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Dynamic User Allocation in Stochastic Edge
Computing Systems

Phu Lai, Qiang He, Xiaoyu Xia, Feifei Chen, Mohamed Abdelrazek, John Grundy, John Hosking, and
Yun Yang

Abstract—Edge computing (EC) is a new distributed computing paradigm where edge servers are deployed at, or near cellular base
stations in close proximity to end-users. This offers computing resources at the edge of the network, facilitating a highly accessible
platform for real-time, latency-sensitive services. A typical EC environment is highly stochastic with random user arrivals and
departures over time. In this paper, we address the user allocation problem from a service provider’s perspective, who needs to
allocate its users to the cloud or edge servers in a specific area. A user, who has a multi-dimensional resource requirement, can be
allocated to either the remote cloud, which incurs a high latency, or an edge server, which results in a low latency but might require the
user to wait in a queue. This paper aims to achieve a controllable trade-off between performance (throughput) and several associated
costs such as queuing delay and latency costs. We model this problem as a stochastic optimization problem, propose SUAC
(Stochastic User AlloCation) – an online Lyapunov optimization-based algorithm, and prove its performance bounds. The experimental
results demonstrate that SUAC outperforms existing approaches, effectively allocating users with a desired trade-off while keeping the
system strongly stable.

Index Terms—Edge computing, user allocation, Lyapunov optimization, resource allocation
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1 INTRODUCTION

IN recent years, edge computing (EC) has been introduced
to tackle a major challenge in cloud computing – unpre-

dictable and high latency, which is holding back the devel-
opment of latency-sensitive applications and services such
as VR/AR, smart cities, critical system warning, healthcare
and so on. In an EC environment, numerous edge servers
are distributed at, or near cellular base stations or access
points [1], which are much closer to end-users compared to
remote cloud servers. Thus, this new distributed computing
paradigm remarkably reduces end-to-end latency. A service
provider such as Uber or YouTube can deploy its services on
edge servers to better serve its users [2]. To minimize non-
service areas, i.e., the areas that are not covered by any edge
server, the coverage areas of adjacent edge servers usually
partially overlap [3]. Fig. 1 depicts an example of an EC
system in a small area.

In an edge computing environment, the edge user allo-
cation (EUA) problem has arisen as a critical problem that
challenges service providers [4], [5], [6], [7]. As thin clients,
e.g., mobile or IoT devices, are not capable of executing
computationally demanding tasks, they will be allocated
to cloud servers or edge servers, which are more powerful
and able to process those tasks. A service provider needs to
decide where to allocate its users so that some optimization
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Fig. 1: An example EC system

objectives are achieved. In an EUA scenario, each user
consumes a specific amount of computing resources, e.g.,
CPU, RAM, storage, and bandwidth, on an edge server or
a cloud server once allocated. An edge server will not be
able to serve a user if it does not meet that user’s resource
requirement. In this paper, we focus on non-preemptive
allocation [8], [9] – allocation without interrupting ongoing
services of allocated users, i.e., it is not possible to reallocate
allocated users.

Ideally, all end-users in a specific geographic area should
be allocated to edge servers in their proximity. However, a
service provider can only hire a relatively small amount of
computing resources since an edge server usually has a very
limited computing capacity [10], [11]. It is thus not always
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possible to serve all users simultaneously. As a consequence,
some users may have to wait to be served in a queue. Since
an excessively long queue results in a long waiting time,
some users will be allocated to the remote cloud to be served
by a server in the cloud. As the cloud platform has the
elasticity to scale up or down in real-time, it has virtually
unlimited computing resources, hence no queuing needed
for the users allocated to the remote cloud. This reduces
the waiting time to almost zero but at the expense of high
latency between the cloud and the users.

Existing research on the EUA problem has a number of
limitations, which we address in this paper. 1) They assume
that all the users have identical computing resource requirements
or the arrivals of users are always known [4], [5], [6], [7].
This is unrealistic because the EC environment is highly
stochastic. Users with various resource requirements join the
EC system dynamically and randomly over time. A user’s
exact duration in the EC system is also unknown, i.e., they
randomly depart from the EC system. One can only give
a rough estimate of how long a user would stay in the
system. After a user’s departure, the computing resources
are released to serve new users. 2) Existing approaches do not
consider the fact that users can come and go over time [4], [6].
Thus proposed approaches can only be executed to allocate
users that join the EC system in a single time slot. In the
next time slot, when new users arrive, those approaches
would have to be re-executed without taking any long-term
objectives into account, thus the allocation solutions com-
puted in different time slots might be conflicting each other.
3) More importantly, the limited computing resources in
edge computing [10], [11] and the massive number of users
in 5G networks [12] further complicate the EUA problem.
When the number of users is very large and the EC system
does not have sufficient computing resources, our approach
allows users to wait in a distributed queuing system. In fact,
the queuing method has been wildly employed recently in
edge computing [3], [13], [14]. The aforementioned existing
approaches for EUA assume that users will be allocated to
the cloud immediately when edge servers are exhausted of
computing resources. However, their models do not incorpo-
rate any costs that might incur when users are allocated to the
cloud. In addition, the allocated users do not stay in the
EC system permanently. The computing resources released
when they leave the EC system can be utilized to serve new
users. This also has not been taken into account by existing
approaches.

The throughput of a time-slotted EC system is defined as
the average number of users allocated to edge servers over
time. At the beginning of each time slot, a service provider
needs to decide where to allocate its users, the remote cloud
or which edge server. Under the unpredictability of user
arrivals and departures, the objectives of this stochastic EUA
problem are twofold: 1) maximizing the throughput benefit
by allocating as many users as possible to edge servers
as long as it is beneficial to do so, and 2) minimizing the
penalty incurred by the queuing delay and cloud-to-user
latency. In order to achieve a controllable trade-off between
the performance (throughput) and costs, we employ the
Lyapunov optimization framework [15], which can make
decisions based on the current state of the system without
any future information about user arrivals and departures.

Its unique advantage over other online optimization ap-
proaches is its ability to optimize the performance of a
system in a metric (the system benefit measured collectively
by the throughput benefit, queuing delay cost, and latency
cost in our study), while stabilizing the system (the length
of the queues of users waiting to be allocated to each edge
server in our study). It can be used to transform a long-
term optimization problem into a series of short-term opti-
mization problems, which are to be solved in each time slot.
Doing this over multiple time slots will collectively achieve
the long-term objective, i.e., system benefit maximization,
while stabilizing all the user queues. The main contributions
of this paper include:

• We formally model the stochastic EUA problem that
aims to help service providers allocate their users
in order to achieve their long-term objectives, i.e.,
to maximize system throughput, and to minimize
users’ latency and queuing costs while keeping the
stochastic EC system strongly stabilized.

• We present SUAC, an online algorithm based on the
Lyapunov optimization framework. Although SUAC
does not require future information of user arrivals
and departures, it can be theoretically shown that
SUAC is able to find near-optimal solutions with an
[O(1/V ), O(V )] performance-cost trade-off.

• A series of experiments are conducted on a real-
world dataset to comprehensively evaluate the per-
formance of SUAC.

The organization of this paper is as follows. Section 2
introduces the EC system model. Section 3 first introduces
the throughput benefit and associated costs, then formulates
the stochastic EUA problem. Section 4 presents the SUAC
algorithm, which is then evaluated in Section 5. Section 6
reviews the related literature. Finally, Section 7 concludes
the paper and points out future work.

2 SYSTEM MODEL

In this section, we formally model the EC system and its
associated key characteristics. An EC system in a specific
geographical area consists of a set of edge servers. It is
a time-slotted system where multiple users arrive in each
time slot and need to be allocated to either an edge server
or the cloud. Each edge server maintains a queue to hold
users that have been allocated to the server but have not
been served yet due to insufficient computing resources.
The main notations used in this paper are summarized in
Table 1.

2.1 System Description

Edge Servers: The set of S edge servers denoted by S =
{1, 2, ..., S}. Each edge server s ∈ S has a certain amount of
different computing resource types R such as CPU, RAM,
storage, or bandwidth. Each edge server is equipped with
a limited amount of computing resources. The computing
capacity of an edge server s is an |R|−dimensional vector
Cs. Each edge server covers a particular geographic area, as
illustrated in Fig. 1.

Edge Users: There are K types of users categorized
by their computing resource requirements, k ∈ K =
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TABLE 1: Main Notations

Notation Description

S the set of S edge servers s. S = {1, 2, ..., S}
R the set of computing resource types, or computing capacity

dimensions. R = {CPU,RAM, storage, bandwidth, ...}
Cs computing capacity of edge server s. Cs is an |R|-dimensional

vector where each dimension is the capacity of a resource type
in R

K the set of K user types k, categorized by their computing
resource requirements. K = {1, 2, ...,K}

Ak(t) the set of type-k users u (k ∈ K) arrive in time slot t. The set
of all users arrive in time slot t is A(t) =

⋃
k∈KAk(t)

cu computing resource requirement of user u. cu is an |R|-
dimensional vector where each dimension is the capacity of
a resource type in R

au,s(t) allocation decision on whether user u will be allocated to edge
server s in time slot t

bu(t) allocation decision on whether user u will be allocated to the
remote cloud in time slot t

Qs(t) queue backlog of edge server s, i.e., number of users waiting
to be served by edge server s, in time slot t

Ds(t) number of users who leave the queue and start being served
by edge server s in time slot t

br time-average benefit gained from system throughput
cd time-average queuing delay for all users
ch time-average latency of all users allocated to the remote cloud
rs time-average throughput of edge server s
ws the weight that indicates service provider’s priority for the

throughput benefit gained from serving users by edge server s
Ns service rate of edge server s, i.e., the maximum number of

users can be simultaneously served by edge server s
` expected user session length
ns(t) number of users being served by edge server s in time slot t
hu user u’s cloud-to-user latency
ωr, ωd,
ωh

normalizing parameters for throughput benefit, queuing delay
cost, and latency cost

V Lyapunov control parameter

{1, 2, ...,K}. Let an |R|−dimensional vector cu denote user
u’s computing resource requirement.

User Arrivals and Departures: The operational timeline of
this EC system is discretely slotted with normalized slot
duration t ∈ {0, 1, 2, ...}. Each time slot t may range from
several milliseconds, seconds, to a few minutes, depending
on the application context. Let Ak(t) denote the set of type-
k users that arrive in time slot t, the set of all users that
arrive in time slot t is A(t) =

⋃
k∈KAk(t). Each random

variable |Ak(t)|, ∀k ∈ K, is independent of the current
number of users in the system. Without loss of generality,
we assume that the number of users that arrive in a time
slot is bounded, i.e.,

∑
k∈K |Ak(t)| ≤ Amax, ∀t, where Amax

is the maximum of users of all types arrive in a time slot. The
time-average arrival rate is given by λk = E{|Ak(t)|}. The
total time-average user arrival rate λ of the system is thus∑

k∈K λk. A user’s duration in the system (the length of a
user session) is unknown at all time, i.e., users depart from
the EC system randomly, and is measured by the number
of time slots. Our approach does not rely on any prior
knowledge of the statistics of user arrivals or departures.

2.2 Allocation Decisions
In each time slot, a number of new users arrive and need

to be allocated to either 1) ideally, edge servers, or 2) the
remote cloud. Let au,s(t),bu(t) ∈ {0, 1} be the allocation
decision to be made for user u in time slot t. We have
au,s(t) = 1 if user u is to be allocated to edge server s, and
bu(t) = 1 if user u is to be allocated to the remote cloud. Let
a(t) = {au,s(t),bu(t)}u∈A(t) denote the allocation strategy
for all users that arrive in time slot t, which must satisfy the
following constraints.

Firstly, each user u can be allocated to only one server,
either the remote cloud server or an edge server:

bu(t) +
∑
s∈S

au,s(t) = 1,∀u ∈ A(t),∀t (1)

Note that we do not consider users who are not located
within the coverage of any edge server. A user u can be
allocated to an edge server s only if it is located in that edge
server’s coverage area covs (proximity constraint):

au,s(t) = 1 if u ∈ covs,∀u ∈ A(t),∀s ∈ S,∀t (2)

and the accumulated computing resource requirements of
the users being served by an edge server must not exceed
the capacity of that edge server (capacity constraint):∑

u∈D(t)

(au,s(t)cu) � Cs,∀s ∈ S,∀t (3)

where D(t) is the set of users being served by edge server s.

2.3 Queuing Dynamics and Stability
We introduce a distributed queuing architecture where

each edge server s ∈ S maintains a local queue. If a user is
decided to be allocated to an edge server by a mechanism
to be discussed later, it will be buffered in the queue of that
edge server until that edge server has sufficient computing
resources to serve it. We denote queue backlog Qs(t) as the
queue length (number of waiting users) of edge server s in
time slot t. We have the following queuing dynamics:

Qs(t+ 1) =
[
Qs(t)−Ds(t)

]
+

+ as(t) (4)

where as(t) =
∑

u∈A(t) au,s(t) is the number of users
decided to be allocated to edge server s in time slot t, and
Ds(t) is the number of users that leave the queue and start
being served by edge server s. Note that Ds(t) is not the
number of users who depart from the system (the user
session has ended, or the service is no longer required) in
time slot t. A queue Qs(t) is considered strongly stable [15]
if the queue backlog is bounded: lim

T→∞
1
T

∑T−1
t=0 E{Qs(t)} <

∞,∀s ∈ S . Intuitively, this means that the queue length
remains finite and does not blow up to infinite over time.
An EC system is strongly stable when all the queues’ lengths
are bounded. We will later theoretically and experimentally
show that our approach can stabilize the EC system.

Remark: We consider a distributed queuing model
rather than a centralized one, i.e., all edge servers maintain
a single queue, for two main reasons. First, the distributed
queuing architecture is more common in data centers since
the queue memory operates at a much slower speed [8].
Secondly, as the central queue might be far away from users,
it would incur extra communication delay, which is not
acceptable in the EC environment.
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3 PROBLEM FORMULATION

We now identify several key EC components that are
taken into account in our model, including the performance
(benefit gained from system throughput), and the costs
(incurred by queuing delay and cloud-to-user latency).

3.1 Time-Average Throughput
From the service provider’s perspective, the overall

system throughput, i.e., the number of users allocated to
edge servers, is one of the key performance metrics that
reflects the quality of service. We define the time-average
throughput rs of each edge server s as follows:

rs = lim
T→∞

1

T

T−1∑
t=0

E
{ ∑

u∈A(t)

au,s(t)
}
,∀s ∈ S (5)

We have
∑

s∈S rs as the overall throughput of the EC
system, which ideally should be maximized and is obvi-
ously subject to the following constraint:

∑
s∈S rs ≤ λ,

i.e., the time-average throughput cannot exceed the time-
average user arrival rate. The time-average benefit that a
service provider gains from system throughput is measured
by:

br =
∑
s∈S

(wsrs) (6)

where ws is a non-negative weight for the throughput rs
of each edge server s ∈ S . This weight enables the service
provider to adjust the benefit gained from different edge
servers’ throughput. A high value ofws indicates that, given
the same throughput, the benefit gained from edge server
s is more significant than other edge servers with lower
ws. For example, if the prices for the computing resources
on edge server s are cheaper than those on other edge
servers, the throughput on edge server s is more beneficial
or profitable.

3.2 Queuing Delay and Latency Cost
For each user, there are two possible allocation options,

either the remote cloud or an edge server. Each option is
associated with a type of cost. If allocated to an edge server,
the user is placed in a queue waiting for its turn to be served
since being allocated to an edge server is more desirable,
hence highly demanding. This incurs a queuing delay cost. If
allocated to the remote cloud, which has an ample volume
of computing power to serve many users simultaneously,
the user skips the queuing but suffers a high cloud latency
throughout its service session. This incurs a latency cost.

3.2.1 Queuing Delay Cost
The queuing delay cost for a user depends on the current

congestion state of its assigned queue and the computing
power of the edge server associated with that queue. For
example, a more congested queue would apparently lead to
a longer queuing delay. However, one also needs to take
into account the computing capacity of the edge server
associated with that queue. If the edge server’s computing
capacity is high, it can serve more users simultaneously,
resulting in a higher service rate than those with low com-
puting capacities.

The service rate of an edge server s is Ns/`, where ` is
the expected user session length, measured by the number

of time slots, and Ns is the maximum number of users of
all types that can be simultaneously served by edge server s
in one time slot. In practice, ` can be empirically estimated
based on historical data. Ns can be calculated based on the
computing capacity Cs of edge server s. For example, say
there are three possible types of user resource requirements
< 1, 3, 1, 2 >, < 2, 1, 3, 1 >, and < 3, 1, 2, 2 >, and edge
server s has a capacity of< 43, 43, 41, 41 >. This edge server
s has enough capacity to serve 22 users concurrently (e.g.,
10 users of type < 1, 3, 1, 2 >, 5 users of type < 2, 1, 3, 1 >,
and 7 users of type < 3, 1, 2, 2 >).

Let ns(t) denote the number of users being served by
edge server s in time slot t. Then, the queuing delay of
a user u who has just arrived at edge server s can be
measured by [ns(t)−Ns+Qs(t)+1]+

Ns/`
, whereQs(t) is the current

queue length of edge server s, i.e., the number of queuing
users excluding new user arrivals. The estimated queuing
delay of another user who arrived right after user u is
thus [ns(t)−Ns+Qs(t)+2]+

Ns/`
. Intuitively, [ns(t)−Ns +Qs(t) +

i]+,∀i ≤ as(t) represents the number of users queuing
ahead of the new users when the edge server is full.
[ns(t) − Ns + Qs(t) + i]+ = 0 if the server has sufficient
resources to serve new users right away without queuing
them. We can see that the queuing delay of users allocated
to an edge server is proportional to the current queue length
Qs(t) and the number of users allocated to that edge server
as(t). Let Ms(t) = ns(t) − Ns + Qs(t), the time-average
queuing delay for all users in all edge servers can be defined
as follows:

cd =
∑
s∈S

lim
T→∞

1

T

T−1∑
t=0

E
{

[Ms(t) + 1]+
Ns/`

+ ...

+
[Ms(t) + as(t)]+

Ns/`

}
(7)

3.2.2 Latency Cost
If allocated to the remote cloud, the user suffers from

high latency throughout its service session. The latency, or
communication delay, is influenced by many factors such as
transmission medium, distance, bandwidth, etc. To simplify
the model, we let hu be the cloud-to-user latency for user u.
The time-average latency of all users allocated to the remote
cloud is:

ch = lim
T→∞

1

T

T−1∑
t=0

E
{ ∑

u∈A(t)

(bu(t)hu)

}
(8)

3.3 Time-Average System Benefit Maximization
In the previous sections, we have modeled the through-

put benefit br, the queuing delay cost cd, and the latency
cost ch. Now, we formulate the maximization of the time-
average system benefit as the following stochastic optimiza-
tion problem:

(P1) max
au,s,bu

ωrbr − ωdcd − ωhch (9)

s.t. (1), (2), (3)

where ωr, ωd, and ωh are non-negative weights acting as
normalizing parameters for throughput benefit, queuing
delay cost, and latency cost, respectively, since they have
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different scales. This also allows service providers to ad-
just their priority for the throughput benefit and other
costs. Solving P1 in an offline and centralized fashion is
intractable. Optimally solving this optimization problem
requires complete offline future information such as user ar-
rivals and departures, user locations, and user requirements.
In the highly stochastic EC environment, that information
are often unpredictable and vary over time. Therefore, we
tackle this challenge by introducing an online algorithm
based on the Lyapunov optimization framework, which can
make decisions in every time slot without future informa-
tion.

4 STOCHASTIC USER ALLOCATION

In this section, we introduce the trade-off between the
system benefit and system stability, measured by the queue
congestion. We then propose SUAC, an online algorithm
based on the Lyapunov optimization framework to solve
the stochastic EUA problem.

4.1 Stability-Benefit Trade-off

Let Q(t) = (Q1(t), ..., QS(t)) be the queue backlog
vector. For each time slot t, we define a quadratic Lyapunov
function L(Q(t)) as:

L(Q(t)) ,
1

2

∑
s∈S

Qs(t)
2 (10)

This function is a scalar measure of the congestion state
of the EC system. Intuitively, L(Q(t)) is large when at least
one of the edge server’s queue Qs(t) is congested, and
L(Q(t)) is small when all the queue backlogs are small,
representing a stable system. Given the Lyapunov function,
we define the conditional Lyapunov drift to measure the
change in this function between two consecutive time slots:

∆(Q(t)) , E{L(Q(t+ 1))− L(Q(t))|Q(t)} (11)

Our objective is to find a user allocation strategy a(t) to
coordinate the queue congestion state, throughput benefit,
and other related costs in every time slot. By incorporating
the queue stability into the performance-cost trade-off, we
come up with a drift-minus-benefit expression as follows:

∆(Q(t))− V E{ωrbr − ωdcd − ωhch|Q(t)} (12)

where V is a non-negative control parameter to balance
the trade-off between the drift ∆L(Q(t)) (queue stability)
and the system benefit (throughput benefit minus queuing
delay and latency costs). V = 0 indicates that the system
should be stabilized as much as possible regardless of the
throughput benefit, i.e., to allocate all users to the remote
cloud. Depending on the situation, a service provider can
flexibly change the value of V to adjust the trade-off. For
example, they can decrease V to keep the queue backlogs
small, avoiding system congestion while maximizing the
system benefit as much as possible. Under the Lyapunov
optimization framework, the user allocation strategy should
be chosen to minimize the supremum bound of the above
drift-minus-benefit expression (12).

Lemma 1. Given any allocation strategies in any time slots, the
following bound of the drift-minus-benefit (12) holds:

∆(Q(t))− V E{ωrbr − ωdcd − ωhch|Q(t)}

≤ B +
∑
s∈S

E
{

as(t)
2V K + as(t)Ps(t)|Q(t)

}
+

∑
u∈A(t)

E
{
V ωhhu

(
1−

∑
s∈S

au,s(t)
)
|Q(t)

}
(13)

where B = 1
2 (
∑

s∈S N
2
s + Amax2

) is a constant, as(t) =∑
u∈A(t) au,s(t), Ms(t) = ns(t) − Ns + Qs(t), Ps(t) =

Qs(t) + V
(
K(2Ms(t) + 1)− ωrws

)
, and K = ωd`

2Ns
.

Proof. Let as(t) =
∑

u∈A(t) au,s(t). Since ([a − b]+ + c)2 ≤
a2 + b2 + c2 − 2a(b− c),∀a, b, c ≥ 0, we can derive:

∆(Q(t)) = E
{
L(Q(t+ 1))− L(Q(t))|Q(t)

}
= E

{
1

2

∑
s∈S

((
[Qs(t)−Ds(t)]+ + as(t)

)2 −Qs(t)
2

)
|Q(t)

}
≤ E

{
1

2

∑
s∈S

(
Ds(t)

2 + as(t)2

− 2Qs(t)
(
Ds(t)− as(t)

))
|Q(t)

}
(14)

Since
∑

s∈S as(t) ≤ Amax and as(t) ≥ 0,∀s ∈ S , we
have

∑
s∈S as(t)2 ≤ Amax2

. In addition, Ds(t) ≤ Ns,∀s ∈
S,∀t, thus

∑
s∈S(Ds(t)

2+as(t)2) is bounded by
∑

s∈S N
2
s +

Amax2

. Also, −2Qs(t)Ds(t) ≤ 0,∀s ∈ S,∀t, therefore,

∆(Q(t)) ≤ B + E
{∑

s∈S

(
as(t)Qs(t)

)
|Q(t)

}
(15)

where B = 1
2 (
∑

s∈S N
2
s +Amax2

) is a constant.
By subtracting V E{ωrbr−ωdcd−ωhch} from both sides

of (15), we have:

∆(Q(t))− V E{ωrbr − ωdcd − ωhch|Q(t)}

≤ B + E
{∑

s∈S

(
as(t)Qs(t)

)
|Q(t)

}
− V E

{
ωr

∑
s∈S

(wsrs)

− ωd

∑
s∈S

( [Ms(t) + 1]+
Ns/`

+ ...+
[Ms(t) + as(t)]+

Ns/`

)
− ωh

∑
u∈A(t)

(
bu(t)hu

)
|Q(t)

}
†
≤ B + E

{∑
s∈S

(
as(t)Qs(t)

)
|Q(t)

}
− V E

{∑
s∈S

(ωrwsas(t))

−
∑
s∈S

ωd`(2Ms(t) + 1 + as(t))as(t)
2Ns

− ωh

∑
u∈A(t)

(
hu
(
1−

∑
s∈S

au,s(t)
))
|Q(t)

}

= B +
∑
s∈S

E
{

as(t)2V K

+ as(t)
(
Qs(t) + V

(
K(2Ms(t) + 1)− ωrws

))
|Q(t)

}
+

∑
u∈A(t)

E
{
V ωhhu

(
1−

∑
s∈S

au,s(t)
)
|Q(t)

}
(16)
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where K = ωd`
2Ns

and Ms(t) = ns(t) − Ns + Qs(t). The
inequality † is because of the constraint (1) and the fact that
[a+ 1]+ + ...+ [a+n]+ ≥ na+n(n+ 1)/2,∀a ∈ R,∀n ≥ 0.
Therefore, Lemma 1 holds.

We have now transformed the stochastic optimization
problem P1 into the bounding of the drift-minus-benefit. In
the next section, we propose an online allocation algorithm
given the drift-minus-benefit bound found in Lemma 1.

Remark: This model is easily extensible by incorporating
one or more virtual queues into (10). A virtual queue could
be a deficit queue of energy consumption, operating budget,
etc., allowing service providers to enforce more constraints.

4.2 Stochastic User Allocation Algorithm
In this section, we propose SUAC, a Stochastic User

AlloCation algorithm (Algorithm 1), which observes the
state of the EC system in every time slot t and determines an
allocation strategy a(t) to minimize the supreme bound on
the drift-minus-benefit (12), i.e., the right-hand side of (13).
Employing the concept of opportunistically minimizing an
expectation, this can be achieved by solving the optimiza-
tion problem P2 below.

(P2) min
au,s,bu

∑
s∈S

(
as(t)2V K + as(t)Ps(t)

)
+

∑
u∈A(t)

(
V ωhhu

(
1−

∑
s∈S

au,s(t)
))

(17)

s.t. (1), (2), (3)

Algorithm 1 SUAC ALGORITHM

Input: S, V, ωr, ωd, ωh

Output: allocation decisions au,s(t),bu(t),∀t,∀s ∈ S
1: for each time slot t = 0, 1, ...,∞ do
2: Observe incoming users A(t) and edge servers’

queues Qs(t),∀s ∈ S ;
3: Choose au,s(t),bu(t),∀u ∈ A(t) by solving P2;
4: Update the queue Qs,∀s ∈ S according to (4);
5: end for

In every time slot, new users arrive and then get allo-
cated to either the remote cloud or edge servers depending
on the solutions to optimization problem P2. In the mean-
time, each edge server serves the users waiting in its queue
if it has sufficient computing resources. After a random
number of time slots, those users depart and release the
computing resources so that the queuing users can start
using the service on a first-come, first-served (FCFS) basis.
Note that SUAC requires neither the knowledge of future
user arrivals nor general statistical user distributions. Given
the pre-defined parameters V, ωr, ωd, ωh, SUAC can achieve
a controllable trade-off between throughput and other as-
sociated costs while guaranteeing a stable EC system. In
other words, all the edge servers’ queues are stable at all
times, bounding users’ expected queuing delay. Problem P2
can be solved using an integer programming solver, e.g.,
IBM ILOG CPLEX Optimizer1 or Gurobi2). According to

1. www.ibm.com/analytics/cplex-optimizer
2. www.gurobi.com

our experiments, IBM ILOG CPLEX Optimizer can handle
as many as 1,000 users arriving at 26 edge servers in each
30-second time slot.

SUAC is an online algorithm that allocates users as they
arrive in the EC system. When a user moves within the
same edge server’s coverage area across two time slots, they
will not be considered as a new user. If they move from
one edge server’s coverage area into another edge server’s
coverage area across two time slots, they will be allocated
as a new user in the second time slot. In this way, SUAC
can accommodate user mobility. Within one time slot, we
study the quasi-static scenarios where users do not move
across edge servers, similar to many other studies [3], [4],
[13], [16].

The following theorem demonstrates the existence of a
performance-cost trade-off [O(1/V ), O(V )] in the proposed
SUAC algorithm, allowing service providers to adjust the
control parameter V to achieve its desired trade-off between
the throughput benefit and other associated costs, namely
queuing delay and latency costs.

Theorem 1. For any user arrival rate in any time slot, employing
SUAC with any non-negative V satisfies the following perfor-
mance bounds:

1) The time-average system benefit is within a gap (B/V ) to
the optimal solution:

lim
T→∞

1

T

T−1∑
t=0

E
{
ωrbr − ωdcd − ωhch

}
≥ β∗ − B

V
(18)

2) The average queue backlog is upper bounded:

lim
T→∞

1

T

T−1∑
t=0

∑
s∈S

E{Qs(t)} ≤ B + V (β∗ − βmin) (19)

where β∗ = ωrb∗r − ωdc∗d − ωhc∗h, and b∗r , c∗d, and c∗h are the
optimal values of Problem P2, and B = 1

2 (
∑

s∈S N
2
s +Amax2

),
and βmin is defined in the proof.

Proof. First, we prove the first part of Theorem 1. Using
the result obtained in Theorem 4.5 in [15], we can show
that there exists a stationary randomized allocation pol-
icy Φ for P2 that determines feasible allocation strategies
aΦ
u,s(t),b

Φ
u (t), ∀u ∈ A(t),∀s ∈ S,∀t, independent of the

current queue backlogs Qs(t),∀s ∈ S in every time slot t,
and yields the following steady state values:

E{aΦ
s (t)} = E

{∑
u∈A(t)

aΦ
u,s(t)

}
= r∗s ,

E{aΦ
s (t)

(
aΦ
s (t) + 2Ms(t) + 1

)
} ≤ c∗d,

E
{ ∑

u∈A(t)

(
(1−

∑
s∈S

aΦ
u,s(t))hu

)}
= c∗h (20)

Let β = ωrbr − ωdcd − ωhch denote the system benefit
(Section 3.3) in time slot t. For all feasible allocation solu-
tions, which includes those produced by Φ, the proposed
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SUAC algorithm minimizes the drift-minus-benefit bound
proven in Lemma 1, thus the following inequality holds:

∆(Q(t))− V E{β(t)|Q(t)}

≤ B +
∑
s∈S

E
{

aΦ
s (t)2V K + aΦ

s (t)Ps(t)|Q(t)

}
+

∑
u∈A(t)

E
{
V ωhhu

(
1−

∑
s∈S

aΦ
u,s(t)

)
|Q(t)

}
(21)

Taking expectations of the above inequality and using
the law of iterated expectations give us:

E{L(Q(t+ 1))} − E{L(Q(t))} − V E{β(t)}

≤ B +
∑
s∈S

E
{

a∗s(t)2V K + a∗s(t)Ps(t)|Q(t)

}
+

∑
u∈A(t)

E
{
V ωhhu

(
1−

∑
s∈S

a∗u,s(t)
)
|Q(t)

}
(22)

By plugging (20) into the right-hand side of (22) and
rearranging the terms, we have:

E{L(Q(t+ 1))} − E{L(Q(t))} − V E{β(t)} ≤ B − V β∗

+
∑
s∈S

E{a∗s(t)Qs(t)|Q(t)} (23)

The above holds for all t ∈ {0, 1, 2, ...}. By summing the
above inequality over t ∈ {0, 1, ..., T − 1} for some integer
T > 0 and applying the law of telescoping sums, we have:

E{L(Q(T ))} − E{L(Q(0))} − V
T−1∑
t=0

E{β(t)} ≤ TB − V Tβ∗

+
T−1∑
t=0

∑
s∈S

E{a∗s(t)Qs(t)|Q(t)} (24)

Since L(Q(0)) = 0, L(Q(T )) ≥ 0, and a∗s(t)Qs(t) ≥ 0,
∀s ∈ S,∀t, dividing both side of the above inequality by T
yields:

1

T

T−1∑
t=0

E{β(t)} ≥ β∗ − B

V
(25)

The proof of the first part of Theorem 1 completes by
letting T →∞.

Next, we prove the second part of of Theorem 1. Suppose
there are constants B ≥ 0, V ≥ 0, ε ≥ 0, and β∗ such that
for all time slot t and all possible values of Q(t), we have:

∆(Q(t)) + V E{β(t)|Q(t)} ≤ B + V β∗ − ε
∑
s∈S

Qs(t) (26)

Taking expectations of both sides, summing over t ∈
{0, 1, ..., T − 1}, and applying the law of iterated expecta-
tions yield:

E{L(Q(T ))} − E{L(Q(0))}+ V
T−1∑
t=0

E{β(t)|Q(t)}

≤ T (B + V β∗)− ε
T−1∑
t=0

∑
s∈S

E{Qs(t)} (27)

Assume the expected system benefit β(t) is lower
bounded by a finite value βmin so that we have E{β(t)} ≥

βmin for all possible allocation decisions. As L(Q(0)) = 0
and L(Q(T )) > 0, plugging this into the above inequality
and rearranging terms yield:

1

T

T−1∑
t=0

∑
s∈S

E{Qs(t)} ≤
B + V (β∗ − βmin)

T
(28)

Letting T → ∞ completes the proof of the second part
of Theorem 1.

5 EVALUATION

We have performed a series of experiments to verify and
evaluate the performance of our proposed SUAC algorithm.

5.1 Experiment Setup
Edge servers: We use the EUA dataset3 [6], which contains

the geographic locations of end-users and all cellular base
stations in Australia. Then, we simulate a highly dense
500m×500m area covered by 26 base stations, assuming
each base station is equipped with an edge server. The
coverage radius of each edge server is randomly generated
within a range of 100-150m. The edge server capacities
are randomly generated following a normal distribution
N (µ, σ2), where µ is the average capacity of each resource
type (CPU, RAM, storage, and bandwidth), and the stan-
dard deviation σ = 10 for all experiments conducted in this
paper. Since a normal distribution might contain negative
numbers, any negative amount of computing resources gen-
erated is rounded up to 1. We set ws = 1 for all edge servers
s ∈ S so that the benefit gained from the same throughput
would be equal among all edge servers.

Edge users: All edge servers are able to serve N =∑
s∈S Ns users simultaneously. The number of newly-

arrived users in each time slot |A(t)| is drawn from
a Poisson distribution with rate [0, ζN ], where ζ ∈
(0, 0.1] controls the traffic intensity. We assume R =
{CPU,RAM, storage, bandwidth}. Each resource require-
ment is a |R|−dimensional vector, where each vector com-
ponent is the normalized amount of a resource type in R.
Each user’s resource requirement is randomly generated
using a uniform distribution within < 1, 1, 1, 1 > and
< 4, 4, 4, 4 >. Each user’s session duration is uniformly
distributed in [10, 20] time slots. Each time slot is set at
30-second length. The latency experienced by a user, if
allocated to the remote cloud, is randomly set in [50,250]
ms.

All the experiments are conducted on a Windows ma-
chine equipped with Intel Core i5-7400T processor (4 CPUs,
2.4GHz) and 8GB RAM. The optimization problem P2 is
solved with IBM ILOG CPLEX Optimizer4 in line 3 of
Algorithm 1.

5.2 Performance Benchmark
We evaluate SUAC against the state of the art and two

baseline approaches:

• Join-the-Shortest-Queue (JSQ): The authors of [8],
[9] propose a class of randomized algorithms for
placing VMs in physical servers that can achieve

3. www.github.com/swinedge/eua-dataset
4. www.ibm.com/analytics/cplex-optimizer
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TABLE 2: Experiment sets

µ ζ V ωr ωd ωh

Set #1 40 0.01, 0.02, ..., 0.1 0.3 300 7 200

Set #2 10, 20, ..., 90 0.07 0.3 300 7 200

Set #3 40 0.07 0.05, 0.1, 0.15, ..., 0.45 200, 300, 400, 500 7 200

Set #4 40 0.07 0.05, 0.1, 0.15, ..., 0.45 300 3, 5, 7, 9 200

Set #5 40 0.07 0.05, 0.1, 0.15, ..., 0.45 300 7 50, 200, 350, 500

Fig. 2: Average queue backlog vs.
varying traffic intensity ζ under four
algorithms (Set #1).
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Fig. 3: Queue backlog evolution under
four algorithms with ζ = 0.3 (Set #1).

Fig. 4: Percentage of users allocated to
edge servers (Set #1).

maximum throughput without preemptions in a
cloud computing environment. The users and edge
servers in our problem can be seen as VMs and phys-
ical servers in their problems. Since our problem has
a third tier (the remote cloud server), we modify their
approach to incorporate this extension. We consider
the remote cloud server as a ”virtual” edge server
without a queue. Suppose a user u arrives at time
slot t, it can be allocated to the cloud with probability
Pr(bu = 1) = Pr(au,1 = 1) = ... = Pr(au,S = 1).
If not allocated to the cloud, it will be allocated to
the edge server with the shortest queue. Each queue
maintains a Poisson clock to control when to serve
the queuing users.

• Density-based Clustering (DBC): In [17], users are
allocated to cloudlets (equivalent to edge servers in
our work) using a density-based clustering algorithm
that takes into account the distances between users
and their neighbor edge servers. Users are to be allo-
cated to an edge server that has the most candidate
users first, i.e., users that are covered by the server.
For example, say users u1 and u2 can be allocated
to either edge servers s1 or s2. Edge server s1 covers
more users than edge server s2. User u1 is closer to s1

than it is to s2, and u2 is closer to s2 than it is to s1.
Hence, the users allocation will start from s1 since
it has more candidate users. User u1 has a higher
allocation priority than u2 when being assigned to
s1. Since this approach does not take queuing system
into account, we assume that excessive users, i.e.,
users that are allocated to edge servers but the edge
servers do not have sufficient computing resources
to serve the users, will be redirected to the remote
cloud.

• QoE-aware User Allocation (QoEUA): In [7], the
authors map each user resource requirement to a
quality-of-experiment (QoE) level. They optimally
allocate users to edge servers using an integer pro-

gramming approach so that the total QoE of all the
users is maximized. Similar to DBC, this approach
does not take queuing system into account. Thus, we
assume that excessive users will be redirected to the
remote cloud.

• Throughput Optimal (TPO): To achieve the maxi-
mum throughput benefit, this approach completely
ignores the remote cloud. Every user will be allo-
cated to the edge server with the shortest queue.
Predictably, this approach may well result in a high
queuing delay cost.

• Random: New users are uniformly allocated to either
the cloud or edge servers at random.

5.3 Experiment Sets

We conduct a series of experiments with different vary-
ing parameters to analyze the performance of SUAC in
various EC scenarios. Table 2 summarizes all the experiment
sets which will be discussed in the next section. We first
experiment with various traffic intensities (ζ) in Set #1,
ranging from light traffic to very intense traffic, to simulate
different user arrival rates. In Set #2, we vary the computing
resource capacity (µ) that each edge server has to serve
users, ranging from scarce resources to abundant resources;
this impacts the service rate of each edge server. After that,
we vary the control parameter V used in Eq. (17), and at
the same time, the throughput benefit weight ωr , queuing
delay cost weight ωd, and latency cost weight ωh in Sets #3,
#4, and #5, respectively. These domain-specific parameters
are used in Eq. (17) to indicate the priorities for SUAC’s
pursuit of system throughput, queuing delay, and latency,
respectively, when SUAC allocates users to edge servers
over time. In a real-world setting, a service provider can
determine those parameters according to their needs. Note
that in those three experiment sets, parameters V, ωr, ωd, ωh

have no impact on the allocation results produced by the
five benchmark approaches since they work independently
of those parameters. Each experiment setting is executed for
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a duration of 1,000 time slots.

5.4 Experiment Results
5.4.1 Impact of Traffic Intensity (User Arrival Rate)

In Set #1, we vary the traffic intensity ζ from 0.01, 0.02 to
as high as 0.1. For example, say the 26 edge servers can serve
500 users simultaneously, ζ = 0.1 means that there are 50
new users joining the system in every time slot on average.
Fig. 2 illustrates the time-average queue backlog under four
approaches when the EC system is put under various traffic
intensities. The time-average queue backlog is the average
number of users queuing per server during the simulated
duration. Fig. 3 depicts the evolution of the queue backlog
in Set #1 when ζ = 0.3 during the first 400 time slots. Note
that DBC and QoEUA are not shown in those two figures
because they do not employ a queuing system, or have no
queues.

The time-average queue backlogs under JSQ, TPO, and
Random (Fig. 2) grow linearly with the traffic intensity. At
ζ = 0.1, the average queue backlog of TPO is very long, i.e.,
roughly 140 users queuing per server, which is unacceptable
for any latency-sensitive services. This is unsurprising since
TPO only allocates all users to edge servers. On the other
hand, under SUAC, the time-average queue backlog slowly
increases with the increasing traffic intensity, then converges
and remains unchanged at approximately 40 users regard-
less of the varying traffic intensity (ζ = 0.08−0.1). A service
provider can easily increase or decrease the queue backlog
level by increasing or decreasing the control parameter V . In
Fig. 3, the queue backlogs of all four approaches gradually
increase during the first few time slots. After that, while
the other three approaches keep getting their queues more
congested, SUAC stops allocating too many users to edge
servers and starts directing them to the remote cloud, stabi-
lizing the EC system instead of overloading it. We noticed
the same phenomenon in all other experiments, which are
not presented here for brevity. This strongly demonstrates
the ability of SUAC to stabilize the EC system under any
traffic conditions.

Fig. 4 shows the percentage of users allocated to edge
servers (the higher the better). The numbers of users allo-
cated to edge servers by SUAC, DBC, and QoE decrease as
we increase the traffic intensity ζ . This is expected because
the edge servers can only serve up to a certain number
of users and the rest have to be allocated to the remote
cloud. Otherwise, the queues would be heavily congested.
The numbers of users allocated to edge servers by JSQ
and Random remain constant since they decide if a user is
allocated to the remote cloud by using the same randomness
factor. Under some experiment settings (ζ = 0.08−0.1), JSQ
and Random manage to allocate more users to edge servers
than SUAC. However, SUAC still beats them in terms of
system benefit because under JSQ and Random, the queuing
delay cost outweighs the throughput benefit. Under all
other experiment settings, SUAC significantly outperforms
all other approaches. TPO is not presented here because it
does not allocate users to the remote cloud.

Fig. 5 visualizes the normalized time-average system
benefit gained by the six approaches under different traf-
fic intensities. At the very beginning, all four approaches
achieve relatively equal performance since the traffic was

very light, thus all the users could be allocated to edge
servers without queuing. As more users arrive, SUAC starts
to significantly outperform the other three approaches since
they suffer from a very high queuing delay cost (JSQ, TPO,
and Random) or cloud latency cost (DBC and QoEUA). The
throughput benefit and queuing delay cost produced by
SUAC remain unchanged when increasing traffic intensity
since all the queues are kept stabilized as discussed above.
To stabilize the system under intense traffic conditions,
SUAC directs new users to the remote cloud, hence the
considerable increase in the cloud latency cost, which in
turn results in the loss of system benefit. We can infer that in
order to deal with an increasing user arrival rate, a service
provider needs to hire more edge computing resources to
increase the service rate.

5.4.2 Impact of Edge Server Capacity (Service Rate)
In this section, we evaluate the impact of service rate

(Set #2), which is determined by the amount of computing
resources available on edge servers. An increase in the
average edge server capacity eventually leads to an increase
in the service rate of the system, meaning an edge server
can hold more users in its queue without increasing the
queuing delay. This is demonstrated in Fig. 6, as the average
server capacity µ increases from 10 to 30, the average queue
backlog under SUAC also gradually increases, starting from
around 10 users to almost 40 users per edge server’s queue.
In other words, SUAC can allocate more users to edge
servers only when it is safe to do so given the current
service rate. From µ = 30 onward, its average queue
backlog steadily decreases since the service rate is now
relatively high, which allows edge servers to serve more
users simultaneously. DBC and QoEUA do not employ a
queuing system so they are presented in this figure.

In contrast, the other three approaches (JSQ, TPO, and
Random) work independently of the service rate. As a
result, increasing the service rate will lessen the stress on
the queue backlogs under those approaches. In the figure,
we can see that the average queue backlogs of JSQ, TPO, and
Random gradually decrease as the average server capacity
increases. We can predict that when all the edge servers have
an abundant amount of computing resources, the queue
backlogs under all four approaches will eventually converge
to close to zero. However, as aforementioned, such resource-
abundant situations are extremely unlikely to happen in the
EC environment. In such cases, joint load balancing (i.e.,
SUAC) and dynamic management of EC resources, or any
other simple approaches, can actually control queue backlog
effectively.

Fig. 7 visualizes the corresponding normalized time-
average system benefit in the experiment analyzed above.
Again, SUAC clearly outperformed all other approaches un-
der any experiment setting. For the same reason discussed
above, the time-average system benefit of all approaches
will eventually converge once the service provider is able
to hire an excessive amount of edge computing resources,
which would be highly expensive and unlikely to happen
in any real-world scenarios. JSQ and Random have a ran-
domness factor so there will always be some users allocated
to the cloud despite a large amount of computing resources.
DBC does not employ a queuing system so some users will
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Fig. 5: Time-average system benefit vs.
varying traffic intensity ζ under four
algorithms (Set #1).

Fig. 6: Average queue backlog vs.
varying server capacity µ under four
algorithms (Set #2).

Fig. 7: Time-average system benefit vs.
varying server capacity µ under four
algorithms (Set #2).

Fig. 8: Time-average system benefit vs.
varying values of V under SUAC with
different values of ωr (Set #3).

Fig. 9: Time-average system benefit vs.
varying values of V under SUAC with
different values of ωd (Set #4).

Fig. 10: Time-average system benefit
vs. varying values of V under SUAC
with different values of ωh (Set #5).

be allocated to the cloud straightaway, even though they
could have just waited in a queue for a short period of time.
Similar to DBC, QoEUA does not employ a queuing system.
Given those rationales, JSQ, Random, DBC, and QoE do not
perform as good as SUAC or TPO even when the average
service capacity is large.

5.4.3 Impact of Control Parameter V and Associated
Weights ωr, ωd, and ωh

In this section, we investigate the impact of the trade-off
control parameter V as well as other associated weights,
namely ωr, ωd, and ωh. Since V, ωr, ωd, and ωh do not
influence the user allocation decisions made by JSQ, TPO,
and Random, we do not include those approaches in this
section. The effectiveness of SUAC against them has already
been experimentally analyzed in Sections 5.4.1 and 5.4.2.

In Sets #3, #4, and #5, we simulate varying values of
V under SUAC with different values of throughput benefit
weight ωr (Set #3), queuing delay cost weight ωd (Set #4),
and cloud latency cost weight ωh (Set #5). In Figs. 8, 9,
and 10, the y-axis on the left-hand side corresponds to the
value of the bar graph, and the y-axis on the right-hand side
corresponds to the value of the line graph. As expected, a
higher value of V results in a longer average queue backlog
as can be seen in all experiment sets. This demonstrates the
flexibility of SUAC that enables service providers to control
the congestion state of their EC systems.

The sensitivity of throughput benefit weight ωr (Set
#3). Fig. 8 plots the average queue backlog and time-average
system benefit gained by SUAC with different values of ωr .
A higher ωr means that the service provider places a higher
priority on the benefit gained from system throughput. As
a result, SUAC attempts to allocate more users to edge
servers, leading to a higher queue backlog (more expensive
queuing delay cost). Since more users are being allocated

to edge servers, fewer users will be allocated to the remote
cloud, lowering the cloud latency cost and balancing out the
queuing delay cost. As the cloud latency cost and queuing
delay cost are balancing each other, a greater throughput
benefit weight ωr will eventually gain a higher time-average
system benefit under the same value of V .

In this experiment set, the time-average system benefit
under the same ωr remains virtually unchanged across vary-
ing values of V even when the queue backlog changes. The
reason is that the increasing throughput benefit, increasing
queuing delay cost and decreasing cloud latency cost are
balancing out each other. This will not be the case if the
service provider adjusts ωd or ωh. Sets #4 and #5 will
demonstrate how the changing patterns of time-average sys-
tem benefit with changing V can be influenced differently
compared to the pattern observed in this experiment set.

The sensitivity of queuing delay cost weight ωd (Set
#4). Fig. 9 plots the average queue backlog and time-average
system benefit gained by SUAC with different values of ωd.
A higher value of ωd means that a more congested queue is
penalized harder than a less congested queue. This is why
under the same V , a lower ωd results in a higher average
queue backlog, hence a higher throughput benefit, a lower
latency cost, and a higher queuing delay cost. Collectively,
a lower ωd gains a higher system benefit.

In terms of the time-average system benefit with V
changing, there are several patterns here. With ωd = 3,
the time-average system benefit tends to increase with the
increasing V because the increasing throughput benefit far
outweighs the decreasing queuing delay and latency costs.
With ωd = 5, they balance out each other so there is not
much difference across different values of V . With ωd = 7
and 9, the increasing throughput benefit starts being out-
weighed by the decreasing queuing delay and latency costs,
hence the decrease in time-average system benefit. Again,
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those patterns can be changed if the service provider adjusts
the values of ωh or ωr .

The sensitivity of latency cost weight ωh (Set #5).
Fig. 10 plots the average queue backlog and time-average
system benefit gained by SUAC with different values of ωh.
A higher value of ωh means that the more users allocated
to the remote cloud, the harder the penalty is. Therefore,
with the same V , SUAC will lean towards allocating more
users to edge servers under a higher value of ωh, leading to
a longer average queue backlog, which also incurs a higher
queuing delay cost. Since the latency cost of a higher ωh is
much more expensive than that of a lower ωh, the system
benefit gained by a higher ωh is lower.

As V increases, the time-average system benefit gained
by SUAC decreases for all experimental values of ωh. This
occurs because the increasing queuing delay cost outweighs
the increasing throughput benefit and decreasing latency
cost. Similar to Sets #3 and #4, the pattern can be adjusted
with a different value of ωr or ωd.

As demonstrated, the control parameter V , and weight
parameters ωr, ωd, and ωh control the congestion state of
an EC system, which in turn influence the system benefit.
Those parameters are selected by the service provider de-
pending on their needs, or the significance of the throughput
benefit, queuing delay cost, and latency cost. Given those
pre-selected parameters, SUAC guides the user allocation
process over time so that the system benefit is maximized.

6 RELATED WORK

In the EC environment, applications are deployed on
edge servers so that users can access with low latency. From
a service provider’s perspective, the user allocation problem
is the problem of how to allocate its users to proper edge
servers so that some optimization objectives are achieved.

Jia et al. [17] study the users-to-cloudlets allocation
and cloudlet placement problems in wireless metropolitan
networks. In their scenario, users are connected to access
points, which might or might not have cloudlets, using a
density-based clustering algorithm. They do not consider
user arrivals and departures. Instead, they assume a fixed
number of users and vary the task offloading rate of each
user. The user allocation problem in [18] is more of a base-
stations-to-edge-clouds allocation problem as opposed to
our users-to-base-stations (edge servers) allocation problem.
Ouyang et al. [19] study the service placement problem that
takes into account user mobility. The user-to-edge server
allocation is assumed to be automatically handled by the
edge infrastructure provider. The authors of [5] also con-
sider user mobility and attempt to minimize the number of
user reallocations when a user moves across the coverage
of different edge servers. However, their approach allocates
users to only edge servers without taking remote cloud
servers or queuing system into consideration. In [14], the
authors assume that an edge server can serve a user outside
its coverage via an intermediary server when that interme-
diary server is being overloaded in terms of computation
capability (but still has sufficient communication capability
to handle the user). In real-world scenarios, this assumption
is not necessarily realistic. Even if it is, it is only applicable to
scenarios without many users. In most real-world scenarios,

due to edge servers’ constrained computing resources, it
is unlikely for them to serve their neighbor servers’ users.
Most of the time, they will be busy serving their own users
(those that are covered by the edge server itself). Thus,
SUAC chooses to allocate users that cannot be served on
time by edge servers to the remote cloud.

In [20], a one-user-one-VM (virtual machine) scenario is
addressed. This might be impractical in an EC system since
launching a VM is a time-consuming process, which defeats
the edge computing’s purpose of ensuring a low-latency
connection. There is a line of work on throughput-optimal
VM scheduling in cloud computing [8], [9], [21], [22]. These
works, however, consider a two-tier scenario (VM - physical
server) and thus are not directly applicable in our three-tier
EC scenario (user - edge server - cloud).

Lai et al. [6] tackle the user allocation problem in a
static EC system with the goal of minimizing the number
of edge servers that a service provider needs to hire to
serve its users. Avgeris et al. [23] also aim to minimize
the number of active servers in a computation offloading
problem. The aforementioned works are impractical in a
dynamical scenario, where numerous users come and go
in every time slot, and a lot of those users are covered by
only one edge server. This, plus the resource scarcity of edge
servers, makes it nearly impossible to not use all the given
edge servers in any time slot. In [7], the authors attempt to
allocate users to edge servers in a scenario where a user’s
quality of service (which corresponds to the user’s com-
puting resource requirement) can be dynamically adjusted,
which is not supported in our scenario. Their objective is to
maximize user satisfaction. Qiang et al. [4] propose a game-
theoretic user allocation approach that minimizes system
costs, measured by the amount of computing resources
needed to serve users and the penalty of having unallocated
users. They calculate the computing resource consumption
using a model that is different from ours, hence being
inapplicable to our scenario. In all those works, the EC
system is assumed to be static and they do not consider
user arrivals and departures over time, which is common
and critical in edge computing.

Computation offloading is an important research track
in edge computing that shares some similarities with the
user allocation problem. Nevertheless, those two problems
are differentiated by several essential characteristics. In the
computation offloading problem, a user generates a series of
computation tasks, which can be partly executed on its local
device and edge servers (partial offloading), or completely
on edge servers or remote clouds (full offloading) [24]. A
computation task usually has a single-dimensional resource
requirement (CPU cycles) [3], [10], [16], [25]. Nevertheless,
in real-world scenarios, a service provider needs to dedicate
multiple types of resources to serve a user on an edge server
[2], [4], [26]. In addition, each computation task is usually
assumed to be small and thus can be completed in a known
duration less than a single time slot [3], [16], [27], or within
a short time frame [26]. In [13], the duration of a job spans
across multiple time slots but it is known in advance. In a
real EC system, the duration of a user session is unknown
and likely to be longer than one time slot. Chen et al. [28]
only consider a single-server scenario while a real-world EC
scenario usually involves multiple edge servers. In some
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works [3], [16], users are assumed to be pre-allocated to
edge servers before proceeding to the task offloading phase.
Moreover, a user in the user allocation problem must be
allocated to a server, either an edge server or a cloud server,
instead of being able to partially offload its computation
tasks, or share computation tasks among edge servers.

In terms of the employed approach, Lyapunov optimiza-
tion has been proven to be very effective and widely applied
when dealing with a time-slotted scenario [13], [16], [19],
[27], [29]. Previous works that employ the standard Lya-
punov optimization framework usually assume that each
job or task can be completely executed within the duration
of a time slot [3], [16], [27]. We apply the Lyapunov opti-
mization in a more general situation where a user session
can last longer than one time slot, which could be a few
seconds or minutes in a highly stochastic EC environment.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigate the stochastic edge user
allocation problem in a time-slotted EC system. A service
provider needs to take into account several factors such as
queuing delay and cloud latency costs while maximizing the
system throughput. We address a realistic EC environment
where users come and go dynamically and randomly over
time, making it hard to find an optimal allocation due to
the lack of future information. We propose SUAC – a Lya-
punov optimization-based online algorithm that allocates
users without requiring any information about user arrivals
and departures. As theoretically proven, SUAC achieves a
bounded performance guarantee. We conduct a series of
experiments based on a real-world dataset, which clearly
demonstrates the superiority of SUAC over the existing
approaches and its ability to achieve a desired tradeoff as
well as strongly stabilize the system.

There are several research directions that can be ad-
dressed in the future. In this paper, the optimization prob-
lem in every time slot is solved optimally. If the size of
the problem massively scales up, a more efficient approach
for allocating users in individual time slots is needed. In
addition, one could consider the channel interference when
allocating users in a high density EC system to improve user
experience further.
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