specifically, lT = 0 means that edge
servers cannot communicate with each other - users
can only access data from their local edge servers.

• Long-term latency (L) in (15). This parameter varies
from 0.4 to 2 in steps of 0.4.

• Trade-off parameter (γ) between C(λt) and σ(t) in
P2. As discussed in Section 4.2, this parameter im-
pacts the performance bound of CEDC-O and in-
creases from 0.5, 1.0 to 1.5.

5.1.4 Performance metrics
In these simulations, five performance metrics are employed
to evaluate all approaches:

• System cost (C(λt)), the lower the better.
• Data caching cost (CD(λt)), the lower the better.
• Data migration cost (CM(λt)), the lower the better.
• QoS penalty (CP(λt)), the lower the better.
• Number of served requests (Srn), the higher the

better.

5.2 Performance Comparison
Fig. 3 presents the results of Set #1. Overall, of all the three
approaches, CEDC-O achieves the lowest system cost. Fig.
3(a) depicts that, in term of the system cost in each time
slot, the advantages of CEDC-O are 8.60% over OO, 23.05%
over IPEDC, 37.04% over DO and 51.58% over MR. The
advantage of CEDC-O over OO is not as significant because
OO finds the optimal solution to the CEDC problem in each
individual time slot. However, in 199 out of the 300 time
slots in the experiments, CEDC-O achieves a system cost
lower than than achieved by OO. This shows the overall
advantage of CEDC-O over OO over time.

In Fig. 3(b), the average data caching cost of CEDC-O
is again the lowest at 0.3166, while the average data cache
costs of OO, IPEDC, DO and MR are 0.3373, 0.4128, 0.5065
and 0.3314, respectively. Interestingly, the performance of
DO in this figure is almost a horizontal line. DO always
tries to achieve the lowest latency without considering the
used cache space. Thus, it exhausts all the available cache
spaces in most of the time slots.

Fig. 3(c) demonstrates the data migration costs of the five
approaches over individual time slots. The migration costs
of all the approaches are very high at the beginning, i.e.,
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Fig. 3: Simulation Set #1

0.0907 for CEDC-O, 0.1120 for OO, 0.1547 for IPEDC, 0.2204
for DO and 0.1333 for MR. This is because all the cached data
are migrated from the cloud in time slot 0. After the data
are cached on edge servers, the migration cost decreases
because required data are already cached on edge servers.

Fig. 3(d) shows that IPEDC achieves the lowest QoS
penalty, closely followed by CEDC-O and OO. The average
QoS penalties of all the approaches are 0.035 for CEDC-O,
0.0373 for OO, 0.0205 for IPEDC, 0.2193 for DO and 0.6548
for MR. IPEDC focuses on covering the maximum number
of users with available cache spaces. Thus, it achieves the
lowest QoS penalty.

In terms of the average system latency of served requests
over the edge server network, all the approaches fulfill
constraint (13) as shown in Fig. 3(e). The average latency
is 0.7975 for CEDC-O, 0.7842 for OO, 0.7804 for IPEDC
0.4999 for DO and 0.7744 for MR. Fig. 3(e) also shows that
the performances of OO, IPEDC and MR fluctuate slightly
around 0.8. The reason is that the time-averaged latency
achieved by these approaches are limited by (32).

5.3 Impact of edge server number

Fig. 4 demonstrates the results of simulation Set #2, where
the number of edge servers varies. Again, CEDC-O out-
performs the other four approaches in terms of system
cost per time slot, by 7.36% against OO, 23.14% against
IPEDC, 46.43% against DO and 56.45% against MR. Since
the number of users is determined by the number of edge
servers selected from the EUA dataset, the number of users
and the number of data requests increase accordingly when
the number of edge servers increases. Thus, the system costs
of all the approaches increases when the number of edge
servers increases, as shown in Fig. 4.

5.4 Impact of data number

Fig. 5 depicts the results of simulation Set #3. When the
number of data varies, CEDC-O again achieves the lowest

average system cost per time slot. When the number of data
increases from 1 to 5, the system costs per time slot achieved
by all the five approaches increase, from 0.0956 to 0.3996 for
CEDC-O, from 0.0948 to 0.4252 for OO, from 0.1136 to 0.5252
for IPEDC, from 0.2960 to 0.8456 for DO and from 0.2116 to
0.8624 for MR. With the increase in the number of data, app
users are more likely to request different data from across
multiple time slots. Accordingly, the average system costs
achieved by all the five approaches increase.

5.5 Impact of maximum cache spaces

In simulation Set #4, CEDC-O achieves the lowest system
cost per time slot at the lowest data cache cost per time
slot. The advantages of CEDC-O in the system cost per time
slot are 5.50% over OO, 25.23% over IPEDC, 47.32% over
DO and 57.66% over MR. The costs spent on data caching
per time slot increase from 0.29 to 0.42 for CEDC-O, from
0.40 to 0.85 for DO and from 0.30 to 0.48 for OG, when the
number of maximum cache spaces increases from 2 to 6.
Different from other approaches, the system cost per time
slot of DO always increases when the number of maximum
cache spaces increases from 2 to 6. The reason is that DO
focuses on latency optimization instead of cost optimization,
and thus always exhausts the available cache spaces.

5.6 Impact of QoS priority

Fig. 7 shows the impact of QoS priority on the performance
of CEDC-O in terms of the QoS penalty and the number
of served users over the edge server network. The average
number of users served over the edge server network per
time slot increases from 119.9 to 123.3, where ω increases
from 2 to 6. The reason is that the more data cache spaces
are hired to serve more users to reduce the QoS penalty.
However, the QoS penalty increases from 0.0294 to 0.0328
when ω increases from 2 to 3, then decreases to 0.0210 when
ω increases from 3 to 6. This is because the increase in
the QoS penalty caused by the increasing ω is more than
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Fig. 8: Simulation Set #6
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Fig. 9: Simulation Set #7

the reduction caused by hiring more cache spaces when
pursuing the objective of the minimum system cost.

5.7 Impact of Latency Limit
Fig. 8 shows the QoS penalty and the number of served
users over the edge server network per time slot when the
latency limit lT varies. When lT increases from 0 to 4, the
QoS penalty rapidly decreases from 0.6810 to 0, while the
average number of served users increases from 72.8 to 130.9.
This is because most of the users can access more edge
servers when the latency limit increases. Specifically, there
are 8 edge servers in Set #6, and many users can access all
those edge servers within 3 hops. Thus, all the requests can
be fulfilled and the QoS penalty is 0.

5.8 Impact of long-term Latency
Fig. 9 illustrates the results of Set #7 when the long-term
latency constraint varies. The system cost per time slot of
CEDC-O decreases from 0.5848 to 0.2772 when L increases
from 0.4 to 1.6. It stabilizes when L increases from 1,6 to
2.0. The main reason is that the same data replica can be
transmitted to more users when L increases. In terms of the
average latency of served requests Lavg(λt), it stabilizes for
the same reason when L increases from 1,6 to 2.0.

5.9 Impact of trade-off parameter
Fig. 10 shows the impact of the trade-off parameter γ in
P2 on the time-averaged latency, which is the left side
of (13). As discussed in Section 4.2, CEDC-O needs more
time slots to satisfy constraint (13) when γ increases. With
γ = 0.5, γ = 1.0 and γ = 1.5, the time-averaged latency
achieved by CEDC-O converges back to L = 0.8 in time
slots 4, 100 and 195, respectively. In the small-scale figure,

Fig. 10: Simulation Set #8

the blue line overtakes the red one in the 5th time slot. This
is because of ∆(σ(t)) = 0 in the 4th time slot and that no
penalty is produced in the next time slot. In this case, the
objective becomes min(Q+γ · C(λt)) and the time-averaged
latency increases significantly in the 5th time slot. In the
meantime, CEDC-O with γ = 1.0 still tries to converge the
time-averaged latency back to L. After the 5th time slot,
the blue line is always lower than the red one, while the
red one is lower than the yellow one. In conclusion, the
system stability, ensured by the long-term latency constraint
(13) (same as the accumulated latency requirement (16)), is
ensured by the CEDC-O algorithm with different trade-off
parameters.

5.10 Threats to Validity
5.10.1 Construct Validity
The major threat to construct validity is the four approaches
used for comparison. Due to the novelty of the CEDC



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 11

problem in the EC environment, DO has a different ob-
jective from CEDC and OO only considers the current
time slot, while IPEDC and MR do not consider the long-
term latency constraint. Thus, there is a threat that the
comparison does not suffice to comprehensively evaluate
CEDC-O. To minimize this threat, we enhanced IPEDC and
MR by including (32) into their implementation. Moreover,
we changed seven parameters, as presented in Table 3, to
simulate various CEDC scenarios. In this way, we could
evaluate our approaches by not only the comparison to
the other approaches, but also the demonstration of how
the changes in the parameters impact the performance of
CEDC-O.

5.10.2 External Validity
The main threat to the external validity of the evaluation
is whether our approaches can be generalized and applied
in other CEDC scenarios in the EC environment. To tackle
this threat, We measured the performance of our approaches
in a generic way. Specifically, we measured the data sizes
and cache spaces by the number of data units and the data
retrieval latency by the number of hops. In this way, the
evaluation results can be interpreted with specific models
for all cost components. In addition, we ran the simulations
on a widely-used real-world data set while varying seven
parameters to vary the size and the complexity of the CEDC
problem. This way, the representativeness and comprehen-
siveness of the evaluation are ensured.

6 RELATED WORK

Data caching have been extensively investigated in the fields
of conventional distributed computing and cloud comput-
ing environments. With the popularity of edge computing,
data caching in the edge computing environment is obtain-
ing attention from researchers recently.

6.1 Conventional Distributed Data Caching
In the last few decades, there are many data caching prob-
lems investigated in conventional distributed computing
environments, including web caching [13], content delivery
network [35], etc. Banerjee et al. [36] developed a content
placement strategy for information-centric network based
on data popularity, namely Greedy Caching. With popu-
lar contents cached in the network, the Greedy Caching
approach considered the cache miss rate at the edge to
decide what contents would be cached on the core server.
In [37], the authors formulated two caching strategies for
data publish-subscribe systems, including eviction-based
caching and time-to-live-based caching to address the space
and time issues, respectively. The authors of [38] focused
on balancing the trade-off between latency and cost in the
content-centric network. They addressed this issue with a
holistic model for provisioning the storage capability based
on the network performance and the provisioning cost.

6.2 Cloud Data Caching
In the cloud computing environment, a critical problem
of data caching is how to utilize cache space efficiently
on cloud hosts and mobile devices. Arteaga et al. [39]

proposed CloudCache, a method for managing cache, to
fulfill the caching requirement of the workload and mini-
mize cache wear-out. In [40], the authors presented how to
use segment access-aware dynamic semantic cache in the
cloud computing environment for relational databases. A
cache access algorithm was introduced to consider cache
exact hit, cache extended hit, cache partial hit and cache
miss. The authors of [41] explored the cache design space
for embedded processors with evolutionary techniques for
mobile and thin client processors in the cloud computing
environment. A heuristic and evolutionary method was
presented to generate a near-optimal cache space design
for enhancing service quality. In [42], the authors formu-
lated a benefit maximization problem and created a cache
replacement approach based on traffic requirements. They
also introduced a content clustering method for collecting
popular data and clustering similar contents.

6.3 Edge Data Caching

Edge computing (EC) extends cloud computing with com-
puting resources and services geographically distributed at
the edge of the cloud [43]. With the deployment of edge
servers, the problem of computation offloading arises. It
has been well studied with consideration of edge servers’
energy efficiency, offloading cost and joint caching [28], [44].

Recently, the challenges raised by data caching are being
investigated in the EC environment. Existing data caching
approaches are rendered obsolete by the new characteris-
tics of EC and thus cannot be directly applied in the EC
environment. Thus, researchers are proposing and investi-
gating new ideas and techniques for data caching in the EC
environment. Cao et al. present an optimal auction mecha-
nism to maximize the service provider’s revenue based on
cache allocation and user valuation reports. They propose
computationally efficient approaches to apply the auction
mechanism based on data retrieval and delivery costs. The
authors of [45] propose a caching system named Cachier
for recognition applications in the EC environment. Cachier
coordinates the loading balance between edge servers and
the cloud to minimize the data retrieval latency dynamically.
However, the above approaches employ offline methods
and require complete information about active users and
data requests in all time slots. They cannot handle edge data
caching scenarios where data and users may come and go
randomly.

Instead of solving the edge data caching problem opti-
mally in an offline manner, some researchers investigate on-
line approaches for solving the dynamic edge data caching
problems. Xu et al. [28] propose an online algorithm named
OREO to decide service caching and task offloading. The
system aims to minimize the total network latency and
applies a long-term energy consumption constraint to sta-
bilize the edge caching system. The authors of [46] propose
MOREA, an online algorithm considering user mobility, to
allocate different resources like caches and CPUs on edge
servers for computation offloading. In [47], the authors inte-
grate the cloud radio access network with the EC technology
to schedule resources including caches and computational
resources dynamically. They propose the VariedLen algo-
rithm to maximize the mobile network provider’s profit.
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They also extend the standard Lyapunov technology so
that individual tasks can be performed across multiple
time slots. However, existing works investigate edge data
caching only to complement computing offloading and fail
to give data caching sufficient attention as a unique technol-
ogy with advantages in reducing data retrieval latency and
improving the quality of services and users’ experiences,
especially from the app vendor’s perspective who is an
important stakeholder in the EC environment.

Edge computing inherits the pay-as-you-go pricing
model from cloud computing, which allows app vendors
to hire storage resources on edge servers from edge infras-
tructure providers to cache app data for their users. Thus,
the cost incurred by data caching for app vendors is critical
to the success of edge computing because, after all, app
vendors are the main customers in the edge computing en-
vironment. To the best of our knowledge, this paper makes
the first attempt to propose an approach named CEDC-O for
solving the CEDC problem from the app vendor’ perspec-
tive in the EC environment. By innovatively and realistically
modeling the CEDC problem as a long-term optimization
problem, CEDC-O can help app vendors ensure the long-
term performance of their edge data caching performance.

7 CONCLUSION

In this paper, we studied the collaborative edge data caching
(CEDC) problem. We first identified the major challenges
and proposed a comprehensive cost model for this problem,
where system cost is composed of data caching cost, data
migration cost and QoS penalty. We also proved the NP-
completeness of the CEDC problem. We proposed CEDC-O,
an online algorithm with provable performance guarantee,
and evaluated its performance with extensive simulations.
This research has established the foundation for the CEDC
problem and opened up a number of future research di-
rections. In our future work, we will consider dynamics
on available edge server caches, user mobility and security
policies.
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[13] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replace-
ment strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4,
pp. 374–398, 2003.

[14] K. Elhardt and R. Bayer, “A database cache for high performance
and fast restart in database systems,” ACM Transactions on Database
Systems (TODS), vol. 9, no. 4, pp. 503–525, 1984.

[15] A. Mukhopadhyay, N. Hegde, and M. Lelarge, “Optimal content
replication and request matching in large caching systems,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions, 2018, pp. 288–296.

[16] K. Ji, G. Quan, and J. Tan, “Asymptotic miss ratio of lru caching
with consistent hashing,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, 2018, pp. 450–458.

[17] G. Casale, “Analyzing replacement policies in list-based caches
with non-uniform access costs,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 432–440.

[18] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack,
“Wave: Popularity-based and collaborative in-network caching
for content-oriented networks,” in IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2012, pp. 316–
321.

[19] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching
attains order-optimal memory-rate tradeoff,” IEEE/ACM Transac-
tions on Networking (TON), vol. 23, no. 4, pp. 1029–1040, 2015.

[20] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal
request routing and content caching in heterogeneous cache net-
works,” IEEE/ACM Transactions on Networking (TON), vol. 25,
no. 3, pp. 1635–1648, 2017.

[21] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of
caching,” IEEE Transactions on Information Theory, vol. 60, no. 5,
pp. 2856–2867, 2014.

[22] C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic
caching: Sequential coding for computing,” IEEE Transactions on
Information Theory, vol. 62, no. 11, pp. 6393–6406, 2016.

[23] M. ETSI, “Mobile edge computing-introductory technical white
paper,” 2014.

[24] H. Guo and J. Liu, “Collaborative computation offloading for
multi-access edge computing over fiber-wireless networks,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526,
2018.

[25] A. D. JoSEP, R. KAtz, A. KonWinSKi, L. Gunho, D. PAttERSon,
and A. RABKin, “A view of cloud computing,” Communications of
the ACM, vol. 53, no. 4, 2010.

[26] M. Chen, Y. Hao, K. Lin, Z. Yuan, and L. Hu, “Label-less learning
for traffic control in an edge network,” IEEE Network, vol. 32, no. 6,
pp. 8–14, 2018.

[27] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5g,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2020 13

[28] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions, 2018, pp. 207–215.

[29] T. Zhang, F. Ren, and R. Shu, “Towards stable flow scheduling in
data centers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 11, pp. 2627–2640, 2018.

[30] N. Abedini and S. Shakkottai, “Content caching and scheduling
in wireless networks with elastic and inelastic traffic,” IEEE/ACM
Transactions on Networking (TON), vol. 22, no. 3, pp. 864–874, 2014.

[31] E. Hazan, S. Safra, and O. Schwartz, “On the complexity of
approximating k-set packing,” computational complexity, vol. 15,
no. 1, pp. 20–39, 2006.

[32] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[33] X. Xia, F. Chen, Q. He, G. Cui, P. Lai, M. Abdelrazek, J. Grundy, and
H. Jin, “Graph-based optimal data caching in edge computing,” in
International Conference on Service-Oriented Computing. Springer,
2019, pp. 477–493.

[34] Y. Liu, Q. He, D. Zheng, M. Zhang, F. Chen, and B. Zhang, “Data
caching optimization in the edge computing environment,” in
2019 IEEE International Conference on Web Services. IEEE, 2019,
pp. 99–106.

[35] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery
network,” in 14th USENIX Symposium on Networked Systems Design
and Implementation, 2017, pp. 483–498.

[36] B. Banerjee, A. Kulkarni, and A. Seetharam, “Greedy caching:
An optimized content placement strategy for information-centric
networks,” Computer Networks, vol. 140, pp. 78–91, 2018.

[37] M. Y. S. Uddin and N. Venkatasubramanian, “Edge caching for
enriched notifications delivery in big active data,” in 38th IEEE
International Conference on Distributed Computing Systems (ICDCS),
2018, pp. 696–705.

[38] Y. Li, H. Xie, Y. Wen, and Z.-L. Zhang, “Coordinating in-network
caching in content-centric networks: Model and analysis,” in
33rd IEEE International Conference on Distributed Computing Systems
(ICDCS), 2013, pp. 62–72.

[39] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao,
“Cloudcache: On-demand flash cache management for cloud com-
puting,” in 14th USENIX Conference on File and Storage Technolo-
gies(FAST), 2016, pp. 355–369.

[40] K. Ma, B. Yang, Z. Yang, and Z. Yu, “Segment access-aware dy-
namic semantic cache in cloud computing environment,” Journal
of Parallel and Distributed Computing, vol. 110, pp. 42–51, 2017.

[41] A.-H. A. Badawy, G. Yessin, V. Narayana, D. Mayhew, and
T. El-Ghazawi, “Optimizing thin client caches for mobile cloud
computing: Design space exploration using genetic algorithms,”
Concurrency and Computation: Practice and Experience, vol. 29, no. 11,
p. e4048, 2017.

[42] S. Tamoor-ul Hassan, S. Samarakoon, M. Bennis, M. Latva-Aho,
and C. S. Hong, “Learning-based caching in cloud-aided wireless
networks,” IEEE Communications Letters, vol. 22, no. 1, pp. 137–140,
2018.

[43] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores,
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