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Abstract—In recent years, edge computing, as an extension of cloud computing, has emerged as a promising paradigm for powering
a variety of applications demanding low latency, e.g., virtual or augmented reality, interactive gaming, real-time navigation, etc. In the
edge computing environment, edge servers are deployed at base stations to offer highly-accessible computing capacities to nearby
end-users, e.g., CPU, RAM, storage, etc. From a service provider’s perspective, caching app data on edge servers can ensure low
latency in its users’ data retrieval. Given constrained cache spaces on edge servers due to their physical sizes, the optimal data
caching strategy must minimize overall user latency. In this paper, we formulate this Constrained Edge Data Caching (CEDC) problem
as a constrained optimization problem from the service provider’s perspective and prove its NP-hardness. We propose an optimal
approach named CEDC-IP to solve this CEDC problem with the Integer Programming technique. We also provide an approximation
algorithm named CEDC-A for finding approximate solutions to large-scale CEDC problems efficiently and prove its approximation ratio.
CEDC-IP and CEDC-A are evaluated on a real-world data set. The results demonstrate that they significantly outperform four
representative approaches.
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1 INTRODUCTION

The world has witnessed an exponential growth of mo-
bile devices including mobile phones, wearable devices,
tablets, smart vehicle and Internet-of-Things (IoT) devices
[1]. These devices introduce massive traffic that leads to
network congestion and significantly impacts the quality
of service, especially service latency, which has become
the major obstacle to latency-sensitive applications such as
virtual or augmented reality, interactive gaming, real-time
navigation [2]. Edge computing is proposed to tackle this
challenge, where edge servers are attached to base stations
or access points close to users to offer them computation
and storage resources at the edge of the network [3]. It
is a key technology that facilitates the 5G mobile network
[4]. In the edge computing environment, edge servers, each
powered by one or more physical machines, are deployed at
base stations or access points that are geographically close to
app users. Service providers can hire computing capacities
on edge servers and host their applications on edge servers
(referred to as edge apps hereafter) to ensure low latency for
their app users [5]. In the meantime, computation tasks can
be offloaded from app users’ devices to their nearby edge
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servers to reduce the computation consumption and save
energy on their devices [6], [7].

As an increasing number of mobile and IoT devices
begin to access data through edge servers, more app data
will be delivered through edge servers for the app users.
Caching those app data, especially the popular ones like
viral videos and photos from service providers such as
Facebook, will minimize the data retrieval delay. They can
retrieve app data from edge servers rather than from the
remote cloud server if those data are already available on
those edge servers. Additionally, caching app data on edge
servers can also considerably reduce the amount of data
transferred from the cloud to app users, and consequently
lower the service providers’ cost of data transfer under the
pay-as-you-go pricing scheme [8].

Data caching techniques have been well-studied and
employed in many domains, i.e., database [9] and web
[10]. Data caching has also been intensively investigated
in the network domain to leverage its advantages, i.e. re-
ducing network latency, saving bandwidth consumption,
and reducing energy consumption. In the last few years,
many researchers have investigated caching strategies from
different perspectives, e.g., information theoretic caching
[11], coded caching [12] and request routing [13]. As a new
distributed computing paradigm, edge computing offers
new opportunities and raises critical challenges. The funda-
mental objective and mechanism are to caching popular app
data to ensure users’ low retrieve latency is the fundamental
objective for data caching. This is especially important for
latency-sensitive applications, e.g., interactive web gaming
such as Google Stadia, social video streaming such as Tic-
Tok, etc. Caching app data on edge servers can reduce the
network traffic data significantly, thus, the traffic burden on
the backbone network can be lifted [14].
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From the service provider’s perspective, edge data
caching (EDC) aims to cache a single data on edge servers
to cover all the app users in a specific area at minimum
data caching cost [15], [16]. However, three major issues
have not been considered properly by the existing work.
First, a service provider may want to cache multiple data
for its users in the same area. For example, YouTube may
want to cache multiple popular videos requested by a
lot of users. Second, edge servers’ storage capacities are
constrained and must be reserved by service providers for
caching their data. Unlike cloud servers that have access
to virtually unlimited storage capacities in the cloud, edge
servers’ storage capacities are limited due to its size limit [6],
[17], [18], [19]. In the open edge computing environment,
many service providers may need to hire storage capacities
on the edge servers in the same area for caching their data.
This causes fierce competition among service providers and
makes it practically impossible for every service provider
to cache a huge amount of data on every edge server.
In such an environment, a common practice is for service
providers to reserve storage spaces on edge servers for
caching their data. Thus, cost-effectiveness is a key factor
in the formulation their data caching strategies. Unlike the
edge infrastructure provider who often aims to serve all
the users, service providers pursue to maximize caching
benefits by fully utilizing the reserved caching spaces. Full
user coverage is not always mandatory. Third, an app user
may be able to retrieve data from edge servers via multiple
hops over the edge server graph, instead of just zero or
one hop as constrained in [15]. Based on the edge-cloud
architecture [20], adjacent edge servers deployed at different
base stations can communicate with each other and transmit
data via high-speed links [6], [21], [22]. Thus, an app user
can access data cached on an edge server via multiple hops
over the edge server graph. However, to ensure low data
retrieval latency for its users, a service provider must specify
its app-specific latency constraint by the maximum number
of hops via which its user can retrieval data from an edge
server over the edge server graph.

To summarize, in practice, a service provider usually
reserves some caching spaces on edge servers - depending
on its caching budget - to cache multiple popular data
on edge servers in an area for its users to access un-
der the latency constraint. An optimal data caching strategy
must minimize its app users’ data retrieval latency with
constrained hired storage spaces on edge servers. In this
paper, this problem is referred as the Constrained Edge Data
Caching (CEDC) problem. We study this problem from the
service provider’s perspective to address the above three
issues. The major contributions of this paper are:

• We model and formulate the CEDC problem as a
constrained optimization problem (COP) from the
service provider’s perspective.

• We prove that the CEDC problem is NP-hard based
on the weighted k-set packing problem.

• We develop an optimal approach, namely CEDC-
IP, for solving the CEDC problem exactly with the
Integer Programming technique.

• We develop an approximation approach named
CEDC-A for finding approximate solutions to large-
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Fig. 1. An example CEDC scenario

scale CEDC problems efficiently and prove the ap-
proximation ratio.

• We conduct extensive experiments on a real-world
data set to evaluate the proposed approaches against
four representative approaches.

The rest of the paper is organized as follows. Section 2 il-
lustrates and motivates the CEDC problem with an example.
Section 3 formulates the CEDC problem and proves theNP-
hardness of the CEDC problem. Section 4 proposes and ana-
lyzes the optimal approach CEDC-IP and the approximation
approach CEDC-A for solving CEDC problems. In section
5, we experimentally evaluates the proposed approaches
based on extensive experiments. After that, we review the
related work in Section 6. In Section 7, we conclude this
paper and point out the future work.

2 MOTIVATING EXAMPLE

In the edge computing environment, adjacent edge servers
are deployed at base stations. The communications and data
sharing between neighbour edge servers are through high-
speed links [6], [21]. In a specific geographic area, edge
servers and links between them can constitute an edge server
network. This edge server network can be modeled as a
graph where each edge server is represented by a node and
each link is represented by an edge. Data caching in an
edge server network differs from that in the conventional
distributed computing environments and cloud computing
environment with its three unique constraints, i.e.,server ca-
pacity constraint, server coverage constraint and server adjacency
constraint.

Server Capacity Constraints: The storage resources on
an edge server are usually limited due to its size limit [3],
[15]. The competition between service providers makes it
impossible for a service provider to cache all app data on
every edge server. Thus, the common practice is for service
providers to reserve certain cache spaces on edge servers for
caching popular app data.

Server Coverage Overlaps: To avoid any blank coverage
areas in a specific geographic area, the coverage areas of
nearby edge servers often intersect [23], [24]. Thus, app
users in an overlapping area can access any of the edge
servers covering them.
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Server Adjacency Constraints: An app user can retrieve
a piece of app data from its nearby edge servers – we refer to
as local edge servers hereafter – that cover the app user if the
app data is cached on one of these edge servers. If the app
data is not cached on any of those local edge servers, the app
user can retrieve it from other edge servers that are linked
to its local edge servers via multiple hops over the edge
server graph – we refer to as neighbor edge servers – under the
latency constraint. Either way, the service provider’s latency
constraint will ensure that it is faster than retrieving the app
data from a server in the remote cloud.

From the service provider’s perspective, the objective of
CEDC is to minimize its users’ overall data retrieval latency
by caching app data with limited reserved cache spaces
on edge servers in a specific area. A representative CEDC
scenario is caching viral videos and photos for social web
apps. Social app users such as Facebook or Instagram users
access popular videos and photos shared by either their
friends or public figures. Always transmitting data from the
cloud to individual app users creates immense pressure on
the network and increases the latency in their data retrieval,
especially in areas with high user density and dynamic
traffic conditions. Caching those data on edge servers brings
them much closer to the users and reduce the latency in their
data retrieval.

Example 1: Fig. 1 presents an example area with four
edge servers, i.e., {v1, ..., v4}, each covering a specific geo-
graphic area. The boxes by each edge server represent the
cache spaces hired by the service provider on that edge
server. To illustrate the CEDC problem generically, each box
in Fig. 1 can cache one piece of app data. From the service
provider’s perspective, caching all its popular data on every
edge server in the area can easily accommodate all its users
in the area. However, this is not cost-effective nor practical
due to the server capacity constraint discussed above. Due
to the server coverage constraint and the server adjacency
constraint, the data must be cached on a number of those
edge servers so that all the users in that area can retrieve the
data from either their local edge servers or neighbor edge
servers. For example, we assume that the service provider’
latency constraint in Fig. 1 is 1 hop. This allows an app
user to access any edge servers within 1 hops over the edge
server graph for cached app data. Otherwise, it will have to
retrieve it from the service provider’s remote cloud server.
For example, u1 and u5 can only retrieve cached data from
either their local edge server v1 or their neighbor edge server
v2. Apparently, there are multiple data caching strategies
that fulfill all the three constraints. The one that minimizes
the users’ overall data retrieval latency is the optimal
solution to the CEDC problem. Thus, the CEDC problem
is inherently a constrained optimization problem (COP).

Model: In this paper, we quantify the optimization ob-
jective and constraints in the CEDC problem in a generic
manner. For example, we model the data sizes and cache
spaces by the number of data units, and the data retrieval
latency by the number of hops. In Fig. 1, each piece of data
to be cached is treated as 1 unit, and the total number of
cache spaces on v1 is 4 units, 2 of which are available at
the moment. This way, these models can be easily extended
for calculating data caching cost given the data size and a
specific pricing model, e.g., caching cost per size. Let us still

assume that the service provider’s latency constraint in this
scenario is 1 hop, and user u7 requests for data d1 and d6.
The data retrieval latency consists of two major components:
the latency between the user and its local edge server(s), and
the latency between edge servers. The former component is
not avoidable and thus is not considered in the formulation
of data caching strategy. Thus, u7’s data retrieval latency is
0 hop if the requested data is cached on edge server v4, or 1
hop if it is cached on v2 or v3. If the data is only cached on
edge server v1, u7 cannot retrieve the data from any edge
server in this area without violating the latency constraint.
Similar to the generic models for data and cache spaces,
the generic latency model can be extended with different
latency specifications.

The model and approaches proposed in this research
are generic and applicable to various apps. In our model
data are cached on edge servers in whole and we do not
consider the situation where data can be partially cached,
e.g., video segments. In addition, the scale of the CEDC
problem in real-world scenarios can be much larger than the
example presented in Fig. 1. Finding an optimal solution to
such a CEDC problem is not trivial. Similar to many studies
of edge computing [6], [21], [23], [25], [26], [27], [28], [29],
we investigate the CEDC problem in quasi-static scenarios
where the app users remain unchanged during the data
retrieval, e.g., their data needs and locations. More dynamic
scenarios will be investigated in our future work.

3 PROBLEM FORMULATION

3.1 Problem Statement
In this research, we model the networked n edge servers in a
specific area as a graph G(V,E) where V is the set of nodes
and E is the set of edges in G. In this graph, each node
vi ∈ V represents an edge server, while each edge et ∈ E
represents an edge between two nodes in G. In the remainder
of this paper, we will speak inter-changeably of an edge server and
its corresponding node in G, both denoted by v. The notations
adopted in the paper are summarized in Table 1.

As described in Section 2, we formulate the CEDC prob-
lem in a generic manner by measuring data retrieval latency
by the number of hops between edge servers and data sizes
and spaces by the number of data units.

Given a set of data D = {d1, ..., dk} to be cached on the
edge servers in the area, a data caching strategy is a vector
R = {〈r11, ..., r1n〉, ..., 〈rk1 , ..., rkn〉}, where rfi ∈ {0, 1}(1 ≤ i ≤
n, 1 ≤ f ≤ k) denotes whether data df is cached on edge
server vi.

As discussed in Section 2, the service provider has re-
served a finite amount of cache spaces on each edge server.
Thus, the number of data cached on an edge server vi cannot
exceed its available cache spaces asi:∑

df∈D
rfi ≤ asi (1)

The distance between two nodes in the graph is mea-
sured by their shortest path. As we use the number of hops
to measure the data retrieval latency, the latency in an app
user u’s retrieval of data f is measured as follow:

lfu = min{li,j , rfj = 1, vj ∈ V },∀u ∈ Ui (2)
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TABLE 1
Summary of Notations

Notation Description
asi available cache spaces on edge server i
bfu maximum benefit for user u retrieving df

bu,j benefit of caching replica on server vj for app user u
D finite set of data
df data f

E set of links between edge servers
G graph presenting a particular area
k total number of data in D
L latency constraint from service provider
li,j latency from server i to server j
lfu minimum latency from app user u to retrieve df

m total number of app users
n total number of edge servers
R set of binary variables 〈rf1 , ..., r

f
n〉 indicates whether

data df is cached on edge servers from v1 to vn

rfi binary variable indicating cache df on edge server vi
tfu binary variable indicating user u requires data df

U set of app users
Ui set of users covered by server vi
V set of edge servers
vi edge server i

where li,j is the number of hops between vi and vj .
To evaluate and compare the effectiveness of different

data caching strategies, the concept of data caching benefit
is introduced here. It is calculated based on the latency
reduction in user data retrieval. We use the number of hops
reduced by cached data on an edge server to measure the
data caching benefit. Given a latency constraint value L,
the data caching benefits is 0 when the latency achieves
L + 1 hops. Denote lT = L + 1 as the value breaking the
threshold, the following equation shows how to calculate
the benefit bu,j produced for app user u ∈ Ui if edge server
vj is selected to cache the data:

bu,j = max{lT − li,j , 0} (3)

Example 2: Take Fig. 1 as an example. Let us assume
L = 1 and edge server v1 is selected to cache data d5. This
way, LT = 2 and we can calculate the benefits for user u2,
u5 and u6 to obtain d5 from v1, where b2,1 = 1, b5,1 = 2 and
b6,1 = 0.

As discussed in Section 2, to avoid the blank area that
are not covered by any edge servers, the coverage of nearby
edge servers often partially overlap [3]. An app user in the
overlapping area can access multiple optional local edge
servers and neighbor edge servers for cached data. Thus, the
data caching benefit produced by the data caching strategy
for an app user u to retrieve data f is:

bfu = max{rfj · bu,j · t
f
u, vj ∈ V, tfu ∈ {0, 1}} (4)

where the binary variable tfu indicates whether user u re-
quires df .

From the service provider’s perspective, the optimiza-
tion objective is to maximize the total reduction in all users’
overall data retrieval latency produced by its data caching

strategy R, which can be converted to the maximization of
the total caching benefit of all users based on (4):

maximize benefit(R) (5)

3.2 Problem Hardness
In this section, we demonstrate that the COP of CEDC is
NP-hard by proving the following theorem.
Theorem 1. The COP of CEDC is NP-hard.

Proof To prove this problem is NP-hard, we first in-
troduce the weighted k-set packing problem (WKSP). The
WKSP problem is known to be NP-hard [30]. Given a
universe Ue with elements ∀e ∈ Ue, a set S of subsets of Ue

and an integer number k. The subset C is a packing, where
C ⊆ S. All sets s ⊆ C are pairwise disjoint. Let weight(s)
be the weight of the set s and k be the maximum number of
selected sets. The formulation is displayed below:

object : max
∑
s∈C

weight(s) ·Xs (6a)

s.t. :
∑
s∈S

Xs ≤ k (6b)

Xs ∈ {0, 1},∀s ∈ S (6c)∑
e∈Ue

Xe ≤ 1 (6d)

Now we prove that the WKSP problem can be reduced
to an instance of the CEDC problem. We define the elements
based on the data requests and the users. For example, u1
require data {d1, d2}, u2 requires {d2} and u3 requires {d1}.
In this case, we can define the elements e ∈ {t11, t21, t22, t13}.
The reduction can be done as follows: given an instance
WKSP (S,Ue, k, weights(s)), we can construct the set of
|S| servers, denoted by V , and the set of |Ue| users, de-
noted by U . Let n = k, we can construct an instance
CEDC(V,U, n, benefit(v)) with the reduction above in
polynomial time, where function benefit(vf ) is calculated
as the sum of benefit if data f is cached on edge server v. As
the constraint (6b) restricts the total number of selected sets,
we can project the equation

∑
vi∈V

∑
df∈D r

f
i ≤

∑
vi∈V asi

based on (1) in the CEDC problem to that constraint, such as
benefit(vi) = 0 if there is no available cache spaces on edge
server i. Based on (3) and (4), data f requested by user u ∈ U
can only be calculated once into the data caching benefit.
Thus, constraint (6d) can be fulfilled. Moreover, the increase
in the benefit produced by caching data f on edge server v
can be projected to weight(s). In this case, any solution R
satisfying objective (6a) also satisfies objective (4).

In conclusion, any solution Y always satisfies the re-
duced CEDC problem if Y satisfies the WKSP problem.
Therefore, the CEDC problem is reducible from the WKSP
problem and it is NP-hard.

�

4 EDGE WEB DATA CACHING STRATEGY FORMU-
LATION

We first model the CEDC problem with the Integer Pro-
gramming technique, then prove that the CEDC problem
is NP-hard. After that, we propose an approximation algo-
rithm for finding approximate solutions to large-scale CEDC
problems efficiently and prove its approximation ratio.
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Fig. 2. Example CEDC Strategies

4.1 Optimization Approach

From the service provider’s perspective, the solution to the
CEDC problem must maximize the data caching benefit
measured by the total reduction in all the app users’ data
retrieval latency in this area. In the meantime, the server
capacity constraint, server coverage constraint and server
adjacency constraint must be fulfilled. Thus, the CEDC
problem can be modeled as a constrained optimization
problem (COP). The COP model for the CEDC problem is
formally expressed as follows.

For a graphG = (V,E), where V = {v1, .., vn}, there is a
matrix of variables R = {〈r11, ..., r1n〉, ..., 〈rk1 , ..., rkn〉}, where
rfi ∈ {0, 1},∀i ∈ {1, ..., n},∀f ∈ {1, ..., k}, r

f
i being 1 if a

data replica of df is cached on the ith node, 0 otherwise. The
constraints for the COP model are:

bfu = max(rfi · bu,i · t
f
u)

∀i ∈ {1, ..., n},∀u ∈ {1, ...,m},∀f ∈ {1, ..., k}
(7)

k∑
f=1

rfi ≤ asi,∀i ∈ {1, ..., n},∀f ∈ {1, ..., k} (8)

Constraint family (7) is converted from (4). It ensures
that every app user will always retrieve the required data
from the nearest possible edge server. Constraint family (8)
guarantees that the data cached on each edge servers must
not exceed the available cache spaces.

As discussed in Section 3.1, there might be multiple
solutions to this COP fulfilling (7) and (8).

Example 3: In Fig. 1, there are multiple possible
solutions satisfying constraints (7) and (8). Assuming the
latency constraint is no more than 1 hop in this scenario, two
possible data caching strategies are presented in Fig. 2:R1 =
{〈1, 0, 0, 0, 1, 0, 0〉, 〈1, 1, 0, 0, 1, 0, 0〉, 〈0, 0, 0, 0, 1, 1, 1〉, 〈1, 0,
0, 0, 0, 0, 0〉} that caches data {d1, d5} on v1, {d1, d2, d5}
on v2, {d5, d6, d7} on v3 and {d1} on v4, and R2 =
{〈1, 0, 1, 0, 0, 0, 0〉, 〈1, 1, 1, 0, 0, 0, 0〉, 〈1, 1, 1, 0, 0, 0, 0〉, 〈1, 0,
0, 0, 0, 0, 0〉}, caching data {d1, d3} on v1, {d1, d2, d3} on v2,
{d1, d2, d3} on v3 and {d1} on v4. Both of R1 and R2 fulfill
constrains (7) and (8). However, the overall caching benefits
produced by R1 and R2 are different based on (4) and (7):
benefit(R1) = 17 and benefit(R2) = 9. Thus, the below
objective function that maximizes the benefit of caching

data D over G is included in the COP model to achieve the
service provider’s optimization objective:

max
m∑

u=1

k∑
f=1

bfu (9)

The COP above can be solved with Integer Programming
problem solvers, such as Gurobi1 and IBM CPLEX Opti-
mizer2. This optimal approach is named CEDC-IP hereafter.
Specific caching cost models and network latency models
can be easily integrated to this CEDC-IP model.

4.2 Approximation Algorithm

As the COP of CEDC is NP-hard, finding the optimal solu-
tion to the COP is intractable in large-scale CEDC scenarios.
This section presents an approximation algorithm, named
CEDC-A, for finding approximate solutions to large-scale
CEDC problem efficiently.

Given V = {v1, ..., vn}, U = {u1, ..., um} and D =
{d1, ..., df}, CEDC-A creates an initial candidate list , and
then implements an iterative process for each initial candi-
date. After the above processes, CEDC-A selects the can-
didate solution with the maximum benefit for a service
provider to cache data on selected edge servers. The pseudo
code is presented in Algorithm 1, while the functions used
in Algorithm 1 are presented in Algorithm 2 and 3.

In this algorithm, the decision to cache one kind of data
on an edge server is treated as a candidate. The algorithm
starts with the initialization in Lines 1-3. The algorithm
initiates the set of solution candidates, C , by calculating the
benefit increment of each data in each edge server’s cover-
age area (Line 3). Each candidate has two properties, i.e.,
server id and data. CEDC-A always selects the candidate
with maximum benefit value to cache candidate’s data on
candidate’s server based on ci ∈ C (Lines 4 to 12). In the
end, the solution with the highest benefits will be selected
as the result of CEDC-A.

The computational complexity of functions presented in
Algorithm 2 and 3 is O(kn). Moreover, initCandidates()
can produce at most kn candidates, and the used cache

1. http://www.gurobi.com/
2. https://www.ibm.com/analytics/cplex-optimizer
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Algorithm 1 CEDC-A Algorithm
1: Input: availableSpaces, U , V , D
2: C ← ∅
3: C = initCandidates()
4: for each ci ∈ C do
5: as = copy(availableSpaces)
6: candidate = getMaxBenefitCandidate(ci)
7: while |as| != 0 & candidate != null do
8: ci ← ci

⋃
candidate

9: ascandidate.id = ascandidate.id − 1
10: candidate = getMaxBenefitCandidate(ci)
11: end while
12: end for
13: R = arg maxci∈C benefit(ci);
14: return R

Algorithm 2 Function initCandidates
1: initCandidates():
2: Candidates← ∅
3: for each vi ∈ V do
4: if asi! = 0 then
5: for each df ∈ D do
6: Candidates← Candidates

⋃
{rfi }

7: end for
8: end if
9: end for

10: return Candidates

spaces on all edge servers are also at most kn. Thus, in
the worst-case scenario, the computational complexity of
Algorithm 1 is O(k2n2).

Now, we prove the approximation ratio of CEDC-A,
where it is the ratio of benefits produced by CEDC-A and
that produced by optimal solution in the worst cases.

As function initCandidates() provides the candidate
list with the first cache decision, we can treat this function
as the first iteration in Algorithm 1. Let OPT present the
optimal solution (found by CEDC-IP) of the CEDC problem
and benefit(OPT ) denote the benefit obtained by the OPT
caching strategy. Let us assume that the order of cache
decisions made by OPT is ascending in terms of cache
benefit, and γ is the index of the iteration when the first
edge server included in OPT ’s strategy but not in CEDC-
A’s strategy R.

Theorem 2. For each iteration t ≤ γ, the following inequality
is satisfied:

benefit(OPT )− benefit(Rt−1) ≤ |as| ·∆bt (10)

where Rt−1 is the strategy in iteration t − 1 and ∆bt is
the benefit produced by including rt into strategy R.

Proof Since Rt selects the edge server with the maximum
benefit at the tth iteration, for each edge server in OPT
but not in Rt−1, the benefit increment is at most ∆bt. Since
there are a maximum of |as| available cache spaces, the total
benefit produced by the edge servers in OPT but not Rt−1
is at most |as| ·∆bt. Thus, the above inequality is satisfied.
�

Algorithm 3 Function getMaxBenefitCandidate
1: getMaxBenefitCandidate(ci):
2: candidate = null
3: for each vj ∈ V

⋂
¬ci do

4: if asj ! = 0 then
5: for each df ∈ D do
6: if benefit(ci

⋃
candidate) ≤ benefit(ci

⋃
rfj ) then

7: candidate = new Candidate()
8: candidate.id = j
9: candidate.data = f

10: end if
11: end for
12: end if
13: end for
14: return candidate

Theorem 3. For each iteration t > γ, the benefit produced by
Rt fulfills:

benefit(Rt) ≥
(

1−
(

1− 1

|as|

)t−1
)
benefit(OPT )

(11)

Proof Based on Theorem 2, the benefit achieved by St can
be calculated by (12). Thus, we can easily prove (11) by the
inductive proof. The details of the proof process are omitted
here.

benefit(Rt) = benefit(Rt−1) + ∆bt

≥ benefit(Rt−1) +
benefit(OPT )− benefit(Rt−1)

|as|

=

(
1− 1

|as|

)
benefit(Rt−1) +

1

|as|
benefit(OPT )

(12)

�

Theorem 4. The approximation ratio of CEDC-A is
2
3

(
1− 1

e

)
.

Proof Based on the cache space constraint(8), the algo-
rithm can have at most |as| iterations. Thus, when t =
|as|+ 1, we can obtain (13) based on Theorem 3:

benefit(R|as|+1) ≥
(

1− 1

e

)
benefit(OPT ) (13)

However, this exceeds the constraint (8). As discussed
above, the first decision in function initCandidates() is
treated as the first iteration.

When |as| = 1, the solution obtained by CEDC-A is the
same as OPT . In this case, the approximation ratio is 1.
When |as| ≥ 2, the benefit increment by ∆b|as|+1 is less
than or equal to 1

2benefit(R|as|). Thus, there is

benefit(R|as|) = benefit(R|as|+1)−∆b|as|+1

≥
(

1− 1

e

)
benefit(OPT )− 1

2
benefit(R|as|)

(14)

Based on (14), the approximation ratio of CEDC-A is
2
3

(
1− 1

e

)
. �
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5 EXPERIMENTAL EVALUATION

We experimentally evaluate the performance of CEDC-IP
and CEDC-A. All of the experiments were conducted on
a Windows-10 machine equipped with Intel Core i7-8550
processor (8 CPUs, 1.80GHz) and 8GB RAM. The COP dis-
cussed in Section 4 is solved with IBM’s CPLEX Optimizer.

5.1 Baseline Approaches

In the experiments, we evaluate the performance of CEDC-
IP and CEDC-A against four representative approaches:

• Request-based Collaborative Caching (RCC): This ap-
proach aims to minimize the overall caching cost
incurred by serving the most users. This algorithm
originated from the collaborative data caching ap-
proach in [31], which is implemented in the content
delivery network.

• NCCEDC-IP: This approach finds the non-
collaborative data caching optimal solution, which
does not allow collaboration among edge servers.
Thus, app users can only access data from their local
edge servers. Other than that, it is formulated and
implemented in a way similar to CEDC-IP.

• Greedy-Connection (GC): This approach always selects
the edge server that has the most neighbour edge
servers to cache data under Constraint family (8).

• Random: This approach always selects the edge server
randomly to cache data under Constraint family (8).

5.2 Experiment Settings

5.2.1 Experiment data

The experiments are conducted on a real-world data set,
named EUA data set3 [3], which is widely used in research
on edge computing [23], [32], [33]. This data set contains the
geographical locations of 125 base stations and 816 mobile
users in the Melbourne CBD area. The links between edge
servers are randomly generated to ensure the edge servers
constitute a connected graph. In the experiments, L is set to
1 hop. The available cache spaces on each edge server are
generated following a normal distribution X ∼ N (µ, σ2),
where µ is half of the number of maximum cache spaces and
σ is 1.

5.2.2 Experimenting parameters

To simulate different CEDC scenarios, three parameters are
varied in the experiments.

• Number of edge servers |V|. This parameter impacts
the size of graph G and varies from 4 to 14 in steps
of 2.

• Number of maximum cache spaces MS. This param-
eter impacts the available cache spaces on edge edge
server and varies from 2 to 10 in steps of 2.

• Number of data |D|. The total number of data to be
cached over G. This parameter varies from 3 to 8 in
steps of 1.

3. https://github.com/swinedge/eua-dataset

TABLE 2
Parameter Settings

|V| MS |D|
Set #1.1 4, 6, 8, 10, 12, 14 4 6
Set #1.2 10 2, 4, 6, 8, 10 6
Set #1.3 10 4 3, 4, 5, 6, 7, 8
Set #2.1 20, 30, 40, 50, 60, 70 10 15
Set #2.2 50 2, 4, 6, 8, 10 15
Set #2.3 50 10 5, 10, 15, 20, 25, 30

5.2.3 Performance Metrics
In this experiments, three metrics are employed to evaluate
the performance of the approaches, one for effectiveness and
one for efficiency:

• Benefit per cache cost (bpc), measured by the total
number of hops reduced divided by the data cache
cost, higher the better.

• Served request ratio per cache cost (SRRpc), mea-
sured by the ratio of the served data requests divided
by the reserved data cache cost, higher the better.

• Computational overhead (time), measured by the
time taken to find the solution, the lower the better.

Table 2 summarizes the parameter settings. There are
two main sets of experiments, Set #1 for small-scale ex-
periments and Set #2 for large-scale experiments. All six
approaches are implemented in Set #1, while CEDC-IP and
NCCEDC-IP are not implemented in Set #2, because they
cannot find an optimal solution to the NP-hard CEDC
problem in Set #2 within a reasonable time. Every time the
value of a parameter varies, the experiment is repeated for
100 times and the averaged results are reported. To isolate
the impact of the number of app users, we randomly select
40 covered app users and 200 covered app users from the
data set in each run of the experiments in Set #1 and Set #2,
respectively.

5.3 Experimental Results
Table 3 summarizes the results of experiment Set #1 and Set
#2 where the best and second-best performances are marked
as dark and light grey, respectively, in each column.

5.3.1 Impact of number of edge servers
The results of experiment Set #1.1 are presented in Fig.
3(a) and Fig. 4(a). It shows that the benefit per cache cost
and the served request ratio per cache cost achieved by
CEDC-IP and CEDC-A outperform the other approaches
significantly. In Fig. 3(a), when the number of edge servers
increases from 4 to 14, the benefit per cache cost achieved
by all six approaches decreases, from 13.16 to 4.34 by 67.02%
for CEDC-IP, from 12.57 to 4.20 by 66.59% for CEDC-A, from
10.99 to 3.71 by 66.24% for RCC, from 10.35 to 3.59 by 65.31%
for NCCEDC-IP, from 9.54 to 3.34 by 64.99% for GC and
from 7.89 to 3.06 by 61.21% for Random. The advantages of
CEDC-IP are 3.77% over CEDC-A, 18.47% over RCC, 25.53%
over NC, 38.12% over GC and 62.76% over Random on
average. It is also shown in Fig. 3(a) that the advantages
of CEDC-IP and CEDC-A increase with the increase in
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TABLE 3
Average performance results

Approaches
Set #1.1 Set #1.2 Set #1.3

bpc SRRpc (%) T ime bpc SRRpc (%) T ime bpc SRRpc (%) T ime

CEDC-IP 7.4817 7.5450 1.6518 4.7040 4.6500 0.6380 5.9150 5.7500 10.6384
CEDC-A 7.2100 7.6933 0.0002 4.5840 4.7000 0.0003 5.7183 5.7233 0.0002

RCC 6.3150 6.0817 0.0001 4.1880 3.9660 0.0002 5.2250 5.2250 0.0001
NCCEDC-IP 5.9600 6.7217 0.4198 3.8820 4.1940 0.3318 4.9483 5.2517 1.1959

GC 5.4167 5.0900 0.0002 3.6700 3.4820 0.0002 4.5917 4.3300 0.0001
Random 4.5967 4.4217 0.0001 3.3580 3.1940 0.0002 4.2467 4.0433 0.0001

Approaches
Set #2.1 Set #2.2 Set #2.3

bpc SRRpc (%) T ime bpc SRRpc (%) T ime bpc SRRpc (%) T ime

CEDC-A 3.1288 0.5698 0.0571 3.7530 0.7534 0.0346 2.9696 0.5194 0.0833
RCC 2.7973 0.5025 0.0104 3.1547 0.5889 0.0055 2.6645 0.4590 0.0146
GC 2.5341 0.4527 0.0053 2.4462 0.4632 0.0024 2.6064 0.4550 0.0051

Random 2.3308 0.4202 0.0031 2.1924 0.4166 0.0021 2.4447 0.4298 0.0047

the number of edge servers. Fig. 4(a) shows that the served
request ratio per cache cost of CEDC-A is almost the same
as that of CEDC-IP. Both CEDC-IP and CEDC-A achieve
much higher average served request ratio per cache than the
other approaches, i.e., 0.0755 (CEDC-IP) and 0.0769 (CEDC-
A) versus 0.0608 (RCC), 0.0672 (NCCEDC-IP), 0.0509 (GC)
and 0.0442 (Random).

The experimental results of Set #2.1 are depicted in Fig.
5(a) and Fig. 6(a). Overall, CEDC-A achieves the highest
benefit and served request ratio per cache cost on average.
As shown in Fig. 5(a), CEDC-A outperforms RCC, GC and
Random in benefit per cache cost, by 11.85%, 23.47% and
34.24%, respectively. In terms of served request ratio per
cache cost, Fig. 6(a) demonstrates that the advantages of
CEDC-A are 13.39% over RCC, 25.87% over GC and 35.60%
over Random.

With the increase in the number of edge servers (4 to 14
in Set #1.1 and 20 to 70 in Set #2.1), the benefit and served
request ratio per cache cost achieved by all approaches de-
crease. The reason is that, when the number of users is fixed,
the maximum benefits and the total number of requests are
fixed. Accordingly, the benefit and served request ratio per
cache cost decrease when more cache spaces are hired by
the service provider with the fixed number of users.

5.3.2 Impact of maximum cache spaces
The impacts of the maximum cache spaces on the ap-
proaches are shown in Fig. 3(b), Fig. 4(b), Fig. 5(b) and Fig.
6(b). In experiment Set #1.2, CEDC-IP achieves the highest
benefit per cache cost again, followed by CEDC-A. In terms
of the served request ratio per cache cost, CEDC-IP and
CEDC-A also outperform the other approaches significantly.
In Fig. 3(b), both CEDC-IP and CEDC-A outperform RCC,
NCCEDC-IP, GC and Random, by an average of 12.32% and
9.46%, 21.17% and 18.08%, 28.17% and 24.90%, 40.08% and
36.51%, respectively. Moreover, Fig. 4(b) shows that, for the
served request ratio per cache cost, the average advantages
of CEDC-A are 1.07% over CEDC-IP, 18.61% over RCC,
12.16% over NCCEDC-IP, 35.09% over GC and 47.28% over
Random. With the increase in the maximum cache spaces
from 2 to 10 in Set #1.2, the cache cost increases. As the

number of users is fixed at 40, the maximum total benefits
are fixed as well. Thus, the benefit and served request ratio
per cache cost decrease for all approaches with the increase
in the maximum cache spaces, while the trends and their
trends are similar in Fig. 5(b) and Fig. 6(b). In Set #2.2,
CEDC-A achieves the highest benefit and served request
ratio per cache cost again. The advantages of CEDC-A
are 18.97% and 27.93% over RCC, 53.42% and 62.65% over
GC, 71.18% and 80.84% over Random, in terms of benefit
per cache cost and served request ratio per cache cost,
respectively.

Based on the results shown in the above figures, the
advantages of CEDC-IP and CEDC-A are more even more
significant with fewer available cache spaces. This indi-
cates that CEDC-IP and CEDC-A are particularly suitable
for the edge computing environment. This is because it is
a highly competitive environment where the resources on
edge servers available for data caching are constrained.

5.3.3 Impact of number of data

Fig. 3(c) and Fig. 4(c) depict the results obtained in Set #1.3
where the number of data to be cached varies. In terms
of the benefit per cache cost and the served request ratio
per cache cost, CEDC-IP and CEDC-A outperform the
other approaches with significant margins. In terms of
the benefit per cache cost, as demonstrated in Fig. 3(c), the
average advantages of CEDC-IP are 3.44% over CEDC-A,
13.21% over RCC, 19.54% over NCCEDC-IP, 28.82% over
GC and 39.29% over Random. In Fig. 5(c) and Fig. 6(c),
the advantage of CEDC-A is significant over the other
three approaches. On average, CEDC-A outperforms RCC
by 11.45% and 13.16%, GC by 13.93% and 14.15%, Random
by 21.36% and 20.85%, in the benefit per cache cost and
served request ratio per cache cost, respectively.

Those results also demonstrate that the performance of
both CEDC-IP and CEDC-A decreases much slower than
the other approaches when the number of data to be cached
increases. That is, they scale better with the number of data
to be cached.
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Fig. 3. Benefit per cache cost vs. parameters in Set #1
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Fig. 4. Ratio of served request per cache cost vs. parameters in Set #1

5.3.4 Efficiency
The efficiency of an approach is evaluated by its compu-
tational overhead measured by the average time (in sec-
onds) taken to find a solution to the CEDC problem. The
results are summarized in Table 3. As shown, CEDC-IP is
much more computationally expensive than all the other
approaches in Set #1. It takes 10.6384 seconds on average
in Set # 1.3. This validates the NP-hardness of the CEDC
problem - excessive computational overheads are inevitable
for finding the optimal solution to large-scale CEDC prob-
lems. The other approaches, including CEDC-A, RCC, GC
and random, can find a solution almost immediately in Set
#1. In Set #2, the execution time increases for all approaches.
In Set #2, Random takes the least time to between 0.0021 and
0.0047 seconds on average, while CEDC-A takes the most
time, between 0.0346 seconds and 0.0833 seconds. CEDC-
A takes more time than RCC, GC and Random. This is
the performance price to pay for CEDC-A’s effectiveness
advantage over these approaches as shown and discussed
above. With the significant advantages of CEDC-A, espe-
cially where there are more edge servers, more data, and
less storage space, it is worth applying CEDC-A in the real
deployment.

5.3.5 Conclusion
Overall, CEDC-IP and CEDC-A outperform GC and Ran-
dom significantly and consistently in formulating cost-
effective data caching strategies in different CEDC scenarios.
As an approximation algorithm, the effectiveness of CEDC-
A is 96.37% to 97.54% on average as high as CEDC-IP as

shown by the results of experiment Set #1. In Set #2, CEDC-
A outperforms all other approaches significantly at the price
of slightly higher computational overheads. Thus, CEDC-IP
is suitable for solving small-size CEDC problems. To solve
large-scale CEDC problems, CEDC-A is more practical for
its high effectiveness and efficiency in finding near-optimal
solutions.

5.4 Threats to Validity

5.4.1 Construct Validity

The main threats to construct validity are the randomly gen-
erated graphs and and the four approaches used for com-
parison in the experiments. The graphs randomly generated
in the experiments may not represent all the edge server
networks in the real-world edge computing environment.
To minimize this threat, the experiment is repeated for 100
times - a total of 100 graphs are randomly generated - every
time the value of a setting parameter varies in the experi-
ments. In this way, a large number of edge server networks
are simulated in the experiments to provide comprehensive
guidelines on the performance of our approaches in real-
world scenarios. The comparison to RCC, NCCEDC-IP, GC
and Random, may not suffice to comprehensively evalu-
ate CEDC-IP and CEDC-A. To minimize this threat, three
experimental parameters are varied in the experiments to
simulate different CEDC scenarios. In this way, we could
evaluate CEDC-IP and CEDC-A by not only the comparison
with the four approaches but also by the impacts of the three
varying setting parameters.
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Fig. 5. Benefit per cache cost vs. parameters in Set #1
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Fig. 6. Ratio of served request per cache cost vs. parameters in Set #1

5.4.2 Threats to Internal Validity
The main threat to the internal validity is whether the
experiment setting favors CEDC-IP and CEDC-A over other
approaches. To minimize this threat, we varied three pa-
rameters to simulate various CEDC scenarios so that the
performance of different approaches could be compared
comprehensively and fairly. Moreover, all experiments were
repeated for 100 times and the results were averaged. This
way, the results of experiments were somehow set up in a
biased manner could be neutralized.

5.4.3 External Validity
The main threat here is whether CEDC-IP and CEDC-A
are also applicable for other edge computing scenarios. To
address this, we formulate the approaches and measure the
performance in a more generic way: evaluating the effective-
ness by using the number of data replicas and the number of
hops for cost and benefit. This way, the exact latency model
and cost model can be easily integrated into our approaches.
Moreover, the widely-used real-world data set is used to
evaluate all approaches. Thus, the representativeness and
comprehensiveness of the evaluation are ensured, and this
threat is reduced.

6 RELATED WORK

Data caching have been extensively investigated in conven-
tional distributed computing and cloud computing environ-
ments. With the popularity of edge computing, data caching
in the edge computing environment is obtaining attention
from researchers recently.

6.1 Conventional Distributed Data Caching
In the last few decades, many data caching problems are
investigated in conventional distributed computing envi-
ronments, i.e. web caching [10], content delivery network
(CDN) [34], etc. Banerjee et al. [35] introduced a content
placement strategy Greedy Caching for information-centric
network based on data popularity. With popular contents
cached, the approach considered the cache miss rate to
decide the cached contents on the core server. Uddin et
al. formulated two caching strategies for data publish-
subscribe systems, including eviction-based and time-to-
live-based strategy to address the space and time issues
[36]. In [37], the authors focused on balancing the trade-off
between latency and cost in the content-centric network, and
addressed this issue with a holistic model for provisioning
the storage capability based on the network performance
and the provisioning cost.

6.2 Cloud Data Caching
In the cloud computing environment, a critical problem of
data caching is how to utilize cache space efficiently on
cloud hosts and mobile devices.

Arteaga et al. [38] proposed CloudCache, a method
for managing cache, to fulfill the caching requirement of
the workload and minimize cache wear-out. In [39], the
authors presented how to use segment access-aware dy-
namic semantic cache in the cloud computing environ-
ment for relational databases. A cache access algorithm
was introduced to consider cache exact hit, cache extended
hit, cache partial hit and cache miss. The authors of [40]
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explored the cache design space for embedded processors
with evolutionary techniques for mobile and thin client
processors in the cloud computing environment. A heuristic
and evolutionary method was presented to generate a near-
optimal cache space design for enhancing service quality. In
[41], the authors formulated a benefit maximization problem
and created a cache replacement approach based on traffic
requirements. They also introduced a content clustering
method for collecting popular data and clustering similar
contents.

6.3 Edge Data Caching
From the perspectives of network topology and infrastruc-
ture deployment, edge computing is an extension of cloud
computing with distributed computing capacities and ser-
vices at the edge of the network. App users in various do-
mains can benefit from the advantages of edge computing,
e.g., interactive gaming, real-time navigation, augmented re-
ality [2]. Offering many unique advantages, edge computing
also raises various new research challenges from the service
provider’s perspective, e.g., edge user allocation [3], [23],
edge data distribution [8], edge application deployment
[33], [42], edge data integrity [43], etc.

Some researchers start to investigate data caching prob-
lems in edge computing recently. Due to the unique con-
straints of edge computing discussed in Section 2, the
data caching strategies from cloud computing and con-
ventional distributed computing are not applicable in the
edge computing environment. Thus, new ideas and ap-
proaches were proposed in the recent years. The authors
of [44] considered the costs produced during delivery and
introduced an auction mechanism to find an optimal data
caching solution. In [45], the authors proposed Agar, a
caching system, by implementing erasure-code into data
caching techniques. Considering the data popularity and
network latency, Agar could find the optimal solution to
cache data chunk by dynamic programming. In [46], Drolia
et al. provided Cachier, a caching system for minimizing
the latency of data retrieval. A coordinating mechanism
was applied for balancing the work loads between edge
servers and the remote cloud server. The authors of [47]
investigated the caching approach over the 5G network.
Both in-network caches and edge caches are involved to
satisfy the time-sensitive transmission by ensuring the low
latency. Similarly, Zhang et al. [48] proposed a new edge
cache architecture by including caches on smart vehicles
into the network caches. This approach significantly im-
proved the resource utility and the effectiveness of this
architecture. Poularakis et al. [17] studied the joint opti-
mization of service placement and request routing in the
edge computing environment. The authors of [49] proposed
a hierarchical caching mechanism in the edge computing
environment with consideration of wireless communication.
They aimed to maximize the hitting rate by caching data in
different layers including routers, base stations and mobile
devices. In [50], the authors studied the budgeted service
placement problem in the edge computing environment.
They proposed a Lyapunov-based algorithm for minimizing
the overall data retrieval latency. Deng et al. [51] also inves-
tigated the service deployment problem in the edge com-
puting environment but tried to minimize the overall cost

rather than latency. They provided a primal-dual algorithm
named IDA4ReE to solve this problem under a resource
constraint and performance requirement. However, these
studies did not fully consider the unique constraints of edge
computing, i.e. the server capacity constraint, the server
coverage constraint and the server adjacency constraint.

Edge computing inherits the pay-as-you-go pricing
model from cloud computing, which allows service
providers to hire storage resources on edge servers from
edge infrastructure providers to cache app data for their
own users. Thus, both the benefit produced and the cost
incurred by data caching for service providers is critical to
the success of edge computing because, after all, service
providers are the main customers in the edge computing
environment. However, the above studies tackle the data
caching problem from either the mobile network operator’s
or the app user’s perspective. In [15], the data caching prob-
lem is firstly tackled from the service provider’s perspective
in the edge computing environment with the aim to cover
all the app users in an area. The approach proposed in [15]
can only cache data individually and does not consider the
constrained cache spaces on edge servers or edge servers’
ability to communicate. In this paper, we considered the
these practical issues and converted the EDC problem into
the constrained edge data caching (CEDC) problem. We
solved the CEDC problem in a generic manner to maximize
the data caching benefit with finite cache spaces on edge
servers, considering the unique server capacity constraint,
server coverage constraint and the server adjacency con-
straint in the edge computing environment.

7 CONCLUSION

In this paper, we formulated the new constrained edge data
caching (CEDC) problem in the edge computing environ-
ment from the service provider’s perspective. We proved
that the CEDC problem is NP-hard. To solve this problem,
we proposed an optimal approach named CEDC-IP based
on integer programming to maximum the data caching
benefit measured by the overall reduction in app users’ data
retrieval latency with limited cache resources. As the CEDC
problem is NP-hard, we also provided an approximation
approach named CEDC-A for finding approximate solu-
tions to large-scale CEDC problems efficiently. Extensive ex-
periments were conducted on a widely-used real-world data
set to evaluate the performance of the proposed approaches.
The results showed that our approaches significantly out-
performed the state-of-the-art approaches in various CEDC
scenarios. In our future work, we will consider the mobility
of app users, real-time cache updating scenarios, security
constraints and data regulation.
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