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Requirements of API Documentation:
A Case Study into Computer Vision Services

Alex Cummaudo, Rajesh Vasa, John Grundy, and Mohamed Abdelrazek

Abstract—Using cloud-based computer vision services is gaining traction, where developers access AI-powered components through
familiar RESTful APIs, not needing to orchestrate large training and inference infrastructures or curate/label training datasets. However,
while these APIs seem familiar to use, their non-deterministic run-time behaviour and evolution is not adequately communicated to
developers. Therefore, improving these services’ API documentation is paramount—more extensive documentation facilitates the
development process of intelligent software. In a prior study, we extracted 34 API documentation artefacts from 21 seminal works,
devising a taxonomy of five key requirements to produce quality API documentation. We extend this study in two ways. Firstly, by
surveying 104 developers of varying experience to understand what API documentation artefacts are of most value to practitioners.
Secondly, identifying which of these highly-valued artefacts are or are not well-documented through a case study in the emerging
computer vision service domain. We identify: (i) several gaps in the software engineering literature, where aspects of API
documentation understanding is/is not extensively investigated; and (ii) where industry vendors (in contrast) document artefacts to
better serve their end-developers. We provide a set of recommendations to enhance intelligent software documentation for both
vendors and the wider research community.

Index Terms—Intelligent Web Services and Semantic Web, Code Documentation, Computer Vision
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1 INTRODUCTION

IMPROVING API documentation quality is a valuable task
for any API. Succinct API documentation of good quality

facilitates productivity [32, 38, 37], and therefore improved
quality is better engineered into a system [35]. Where appli-
cation developers integrate new services into their systems
via APIs, their productivity is affected either by inadequate
skills (“I’ve never used an API like this, so must learn from
scratch”) or, where their skills are adequate, an imbalanced
cognitive load that causes excessive context switching (“I
have the skills for this, but am confused or misunderstand”). As
a real-world use case, consider intelligent computer vision
services, in which an AI-based component produces a non-
deterministic result based on a machine-learnt data-driven
algorithm, rather than a predictable, rule-driven one [10].
These services use machine intelligence to make predictions
on images such as object labelling or facial recognition
[W1–15]. The impacts of poor and incomplete documenta-
tion results in developer complaints on online discussion
forums such as Stack Overflow [11]. Many comments show
that developers do not think in the non-deterministic mental
model of the designers who created the computer vision
services. They ask many varied questions from their peers
to try and clarify their understanding.

It is therefore important to ensure developers have access
to high-quality API documentation artefacts when consum-
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ing these services. Vendors should cover all documentation
artefacts that the wider developer community find valuable,
and the research community should aide in this process by
investigating with types of information that comprise these
artefacts, or the aspects of information design to best present
this information. What causes a developer to be confused
when using an API, and how to mitigate it via improved
documentation, has been largely explored by researchers
for conventional APIs (an overview is provided in section 2).
Various studies provide a myriad of recommendations into
the value of API documentation artefacts based on both
qualitative and quantitative analyses, involving developer
opinions (from surveys), observation of developers, event
logging or content analysis (see fig. 3). Such guidelines pro-
pose ways for developers, managers, and solution architects
can construct systems better with improved documentation.

However, there does not yet exist a consolidated sys-
tematic review of this literature. Further, few studies offer
a taxonomy to consolidate these guidelines together, and
there still lacks a consolidated effort to capture guidelines
on the requirements of good quality API documentation.
Studies that produce these guidelines from literature are
largely scattered across multiple sources. Investigating the
ways by which these guidelines are produced can provide
software engineering researchers with better insight into the
research methods and data collection techniques used to
produce these guidelines. Some studies, for example, use
case studies, others use focus groups and brainstorming, or
interviews and surveys. The extent to which researchers rely
on developer opinion for API documentation guidelines is
evident, and gaps in the methodological approaches that re-
searchers use should be emphasised to shine light into new
ways of conducting research in this important area. Fur-
thermore, systematically capturing the information distilled
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from these guidelines into a readily accessible, consolidated
taxonomy (designed to assist writing API documentation)
must be validated in real-world circumstances to assess its
efficacy with practitioners.

In our prior work, we proposed an API documentation
taxonomy that was comprised of 21 key primary sources [9].
This paper significantly extends our previous work by ad-
dressing limitations in the existing taxonomy, thus refining
it. Previously, we developed a metric for each dimension
(topmost-layers) and category (leaf nodes) within the taxon-
omy [9]. This metric is an indication of the specific areas of
API documentation software engineering researchers have
focused their efforts, as measured by the ratio of papers
that investigated or reported various issues concerning the
documentation artefacts defined within our taxonomy. For
the context of this paper, we refer to this metric as an ‘in-
literature’ score, or ILS. Within this paper, we build upon
this facet but in-practice by assessing the efficacy of our
taxonomy against developers using a survey instrument in-
spired by the System Usability Scale (SUS) [6]. Each artefact
within the taxonomy is measured against this instrument
for its utility, and a metric is produced to indicate how
well developers value each of these artefacts. We refer to
this metric as an ‘in-practice’ score, or IPS. (Details for how
the IPS is calculated are in given in section 5.1.4.) We then
identify the artefacts that are highly researched, the ones
that developers demand the most, and where gaps in these
artefacts remain for future research exploration.

Lastly, while our prior work focused on generalised API
documentation, in this extension, we apply our taxonomy to
a case study of interest: i.e., better documenting computer
vision services. We empirically assess the taxonomy against
three popular computer vision services, namely Google
Cloud Vision [W1], Amazon Rekognition [W2] and Azure
Computer Vision [W3]. For each category in our taxonomy,
we assess whether the respective service’s documentation
contains, partially-contains or does not contain the docu-
mentation artefact from our taxonomy, thus determining
the extent to which the requirements of good API docu-
mentation are met within the vendors’ own documentation.
From this, we triangulate each ILS and IPS value against the
service’s level of inclusion of its respective documentation
artefact, thereby making a judgement as to where the ser-
vices can improve their documentation to make them more
complete. Lastly, we present a ranking of each artefact for
where research or vendors should be focus their documen-
tation efforts that is of high value to both developers and to
industry vendors.

Thus, through this triangulation of the taxonomy with
existing literature, utility to practitioners, and application
via a case study (computer vision services), we summarise
three aspects of API documentation by identifying:

(i) the documentation artefacts that been extensively stud-
ied by researchers, and those that warrant further atten-
tion by the software engineering research community
(via high/low ILS values);

(ii) the documentation artefacts that are considered to be
the most- and least-important from a practitioner’s
point of view (via high/low IPS values);

(iii) the documentation artefacts that have been well-
established by vendors (via our case study on three

prominent computer vision services).
To demonstrate how our taxonomy was developed, we

include an extended revision of the systematic mapping
study (SMS) from our existing work. The taxonomy we
proposed consists of five key requirements: (1) Descriptions
of API Usage; (2) Descriptions of Design Rationale; (3) De-
scriptions of Domain Concepts; (4) Existence of Support
Artefacts; and (5) Overall Presentation of Documentation.
Following this, we developed a survey instrument to assess
the overall utility of each of the artefacts that contribute
towards these five requirements, which consisted of 43
questions of alternating positive and negative sentiment. We
then narrow our focus down to our case study by applying
the prioritised documentation artefacts (as identified by the
survey) to three computer vision services. Once our surveys
were complete, we provide some general guidelines as to
where cloud computer vision services can make improve-
ments to their API documentation. Lastly, we compare and
contrast the results from our SMS to the results of the survey
and of our case study, thereby identifying where future
research efforts into API documentation should focus to give
the biggest value back to practitioners.

Our key contributions in this work are:
• a score metric for each category that indicates where

the highest research priorities have been in the existing
literature;

• a score metric assessing the efficacy of the 34 categories
that empirically reflects what artefacts are of the highest
value from a practitioner point of view;

• a heuristic validation of each artefact against computer
vision services, assessing where existing computer vi-
sion service API documentation needs improvement;

• a number of practical recommendations for computer
vision service vendors to better improve the quality of
their API documentation; and

• an identification of the gaps for future research into
API documentation based on the highest need by de-
velopers but, so far, has captured the least attention by
researchers.

This paper is structured as follows: section 2 presents related
work; section 3 is divided into two subsections, the first
describing how primary sources were selected in the SMS
with the second describing the development of our taxon-
omy from these sources; section 4 presents the taxonomy;
section 5 describes how we developed a survey instrument
of 43 questions to validate the taxonomy against developers,
and assess its efficacy against the three popular computer
vision services selected; section 6 presents the findings from
our validation analysis; section 7 describes the threats to
validity of this work; and section 8 provides concluding
remarks and the future directions of this study. Additional
materials are provided in appendixes A–F; referenced on-
line artefacts are prefixed with ‘W’ and can be found in
appendix C.

2 RELATED WORK

2.1 Systematic Reviews in Software Documentation

Systematic reviews into how developers produce and use
software documentation gives researchers consolidated in-
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sights into the efforts of multiple, disparate API documen-
tation studies. For example, a recent 2018 study explored
36 API documentation generation tools and approaches,
and analysed the tools developed and their inputs and
documentation outputs [39]. The findings from this study
emphasise that the largest effort in API documentation tool-
ing is to assist developers to generate either example code
snippets and/or templates or natural language descriptions
of the API directly from the program’s source code. These
snippets or descriptions can then be placed in the API doc-
umentation, thereby increasing the efficiency at which API
documentation can be written. Additionally, tools from 12
studies target the maintainability of existing APIs of existing
APIs, while tools from 11 studies target the correctness and
accuracy of the documentation by validating that what is
written in the documentation is accurate to the technical
structure of the API. From the end-developer’s perspective,
some tools (17 studies) help target improvements to the
developer’s understandability and learnability of new APIs
by linking in examples directly with questions such as
on Stack Overflow. However, the results from this study
regards the tooling used to either assist in producing, val-
idating or learning from API documentation. While this is a
systematic study with key insights into the types of tooling
produced, there is still a gap for a SMS in what guidelines
have been produced by the literature in developing natural
language documentation itself—and how well developers
agree to those guidelines—which our work has addressed.

An extensive SMS into studies presented in the overall
software documentation domain was given in Zhi et al.
[59]. This study reviewed a set of 69 papers from 1971 to
2011 to develop a systematic map on the various research
aspects relating to documentation cost, benefit and qual-
ity, finding that 38% of papers propose novel techniques
while 29% contribute empirical evidence (i.e., validation
and evaluation papers—see section 3.1.4). The authors find
that a majority of papers discuss quality aspects of software
documentation, namely the quality attributes of complete-
ness, consistency and accessibility, and that the main usage
of software documentation regards maintenance aid and
program comprehension. Another key insight—relevant to
our study—found that, on average, survey-based studies
into documentation involved 106 participants and generally
these participants were from the same (or only two) organ-
isations. However, unlike our study, this study formalises
the documentation efforts of any software document, and
not exclusively into API documentation artefacts required
to help developers produce software. Further, our study
differs in that the results from our study are consolidated
into a structured taxonomy, instead of a meta-model which
Zhi et al. perform, which is then triangulated against a real-
world use case (i.e., intelligent computer vision services)
and software developers via a survey.

2.2 API Usability and Documentation Knowledge

API usability and its impact on documentation knowledge is
an imperative area of study, since it provides useful links be-
tween API documentation and more technical issues related
to API design or tools. Extensive discussions from Myers
and Stylos [38] and Myers et al. [37] encapsulate a 30-year

effort to evaluate and improve API usability through lenses
adapted human-computer interaction research. Essentially,
by treating a developer as the ‘end-user’ of an API (i.e.,
interacting and programming with the API in their own
systems), the authors discuss various case studies by which
API usability was improved by various human-centred
approaches, resulting in improved learnability of the API
in addition to improved productivity and effectiveness in
using the API. While the methods are primarily used for
end-user usability testing, their observations highlight the
importance of good aesthetic and interaction design of de-
veloper’s tooling and the need for new tooling to augment
what developers already do to reduce learning overhead.
An extensive review of the usability methods used, and
their benefits to API usability, demonstrates how various
techniques—grounded through established usability guide-
lines and frameworks—can be used to assess how an API’s
usability impacts its key stakeholders (i.e., API designers,
developers, and end-users). The role of API documentation
in context to an API’s overall usability is imperative; for
instance, limited documentation on a particular API (and
limited code snippets) is often a key complaint to poor
API usability [38]. Exploring aspects on information design
elements within API documentation is therefore critical to
mitigate such complaints.

In Watson [56], the authors performed a heuristic as-
sessment from 35 popular APIs against 11 high-level uni-
versal design elements of API documentation. Of these 35
APIs, 28 were open-source software repositories and seven
came from commercial independent software vendors. Two
coders manually inspected each API’s respective documen-
tation sets, starting from the documentation’s entry page
and using the navigation features of the documentation
to further explore the documentation. Both coders evalu-
ated each of the 11 heuristics, noting whether they could
be found. This study highlighted how many APIs, even
popular ones, fail to grasp these basic design elements. For
example, 25% of the documentation sets did not provide any
basic overview documentation to the API. Therefore, from
a practitioner’s perspective, the study describes a high-level
overview of how certain documentation artefacts address
their needs and whether they are typically found in doc-
umentation. However, while the methodological approach
used in this study to assess the heuristics is similar to our
approach, the heuristics themselves used within Watson’s
study is based on only three seminal works and only con-
tains 11 design elements. Our study extends these heuristics
and structures them into a consolidated, hierarchical taxon-
omy which we then validate against practitioners.

A taxonomy of distinct knowledge patterns within refer-
ence documentation by Maalej and Robillard [33] classified
12 distinct knowledge types. Unlike our work, which uses
a SMS of existing studies as the source of our taxonomy
development, this study uses a grounded method via the-
oretical sampling of the API documentation of two mature
(extensively documented) open source systems. This was
performed by each author to elicit a list of knowledge types
over an iterative six month process. The taxonomy was then
evaluated against the JDK 6 and .NET 4.0 frameworks using
a sample of 5574 documentation units and 17 trained coders
to assign each knowledge type to the documentation unit.
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Results showed that the functionality and structure of these
APIs are well-communicated, although core concepts and
rationale about the API are quite rarer to see. The authors
also identified low-value ‘non-information’—described as
documentation that provides uninformative boilerplate text
with no insight into the API at all—which was substan-
tially present in the documentation of methods and fields
in the two frameworks. They recommend that developers
factor their 12 distinct knowledge types into the process
of code documentation, thereby preventing low-value non-
information, and thus developers can use the patterns of
knowledge to evaluate the content, organisation, and utility
of their own documentation. The development of their
taxonomy consisted of questions to model knowledge and
information, thereby capturing the reason about disparate
information units independent to context; a key difference
to this paper is the systematic taxonomy approach utilised
and the source of information of our taxonomy (i.e., existing
literature).

2.3 Computer Vision Services

Recent studies into cloud-based computer vision services
have demonstrated that poor reliability and robustness in
computer vision can ‘leak’ into end-applications if such
aspects are not sufficiently appreciated by developers. A
study by Hosseini et al. [21] showed that Google Cloud
Vision’s labelling fails when as little as 10% noise is added to
the image. Facial recognition classifiers are easily confused
by modifying pixels of a face and using transfer learning
to adapt one person’s face into another [55]. Our own prior
work found that the non-deterministic evolution of these
types of services is not adequately communicated to devel-
opers [10], resulting in lost developer productivity whereby
developers ask fundamental questions about the concepts
behind these services, how they work, and where better
documentation can be found [11]. This paper continues this
line of research by providing a means for service providers
to better document their services using a taxonomy and
suggested improvements.

3 TAXONOMY DEVELOPMENT

We developed our taxonomy under two primary phases.
First, we conducted a SMS identifying API documentation
studies, following guidelines by Kitchenham and Charters
[26] and Petersen et al. [42] (section 3.1). A high level
overview of this first phase is given in fig. 2. Second, we
followed a software engineering taxonomy development
method by Usman et al. [54] (section 3.2) based on the
findings of our SMS, which involved an extensive validation
involving real-world developers and contextualised with
computer vision APIs (section 5).

3.1 Systematic Mapping Study

3.1.1 Research Questions (RQs)
The first step in producing our SMS was to pose two RQs:
• RQ1: What documentation ‘knowledge’ do API docu-

mentation studies contribute?
• RQ2: How is API documentation studied?

Our intent behind RQ1 was to collect as many studies
provided by literature on how API documentation should
be written using natural language, i.e., not using assistive
tooling. In this regard, documentation ‘knowledge’ encom-
passes any natural language API documentation artefact
associated with the implementation of an application using
a third-party API. As the goals of this study are to arrive at a
taxonomy encapsulating the requirements of good API doc-
umentation (section 4), we sought to arrive at studies that
provide useful information to developers that informs the
relevance and value of which aspects of API documentation
are more useful than others. This captures the knowledge
that developers need to know about what aspects of their
APIs should be documented and the artefacts by which
they do this. This helped us shape and form the taxonomy
provided in section 4. Secondly, RQ2’s intent was to under-
stand how the studies derive at their conclusions, thereby
helping us identify gaps in literature where future studies
can potentially focus.

3.1.2 Automatic Filtering

As done in similar software engineering studies [17, 54, 15],
we explored automatic filtering of online databases. We
defined which SWEBOK knowledge areas [22] were relevant
to devise a search query. Our search query was built using
related knowledge areas, relevant synonyms, and the term
‘software engineering’ (for comprehensiveness) all joined
with the OR operator. Due to the lack of a standard defini-
tion of an API, we include the terms: ‘API’ and its expanded
term; software library, component and framework; and
lastly SDK and its expanded term. These too were joined
with the OR operator, appended with an AND. Lastly, the
term ‘documentation’ was appended with an AND. Our
final search string was:

( “software design” OR “software architecture” OR “software construction”
OR “software development” OR “software maintenance” OR “software
engineering process” OR “software process” OR “software lifecycle” OR
“software methods” OR “software quality” OR “software engineering
professional practice” OR “software engineering” ) AND ( API OR “appli-
cation programming interface” OR “software library” OR “software com-
ponent” OR “software framework” OR sdk OR “software development
kit” ) AND ( documentation )

We executed the query on all available metadata (title,
abstract and keywords) in May 2019 against Web of Science1

(WoS), Compendex/Inspec2 (C/I) and Scopus3. We selected
three particular primary sources given their relevance in
software engineering literature (containing the IEEE, ACM,
Springer and Elsevier databases) and their ability to support
advanced queries [5, 26]. A total 4,501 results4 were found,
with 549 being duplicates. Table 1 displays our results in
further detail (duplicates not omitted); fig. 1 shows an expo-
nential trend of API documentation publications produced
within the last two decades. (As this search was conducted
in May 2019, results taper in 2019.)

1http://apps.webofknowledge.com last accessed 23 May 2019.
2http://www.engineeringvillage.com last accessed 23 May 2019.
3http://www.scopus.com last accessed 23 May 2019.
4Raw results can be located at http://bit.ly/2KxBLs4.
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Fig. 1: Search results by year and venue type.
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Fig. 2: A high level overview of the filtering steps from defining and executing our search query to the data extraction of
our primary studies. Number of accepted papers resulting from each filtering step is shown.

TABLE 1: Search results and publication types

Publication type WoS C/I Scopus Total

Conference Paper 27 442 2353 2822
Journal Article 41 127 1236 1404
Book 23 17 224 264
Other 0 5 6 11

Total 91 591 3819 4501

3.1.3 Manual Filtering

A follow-up manual filtering stage followed the 4,501 results
obtained by automatic filtering. As described below, we
applied the following inclusion criteria (IC) and exclusion
criteria (EC) to each result:

IC1 Studies must be relevant to API documentation:
specifically, we exclude studies that deal with im-
proving the technical API usability (e.g., improved
usage patterns);

IC2 Studies must discuss artefacts that document APIs;
IC3 Studies must be relevant to software engineering as

defined in SWEBOK;
EC1 Studies where full-text is not accessible through stan-

dard institutional databases;
EC2 Studies that do not propose or extend how to im-

prove the official, natural language documentation of
an API;

EC3 Studies proposing a third-party tool to enhance exist-
ing documentation or generate new documentation
using data mining (i.e., not proposing strategies to
improve official documentation);

EC4 Studies not written in English;
EC5 Studies not peer-reviewed.

Each of these ICs and ECs were applied to every paper
after exporting all metadata of our results to a spreadsheet.
The first author then curated the publications using the
following revision process.

Firstly, we read the publication source—to rapidly omit
non-software engineering papers—as well as the author
keywords, title, and abstract of all 4,501 studies. As some
studies were duplicated between our three primary sources,
we needed to remove any repetitions. We sorted and re-
viewed any duplicate DOIs and fuzzy-matched all very
similar titles (i.e., changes due to punctuation between
primary sources), thereby retaining only one copy of the
paper from a single database. Similarly, as there was no
limit do our date ranges, some studies were republished
in various venues (i.e., same title but different DOIs). These
were also removed using fuzzy-matching on the title, and
the first instance of the paper’s publication was retained.
This second phase resulted in 3,987 papers.

Secondly, we applied our inclusion and exclusion criteria
to each of the 3,987 papers by reading the abstract. Where
there was any doubt in applying the criteria to the abstract
alone, we automatically shortlisted the study. We rejected
427 studies that were unrelated to software engineering,
3,235 were not directly related to documenting APIs (e.g.,
to enhance coding techniques that improve the overall de-
veloper usability of the API), 182 proposed new tools to
enhance API documentation or used machine learning to
mine developer’s discussion of APIs, and 10 were not in
English. This resulted in 133 studies being shortlisted to the
final phase.

Thirdly, we re-evaluated each shortlisted paper by re-
reading the abstract, the introduction and conclusion. We
removed a further 64 studies that were on API usability
or non API-related documentation (i.e., code commenting).
At this stage, we decided to refine our exclusion criteria to
better match the research goals of this study by including
the word ‘natural language’ documentation in EC2. This
removed studies where the focus was to improve technical
documentation of APIs such as data types and communica-
tion schemas. Additionally, we removed 26 studies as they
were related to introducing new tools (EC3), 3 were focused
on tools to mine API documentation, 7 studies where no
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guidelines were provided, 2 further duplicate studies, and a
further 10 studies where the full text was not available, not
peer reviewed or in English. Books are commonly not peer-
reviewed (EC5), however no books were shortlisted within
these results. This final stage resulted in 21 primary studies
for further analysis, and the mapping of primary study
identifiers to references S1–21 can be found in appendix D.

As a final phase, we conducted reliability analysis of
our shortlisting method. We conducted intra-rater relia-
bility of our 133 shortlisted papers using the test-retest
approach suggested by Kitchenham and Charters [26]. We
re-evaluated a random sample of 10% of the 133 shortlisted
papers a week after initial studies were shortlisted. This re-
sulted in substantial agreement [31], measured using Cohen’s
kappa (κ = 0.7547).

3.1.4 Data Extraction & Systematic Mapping

Of the 21 primary studies, we conducted abstract key-
wording adhering to Petersen et al.’s guidelines [42] to
develop a classification scheme. An initial set of keywords
were applied for each paper in terms of their methodologies
and research approaches (RQ2), based on an existing classi-
fication schema used in the requirements engineering field
by Wieringa et al. [58]. These are: evaluation papers, which
evaluates existing techniques currently used in-practice;
validation papers, which investigates proposed techniques
not yet implemented in-practice; experience papers, which are
written by practitioners in the field and provide insight into
their experiences of adopting existing techniques; and philo-
sophical papers, which presents new conceptual frameworks
that describes a language by which we can describes our ob-
servations of existing or new techniques, thereby implying
a new viewpoint for understanding phenomena. For exam-
ple, documenting APIs using code snippets is a commonly
used practice by developers (see the primary sources listed
in appendix A), and conducting an experiment exploring
how quickly practitioners achieve this would be an evalu-
ation paper. In contrast, a validation paper explores novel
techniques that are proposed but not yet implemented in
practice; for example, a paper proposing that APIs should
document success stories so that developers know where,
why, and how the API was successfully implemented may
test this novel technique via field study experiments (e.g.,
interviewing developers on the new technique) without ref-
erence to real-world examples. A paper written by a group
of developers sharing their insights into the improvements
of their documentation before and after providing exten-
sive tutorials would be an experience paper. Philosophical
papers may propose entirely new vocabulary to explore API
documentation, devising new frameworks from which other
researchers can explore the field from a new viewpoint.

After all primary studies had been assigned keywords,
we noticed that all papers used field study techniques, and
thus we consolidated these keywords using Singer et al.’s
framework of software engineering field study techniques
[51]. Singer et al. captures both study techniques and meth-
ods to collect data within the one framework, namely:
direct techniques, including brainstorming and focus groups,
interviews and questionnaires, conceptual modelling, work
diaries, think-aloud sessions, shadowing and observation,

TABLE 2: Data extraction form

Data item(s) Description

Citation metadata Title, author(s), years, publication venue,
publication type

Artefact(s) discussed As per IC2, the study must identify at least
one API documentation artefact

Evaluation method Did the authors evaluate their proposed
artefacts? If so, how?

Primary technique The primary technique used to devise the
artefact(s)

Secondary technique As above, if a second study was conducted
Tertiary technique As above, if a third study was conducted
Research type The research type employed in the study

as defined by Wieringa et al.’s taxonomy

participant observation; indirect techniques, including instru-
menting systems, fly-on-the-wall; and independent techniques,
including analysis of work databases, tool use logs, docu-
mentation analysis, and static and dynamic analysis.

Table 2 describes our data extraction form, which was
used to collect relevant data from each paper. Figure 3
presents our systematic mapping, where each study is
mapped to one (or more, if applicable) of methodologies
plotted against Wieringa et al.’s research approaches. We
find that a majority of these studies survey developers
using direct techniques (i.e., interviews and questionnaires)
and some performing structured documentation analysis.
Few studies report recent experiences; literature reports the
artefacts that document APIs from evaluation research, in
addition to some validation studies. There are few experi-
ence papers describing anecdotal evidence, and almost no
philosophical papers that describe new conceptual ways at
approaching API documentation as a large majority of ex-
isting work either evaluates existing (in-practice) strategies
or validates the effectiveness of new strategies.

3.2 Development of the Taxonomy
A majority of taxonomies produced in software engineering
studies are often made extemporaneously [54]. For this
reason, we decided to proceed with a systematic approach
to develop our taxonomy using the guidelines provided by
Usman et al. [54], which are extended from lessons learned
in more mature domains. In this subsection, we outline the
4 phases and 13 steps taken to develop our taxonomy based
on Usman et al.’s technique. Usman et al.’s final validation
phase is largely detailed within section 5 after we present
our taxonomy in section 4.

Formally, Usman et al. provides guidelines to define
these units under the first six stages under the planning
phase. In our study, our preliminary phase involves answer-
ing the following:
(1) define the software engineering knowledge area: The soft-

ware engineering knowledge area, as defined by the
SWEBOK, is software construction;

(2) define the objective: The main objective of the proposed
taxonomy is to define a set of categories that enables
to classify different facets of natural language API doc-
umentation artefacts (not API usability) as reported in
existing literature;

(3) define the subject matter: The subject matter of our pro-
posed taxonomy is documentation artefacts of APIs;
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Fig. 3: Systematic map: field study technique vs research
type

(4) define the classification structure: The classification struc-
ture of our proposed taxonomy is hierarchical;

(5) define the classification procedure: The procedure used to
classify the documentation artefacts is qualitative;

(6) define the data sources: The basis of the taxonomy is
derived from field study techniques (see section 3.1.4).

3.2.1 Identification and extraction phase
The second phase of the taxonomy development involves
(7) extracting all terms and concepts from relevant literature,
which we have achieved from our SMS. These terms are
then consolidated by (8) performing terminology control, as
some terms may refer to different concepts and vice-versa.
For example, Watson defines one of the heuristics used in
the study’s experiment as “sample apps to understand how
to use the elements of an API in context and as another
source from which to copy program code... a sample app is
a complete application that includes examples of the API
as well as the other functions that comprise a complete
program” [56]. In this case, the term ‘sample app’, ‘pro-
gram code’, and ‘complete application’ were extracted as
a term of interest and noted. Similarly, in Robillard [45],
the phrase ‘applications’ is used to define a category of
example code snippets which “consists of code segments
from complete applications” and is generally some form
of “demonstration samples sometimes distributed with an
API... that developers can download from various source
code repositories” [45]. Again, the phrase ‘complete appli-
cations’, ‘demonstration samples’, ‘download’, and ‘source
code’ was identified as a terms of interest and noted. Once
all papers were read, we consolidated a list of all of these
noted highlights to help consolidate the terms and perform
terminology control. In this example, the phrase ‘Download-
able source code demonstrating complete sample applica-
tions’ was consolidated from both Watson and Robillard’s
studies, which—in addition to the other primary studies
that iteratively changed wording slightly due to steps (9–
10)—formed the basis of the taxonomy dimension [A7].

3.2.2 Design phase
The design phase identified the core dimensions and cate-
gories within the extracted data items. The first step is to

(9) identify and define taxonomy dimensions; for this study we
utilised a bottom-up approach to identify each dimension,
i.e., extracting the categories first and then nominating
which dimensions these categories fit into using an iterative
approach. As we used a bottom-up approach, step (9) also
encompassed the second stage of the design phase, which is
to (10) identify and describe the categories of each dimension.
Thirdly, we (11) identify and describe relationships between
dimensions and categories, which can be skipped if the
relationships are too close together, as is the case of our
grouping technique which allows for new dimensions and
categories to be added. The last step in this phase is to
(12) define guidelines for using and updating the taxonomy. The
taxonomy is as simple as a checklist that can be heuristically
applied to API documentation, and each dimension is mal-
leable and covers a broad spectrum of artefacts; while we
do not anticipate any further dimensions to be added, new
categories can easily be fitted into one of the dimensions (see
section 8). We provide guidelines for use in our application
of the taxonomy against computer vision services within
sections 4 and 6.

3.2.3 Validation phase
In the final phase of taxonomy development, taxonomy
designers must (13) validate the taxonomy to assess its use-
fulness. Usman et al. [54] describe three approaches to
validate taxonomies: (i) orthogonal demonstration, in which
the taxonomy’s orthogonality is demonstrated against the
dimensions and categories, (ii) benchmarking the taxonomy
against similar classification schemes, or (iii) utility demon-
stration by applying the taxonomy heuristically against
subject-matter examples. In our study, we adopt utility
demonstration by use of a survey and heuristic application
of the taxonomy against real-world case-studies (i.e., within
the domain of computer vision services). This is is discussed
in greater detail within section 5.

4 A TAXONOMY FOR API DOCUMENTATION

Our taxonomy consists of five dimensions (labelled A–E).
These five dimensions are made of 34 categories, which rep-
resent API documentation artefacts that contribute towards
these dimensions. In the context of our taxonomy, a category
can represent (i) discrete and self-contained documentation
artefacts (e.g., quick start guides [A1]), (ii) additional infor-
mation used to describe the API (e.g., licensing information
about the API [D6]), or (iii) aspects regarding the infor-
mation design of this documentation (e.g., consistent look
and feel [E6]). Collectively, the categories form the require-
ments of good quality API documentation, as expressed
through the five dimensions. When worded as questions,
each dimension respectively covers the following:

• [A] Descriptions of API Usage: how does the developer
use this API for their intended use case?

• [B] Descriptions of Design Rationale: when should the
developer choose this particular API for their intended
use case?

• [C] Descriptions of Domain Concepts: why does the
developer select this particular API for their applica-
tion’s domain and does the API’s domain align with
the application’s domain?
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[B] Descriptions of  the API 's Design Rationale

[B1] Entry-point purpose of the API

[B2] What the API can develop

[B3] Who should use the API

[B4] Who will use the applications built using the API

[B5] Success stories on the API

[B6] Documentation comparing similar APIs to this API

[B7] Limitations on what the API can/ cannot provide

[D] Existence of  Support Artefacts

[D1] FAQs

[D2] Troubleshooting hints

[D3] API diagrams

[D4] Contact for technical support

[D5] Printed guide

[D6] Licensing information

[E] Overal l  Presentation of  Documentation

[E1] Searchable knowledge base

[E2] Context-specific discussion forums

[E3] Quick-links to other relevant components

[E4] Structured navigation style

[E5] Visualised map of navigational paths

[E6] Consistent look and feel

[A] Descriptions of  API  Usage

[A1] Quick-start guides 

[A2] Low-level reference manual

[A3] Explanation of high level architecture

[A4] Introspection source code comments 

[A5] Code snippets of basic component function

[A6] Step-by-step tutorials with multiple components

[A7] Downloadable production-ready source code

[A8] Best-practices of implementation

[A9] An exhaustive list of all components

[A10] Minimum system requirements to use the API

[A11] Instructions to install/ update the API and its release cycle

[A12] Error definitions describing how to address problems

[C] Descriptions of  Domain Concepts behind the API

[C1] Relationship between API components and domain concepts

[C2] Definitions of domain terminology

[C3] Documentation for nontechnical audiences

Fig. 4: Our proposed taxonomy: The requirements of
good-quality API documentation (dimensions) represented
through individual documentation artefacts (categories).

• [D] Existence of Support Artefacts: what additional
API documentation can the developer find to aid their
productivity?

• [E] Overall Presentation of Documentation: is the
visualisation of the above information well organised
and easy for the developer to digest?

Further descriptions of the categories encompassing each
dimension are given within fig. 4 and appendix A, coded as
[Xi], where i is the category identifier within a dimension,

X , where X ∈ {A,B,C,D,E}.
Appendix A shows which of the primary sources (S1–21)

reports aspects of the artefacts described as an ‘in-literature
score’ (ILS). This score is calculated as a percentage of the
number of primary studies that investigated or reported
various issues regarding the specific artefact divided by
the total of primary studies (see section 6.1.2). This score
is contrasted to the ‘in-practice score’ (IPS) which indicates
the overall level of agreement that practitioners think such
documentation artefacts are needed (see section 6.1.1). For
comparative purposes, we illustrate a colour scale (from
red to green) to indicate the relevancy weight between
ILS and IPS values in appendix A as per their assigned,
discretised intervals (see table 3). We also show illustrative
interpretations of these generalised artefacts through itali-
cised examples within appendix A. We then provide three
columns that assesses the presence of these documentation
artefacts against three popular computer vision services:
Google Cloud Vision, AWS’s Rekognition, and Azure Cloud
Vision (abbreviated to GCV, AWS and ACV). A fully shaded
circle (○) indicates that the documentation artefact was
clearly found in the service, while a half-shaded circle (è)
indicates that the artefact was only partially present. An out-
lined circle (+) indicates that the service lacks the indicated
documentation artefact within our taxonomy. This empirical
assessment is further detailed in section 6.3, which outlines
concrete areas in the respective services’ documentation
where improvements could be made, as well as hyperlinks
to the documentation where relevant.

Figure 4 illustrates a condensed version of taxonomy.
We provide iconography for the presence (Í) or non-
presence (ë) of these artefacts in all three computer vision
services assessed, per section 6.1.1.

5 VALIDATING THE TAXONOMY

5.1 Survey Study
5.1.1 Designing the Survey
We followed the guidelines by Kitchenham and Pfleeger
[27] on conducting personal opinion surveys in software
engineering to validate our survey. In developing our sur-
vey instrument, we shaped questions around each of our
5 dimensions and 34 categories. To achieve this, we used
Brooke’s SUS [6] as a loose inspiration and re-shaped the
34 categories around a question that imitates the style of
wording of questions used in the SUS. Each dimension was
marked a numeric question (Q#3–7), and alphabetic sub-
questions were marked for each sub-dimension or category.

We used closed questioning where respondents could
choose an answer on a 5-point Likert-scale (1=strongly
disagree, 2=somewhat disagree, 3=neither agree nor disagree,
4=slightly agree and 5=strongly agree). Like Brooke’s study,
each question alternated in positive and negative sentiment.
Half of our questions were written where a likely common
response would be in strong agreement and vice-versa for
the other half, such that participants would have to “read
each statement and make an effort to think whether they
would agree or disagree with it” [6]. For example, the
question regarding [B7] on API limitations was framed as:
“I believe it is important to know about what the limitations
are on what the API can and cannot provide” (Q4g), whereas
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the question regarding [C1] on domain concepts of the API
was framed as: “I wouldn’t read through theory about the API’s
domain that relates theoretical concepts to API components and
how both work together” (Q5a).

In addition, the remaining eight questions asked de-
mographical information. An extra open question asked
for further comments. The full survey is provided in ap-
pendix F and anonymised survey data is available at
https://bit.ly/33siqll.

5.1.2 Evaluating the Survey
After the first pass at designing questions was completed,
we evaluated our survey on three researchers within our
research group for general feedback. This resulted in minor
changes, such as slight re-wording of questions and provid-
ing specific questions with examples (some with images).
For example, the question regarding [A9] on an exhaustive
list of all major components in the API was framed as “I
believe an exhaustive list of all major components in the API
without excessive detail would be useful when learning an API”
(Q3i) with the example “e.g., a computer vision web API might
list object detection, object localisation, facial recognition, and
facial comparison as its 4 components”.

After this, we conducted reliability analysis using a test-
retest approach on three developers within our group seven
weeks apart. Using the R statistical computation environ-
ment [43], we conducted our analysis using the irr pack-
age [13] (as suggested in [18]) and resulted in an average
intra-class correlation (ICC) of 0.63 which indicates a good
overall index of agreement [8].

5.1.3 Recruiting Participants
Our target population for the study was application soft-
ware developers with varying degrees of experience (in-
cluding those who and who have not used computer vision
services or related tools before) and varying understanding
of fundamental machine learning concepts. We began by
recruiting software developers within our research group
using a group-wide message sent on our internal messaging
system. Of the 44 developers in our group’s engineering
cohort,5 22 responses were returned, indicating an internal
response rate of 50.00%. Based on the 22 results from this
internal trial, we calculated the median time to our complete
survey was just over 20 minutes.

For external participant recruiting, we shared the sur-
vey on social media platforms and online-discussion fo-
rums relevant to software development. We adopted a non-
probabilistic snowballing sampling where the participants,
at the end of the survey, were encouraged to share the sur-
vey link to others using AddThis.6 Additionally, snowballing
sampling was encouraged within members of our research
group who were asked to share the survey. This sampling
approach resulted in 38 external responses. A further 44
participants were recruited via Amazon Mechanical Turk7—
often referred to as MTurk—which has been a successful
approach adopted in previous software engineering sur-
veys (e.g., [25]). To ensure our target demographic was

5Our research group’s engineering cohort consists of fully-qualified
software engineers, with on average 5+ years industry experience.

6https://www.addthis.com/ last accessed 7 January 2020.
7https://www.mturk.com/ last accessed 9 July 2020.

selected, we applied the participant filter option ‘Employ-
ment Industry - Software & IT Services’. An additional 13
responses were partially filled (on average at a completion
rate of 43.23%). These partially completed responses were
included in our analysis since they did yield some insight
(see section 7.2). As participants recruited via MTurk have
a financial incentive to complete surveys,8 we ensured strict
quality control was applied to each survey response we
received. For example, 37 participants opened the survey
but did not answer any questions; for this reason, all survey
responses by these participants were discarded. We iden-
tified that 12 MTurk responses were filled out too quickly
(where the median response time was under five minutes;
well below the internal average of 20 minutes), and further
analysis of these 12 responses indicated poor reading of the
question, and thus poor responses; this was identified via
our use of alternating positively- and negatively-worded
questions. Thus, 12 MTurk responses were removed from
the final analysis. Therefore, our final response rate yielded
104 responses of the total 153 participants reached; an over-
all response rate of 67.97%.

5.1.4 Analysing Response Data
To analyse our response data, we produced a single score for
each question’s 5-point response. In line with with Brooke’s
SUS methodology [6], we subtracted one from the raw value
of positive items, and subtracted the raw value from five for
the negative items. This resulted in values on an ordinal
scale of 0–4. We then averaged each response for every
question and divide by four (i.e, now a 4-point scale) to
obtain scores for each category. For example, two responses
of strongly agree=5 and one of neither agree nor disagree=3
were given to [A1] (positively worded); these values are
mapped to 4 and 2, respectively, and are averaged (to 3.33)
which is then divided by a maximum possible score of four,
giving 0.84. We then discretise these calculated values into
five intervals (as per table 3, see section 6.1.1) to interpret
the findings; this is presented in appendix A under the ‘in-
practice score’ (IPS) for each category.

Demographics for our survey were consistent in terms
of the experience levels of developers who responded. 78%
of respondents indicated they were professional program-
mers. Years of programming experience were: <1 year
(3.30%); 1–5 years (41.76%); 6–10 years (35.16%); 11–15 years
(9.89%); 16–20 years (5.49%); 21–30 years (3.30%); 31–
40 years (1.10%); 41+ years (0.00%). A wide range of roles
and seniority were listed by developers as presented in
fig. 5, thereby indicating that our results include the dif-
ferent expectations of API documentation from a variety of
sources. The highest role was a full-stack developer at either
a mid-tier or senior role, followed by mid-tier or senior back-
end developers and graduate and junior business analysts.
Various managerial roles were also listed. Only five students
(5.00%) responded in our study, two listing themselves as
interns with one as an embedded applications developer.
Most respondents were Australian (40.00%), Indian (26.70%)
or from the United States (20.00%). Besides information
technology services (30.77%), consulting and other software

8A total budget of AUD$600 was allocated for recruitment via
MTurk, with each participant receiving between AUD$3.50–$10.00.
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Fig. 5: A wide variety of roles and seniority were observed in our respondents.

development (both at 9.89%) were the most predominant
industries listed by participants.

5.2 Empirical Application on Computer Vision Services
Once our taxonomy had been developed and assessed with
developers, we performed an empirical application against
three computer vision services: Google Cloud Vision [W1],
Amazon Rekognition [W2] and Azure Computer Vision
[W3]. Our selection criteria in choosing these particular
services to analyse is based on the prominence of the
service providers in industry and the ubiquity of their
cloud platforms (Google Cloud, Amazon Web Services, and
Microsoft Azure) in addition to being the top three adopted
vendors used for cloud-based enterprise applications [44].
In addition, we had conducted extensive investigation into
the services’ non-deterministic runtime behaviour and evo-
lution profile in prior work [10] and have also identified de-
velopers’ complaints about their incomplete documentation
in a prior mining study on Stack Overflow [11].

We began with an exploratory analysis of the presence of
each dimension and its categories. Appendix B displays all
sources of documentation used; although we initially started
on the respective services homepages [W1–3], this search
was expanded to other webpages hyperlinked. For each
category, we listed the documentation’s presence as either
fully present, partially present or not present at all. This
is shown in appendix A with the indication of (half-)filled
circles or circle outlines for Google Cloud Vision (abbrevi-
ated to GCV), Amazon Rekognition (abbreviated to AWS),
and Azure Computer Vision (abbreviated to ACV). Notes
were taken for each webpage justifying the presence, and
exact sources of documentation were listed when (partially)
present. PDFs of each webpage were downloaded between
14–18 March 2019 for analysis. Analysis was performed
manually by the lead author by manual inspection of the
downloaded web pages (as PDFs) and presence of each item
was noted by the lead author using an approach similar to
Watson [56].

6 TAXONOMY ANALYSIS

In this section, we analyse investigating the taxonomy from
two perspectives. Firstly, we contrast the ILS values, being
an interpretation of the relevancy researchers have em-
phasised, against the IPS values found from the results of
our survey (being an interpretation of what documentation
artefacts developers value more). We are therefore able to
identify the API documentation artefacts that are of high
value to practitioners, but are yet to be deeply explored by
researchers. Secondly, we contrast the IPS values against our
assessment of computer vision services, and whether im-
portant API documentation artefacts have been included in
popular services. We are therefore able to identify whether
vendors have or have not already included these highly-
valued documentation artefacts within their own APIs, and
where existing areas of improvement lie.

6.1 Exploring IPS and ILS Values

6.1.1 IPS Results
IPS values indicate the extent to which developers agree
with the statements made in our survey, as calculated by
the method described in section 5.1.4. The interpretation
of these values are the documentation artefacts (categories)
that developers value the most. Thus collectively, these
artefacts indicate the overall level of importance towards
specific API documentation requirements (dimensions).

To interpret these values, we group the data from each
of our survey’s 34 statements (for each category) into an or-
dinal scale of five intervals. These intervals indicate relative
value to developers; a documentation artefact has very low
value to developers, low value, medium value, high value,
or very high value. Table 3 presents these intervals and
frequencies of each, with the order of the categories shown
in the last column indicating raw IPS values (least useful to
most useful) before discretisation in ascending order.

Practitioners tend to agree that each documentation arte-
fact is important to have, and thus IPS values likely fall
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TABLE 3: Intervals of ILS (top) and IPS (bottom) values and frequencies.

Research Attention Range Frequency Categories

Very Low 0.00 ≤ ILS( [Xi] ) < 0.14 7 B4, B5, D6, B3, C1, D1, D2
Low 0.14 ≤ ILS( [Xi] ) < 0.29 13 A1, A9, C3, D3, D4, E2, E3, E4, E5, B6, A7, A10, D5

Medium 0.29 ≤ ILS( [Xi] ) < 0.43 9 B2, B7, A4, A12, E1, A3, A8, A11, C2
High 0.43 ≤ ILS( [Xi] ) < 0.57 3 E6, B1, A2

Very High 0.57 ≤ ILS( [Xi] ) ≤ 0.71 2 A6, A5

Value to Developers Range Frequency Categories

Very Low 0.00 ≤ IPS( [Xi] ) < 0.18 0 –
Low 0.18 ≤ IPS( [Xi] ) < 0.36 0 –

Medium 0.36 ≤ IPS( [Xi] ) < 0.53 6 D4, B4, C3, C1, E4, B3
High 0.53 ≤ IPS( [Xi] ) < 0.71 16 A4, B6, A2, D2, A6, E2, B5, D6, A8, B2, E6, A10, E5, D5, A9, D3

Very High 0.71 ≤ IPS( [Xi] ) ≤ 0.89 12 E3, A7, A3, C2, A12, B1, D1, A11, A1, E1, A5, B7

into the High or Very High intervals. Only six categories fall
into the Medium interval and none fall into lower intervals.
Developers find technical support contact information [D4]
to be of the lowest value (see table 3), likely since developers
tend to rely on crowd-sourced peer support through medi-
ums such as Stack Overflow. They also see little value in:
descriptions of the types of end-users the API is intended
for [B4]; documentation for non-technical audiences [C3];
conceptual information relating the API back to its appli-
cation domain [C1]; structured navigation of the presented
API documentation [E4]; and descriptions of the intended
developers who should be using the API [B3].

6.1.2 ILS Results
ILS values indicate overall research attention of categories
of our taxonomy through the proportion of papers in our
SMS that investigated or reported various issues regarding
a specific API documentation artefact. Collectively, each of
these categories combined form a dimension (labelled A–E)
in a bottom-up approach (see section 3.2.2). Each dimen-
sion (top-node) describes the requirements of good quality
API documentation, while the category (leaf-node) is the
specific API documentation artefact that, collectively, form
the requirement. A category with a high ILS value indicates
that existing studies that there is substantial attention by
researchers on this specific documentation artefact (or, col-
lectively, requirement of good quality API documentation).
Conversely, a lower ILS value indicates less attention re-
ported on these categories (artefact) or dimensions (require-
ment) by the software engineering research community.

To demonstrate the attention of these documentation
artefacts within literature, we interpret the ILS values in
a similar fashion to the IPS values. It is represented as
a discretised value of intervals within a five-dimensional
ordinal scale, where the attention on these artefacts in lit-
erature are one of: very low attention, low attention, medium
attention, high attention, very high attention. Table 3 indicates
the boundaries for each interval (as calculated by the highest
ILS value of 0.71 divided by the five intervals) in addition to
the frequency of categories appearing in each interval. The
order of the categories shown in the last column indicate
the ascending order (least research attention to most) of
raw ILS values before discretisation. As shown, most of
the artefacts (20) found in the taxonomy are discussed in
literature disproportionately more than others (i.e., those
that fall into the ‘low’ (13) or ‘very low’ (7) intervals), though

the underlying reasons behind this should be considered on
a case-by-case basis (see section 7.3.

There are only five categories that fall into the ‘high’ or
‘very high’ intervals, three of which fall under dimension
[A], Descriptions of API Usage. Research attention on a par-
ticular documentation artefact that is considered Very High
gravitates towards code snippets [A5] and tutorials [A6].
Code snippets are the readiest form of API documentation
for developers, representing exemplary nuggets of informa-
tion for developers to rapidly digest singular components
of the API’s functionality. While code snippets generally
only reflect small portions of API functionality (generally
limited to 15–30 LoC), this is complimented by step-by-step
tutorials. These may tie in multiple (disparate) components
of API functionality to demonstrate development of more
non-trivial applications. Therefore, unsurprisingly, research
has substantially explored how best API developers can
extract code snippets or write tutorials for these purposes
in mind. This is followed by low-level reference documen-
tation [A2]—under the ‘high’ interval—whereby developers
should document all client-facing implementation or usage
aspects of their API (e.g., class, method, parameter descrip-
tions etc.). Lastly, the entry-level purpose/overview of an
API [B1] and consistency in the look and feel of the docu-
mentation throughout all of the API’s official documentation
[E6] are fall under the ‘high’ interval. API vendors must
give motivation as to why a developer should choose a
particular API over another, articulating the need of their
API, presenting this and other documentation aspects in the
easiest way for developers to consume.

6.1.3 Research Opportunities for High-Value Artefacts

In this section, we explore the ILS and IPS values as
two distinct indicators of research exploration that would
provide the most value to practitioners. We then provide
a qualitative discussion by inspecting the intersection of
categories at each respective interval identified by our SMS
and survey study. Thus, we are able to determine documen-
tation artefacts (categories) and requirements (dimensions)
that provide the greatest value to developers but have not
gained proportional attention in the software engineering
literature when compared to other artefacts, and vice-versa.
Graphically, we represent these intersections within a five-
by-five matrix with intervals of the IPS (x axis) plotted
against intervals of the ILS (y axis). Intersections between
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Fig. 6: Value of API documentation artefacts to developers
(IPS) vs their research attention (ILS). Colour intensity rep-
resents greater number of categories in each intersection

the two are listed for each category within the taxonomy.
This is presented in fig. 6.

There is a distinction between (very-)highly valued doc-
umentation artefacts whose research attention is (very-)low,
as presented in the bottom-right of fig. 6. Most notably, we
find that developers find Existence of Support Artefacts [D]
a highly valued API documentation requirement, but there
still exists a substantial gap in existing literature into this
requirement. For example, besides category [D4] (which
is of only Medium value to developers), less research has
explored all other dimension [D] categories (though there
may be understandable reasons as to why, as detailed in sec-
tion 7.3). Furthermore, developers highly value detailed De-
scriptions of API Usage [A] through many documentation
artefacts, notably quick-start guides [A1], downloadable
sample applications [A7], exhaustive list of major compo-
nents [A9], and system requirements to use the API [A10].
Such artefacts emphasise the need for developers to rapidly
pick-up a new API; however, the best ways to provide such
information is still open to further investigation in literature.

Conversely, the top-right of fig. 6 emphasises (very)-
highly researched artefacts that are of (very)-high value to
developers. Here we see that Descriptions of API Usage [A]
is the most-researched requirement, with code snippets [A5]
being an API usage artefact that is both most-researched
and of highest value. Hence, this demonstrates how many
existing studies have an empirical basis on software de-
velopers (e.g., via surveys or interviews; see fig. 3)—code
snippets is a well-researched artefact since most developers
agree to its need in the documentation of APIs. Therefore,
it is clear to see how the correlation between the respective
ILS and IPS values for [A5] are high. However, if we look
at other areas of our taxonomy, such as [A12], [B7], [D3],
[E3] or [E5], we find that developers do indeed desire these
aspects of API documentation, and, consequently, demand

usage descriptions, design rationale descriptions, support
artefacts, or good presentation of the documentation to be a
necessary requirement of good quality API documentation.
Thus, these aspects have not gained proportional attention
in literature, thereby highlighting future research potential.

6.2 Triangulating IPS, ILS and Computer Vision

Fig. 7: Value of API documentation artefacts to developers
(IPS) vs their presence in computer vision services. Colour
intensity represents greater number of categories in each
intersection.

To interpret our comparison of IPS values with computer
vision services, we introduce a calculated ‘presence score’
for each category. As discussed in section 5.2, we empirically
evaluate each category of our taxonomy with three com-
puter vision services: Azure Computer Vision (ACV), Ama-
zon Rekognition (AWS) and Google Cloud Vision (GCV).
We indicate whether the respective API documentation arte-
fact is present, partially present, or nor present (as listed in
appendix A). To interpret this data, we assign a full circle
(○) for present, half-circle (è) for partially present and an
empty circle (+) for not present. Combinations of presence
for each category per service are indicated with the three
circles of varying shade. For example, [A1] has a presence
score of ○ ○ è because it was found to be present in both
GCV and ACV but only partially present in AWS; [B3] has
a presence score of è + + because it was only found to
be partially present in GCV, etc. For a list of full presence
values, see appendix A.

We illustrate which artefacts industry vendors provide
developers with and the artefact’s respective developer
value using this combination of three circles. Using a similar
approach to the previous section, these results are pre-
sented in a ten-by-five matrix as illustrated in fig. 7. If
only one service fully implements a documentation artefact
of (very-)high value to developers (○ + +), if one or
two services partially implement the artefact (è + + and
è è +) or if none do (+ + +), then we believe there is
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room for improvement for service vendors to improve their
documentation and include these artefacts.

In this instance, we can see 10 categories listed in fig. 7
that developers feel are important but are not fully imple-
mented across all three computer vision service vendors.
This is especially the case for dimensions [A] (Descriptions
of API Usage) and [D] (Existence of Support Artefacts),
corroborating our findings with existing gaps in literature
under section 6.1.3. In other words, while both the goals of
existing studies and computer vision service vendors have
emphasised the need for artefacts such as code-snippets
[A5], tutorials [A6], and entry-points to the API [B1], less
attention is given to by both literature and vendors on
the same, (very-)highly valued aspects to developers (e.g.,
troubleshooting hints [D2], licensing information [D6] or
links to related components [E3]).

Furthermore, from our analysis, we can see areas with
which the research community has and has not paid ex-
tensive attention to. We still see that vendors have paid
attention to artefacts even where there has been less re-
search attention, namely [D1] (FAQs), [B5] (success stories),
[A7] (downloadable sample applications), [A1] (quick-start
guides), [E2] (forums), [D5] (printable guides), and [A9]
(API component lists). These seven categories are of (very)
high value to developers but research attention on these
topics are (very) low; however, their presence score within
computer vision services are ○ è è or greater. Hence, we
can see that vendors address developer’s concerns despite
the lack of attention by software engineering researchers in
these areas, and thus future research potential to better serve
developers and ensure vendors’ implementation of these
documentation artefacts is evident.

From the above, we can therefore conclude that the
vendors’ documentation largely covers a majority of API
documentation requirements. However, there still remains
opportunity for improvement to API documentation by
either vendors and/or the research community: that is, low
research attention on documentation artefacts that present
high value to developers which are also generally missing
from vendor documentation. To explore this aspect, we
triangulate the documentation artefacts (categories) that
have a low or very low research attention and that are
only present in one service, partially present in one or two,
or not present at all. This results in three documentation
requirements that warrant further exploration by industry
vendors or the research community (see table 4).

6.3 Recommendations Resulting from Analysis

In this section, we triangulate the taxonomy developed from
literary sources, the developer survey on this taxonomy
to understand its efficacy in-practice, and the application
of the taxonomy to computer vision services to provide
several recommendations for both service providers and
researchers. Our recommendations are based both on ex-
trapolations of our findings, our prior work, and existing
experience with such work.

6.3.1 Recommendations for vendors
Table 4 emphasises how service vendors still lack key docu-
mentation requirements of critical importance to developers

that are still widely under-researched in software engineer-
ing literature. The largest of these requirements are the need
for vendors to provide additional support artefacts [D] and
the need for vendors to present this in a way that’s most
digestible for developers to understand [E]. A list of detailed
suggestions for vendors are provided in appendix E; here
we discuss generalised findings on a sample of key artefacts.

For example, no services assessed had any form of
diagrammatic overview of their APIs at a high-level [D3],
thereby indicating how various components of their APIs
work together, such as how specific endpoints work or an
overview of the lifecyle of the technical domain behind these
endpoints (i.e., label/train/infer/re-train), thereby incorpo-
rating conceptual relationships behind the API [C1]. For
instance, an interactive overview of the developer’s need
to pre-process their data, send it to the service, and post-
process the response data would help developers under-
stand how the service better fits into the ‘flow’ of their
application. Moreover, we failed to find lower-level dia-
grammatic overviews of the client SDKs—such as a UML
diagram—that developers find very useful. We strongly
advise vendors to provide diagrams illustrating the service
within context to help support existing written documenta-
tion.

Troubleshooting hints [D2] are also a valuable support
artefact, but were only found for AWS’s video processing
endpoints. As our prior work shows, developers are likely
to question what aspects of the service can and cannot do,
such as the types of labels it can find, or how to make
it focus on specific ontologies when an input image is
provided; e.g., time of day (day vs night) location (indoors
vs outdoors) or the subject of the image (dog vs cat) [11].
Troubleshooting in identifying service evolution [11] would
also be important, since developers are likely to overlook
subtle (but application-breaking) changes to response data,
such as labels introduced/removed or confidence changes.
Therefore, vendors must document detailed troubleshoot-
ing suggestions on their websites on how best to resolve
discrepancies in the results found from these services. This
could easily be tied in with [A12] to incorporate usage
description requirements when errors are presented to users
and how to deal with them; also largely missing from
existing documentation.

Another important aspect is the need to make docu-
mentation of one component more easily relatable to other
parts of the documentation [E3]. Again, no service pro-
vided quick-links to related documentation; an example
here could be links to definitions of domain-specific termi-
nology [C2] to help developers with the learning process of
adopting these new generation of APIs (e.g., the ‘score’ field
could be linked back to a video explaining the concept of
probability within the services’ guesses).

6.3.2 Recommendations for researchers
As shown in table 4, we see that there are cases of (very)
high-value documentation artefacts (to practitioners) in
which literature has not paid great attention to. For example,
for the requirement of API usage description [A], practition-
ers agree that both code snippets [A5] and documenting
system requirements to use the API [A10] are of, at least,
high value. However, while code snippets has had consistent
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TABLE 4: Documentation artefacts of high value to developers that have less attention in software engineering literature
and are under-documented in computer vision services. Documentation requirements (i.e., dimensions) separated by rules.

Artefact Value Research Attention Presence in Computer Vision Services

[A10] Documenting API’s minimum system
requirements and/or dependencies

High Low: 5 studies (23%) Score=1.0: No dedicated web pages found for this
artefact in any service. Dependencies for client
libraries embedded within GCV and ACV quick-
start guides [W16, 17]. Other system requirements
not listed.

[D2] Troubleshooting hints High Very Low: 2 studies
(10%)

Score=0.5: Only found in AWS’s video recognition
service [W18], but no troubleshooting tips found
for non-video image recognition.

[D3] Diagrammatic representation of API Very High Low: 3 studies (14%) Score=0.0: Not found for any service.
[D6] Licensing Information Very High Very Low: 1 study

(5%)
Score=0.5: Partially present only in ACV [W19];
information is non-specific to the licensing terms
of ACV exclusively.

[E3] Quick-links to other relevant components Very High Low: 3 studies (14%) Score=0: Not found for any service.
[E5] Visualised map of navigational paths Very High Low: 3 studies (14%) Score=0: Not found for any service.

attention within the software engineering research commu-
nity (i.e., 15 papers spanning 1998–2019), we see that system
requirements documentation only gained fluctuating inter-
est by researchers (i.e., predominantly in the 2000s, with
two further papers in the last three years). Thus, five papers
investigating some aspects on this artefact may not cover all
its aspects; for example, we may have identified a need to
document these requirements and dependencies, but does
this mean we know all aspects on how to produce them, the
best way to communicate them, and the most efficient means
for developers to consume that information? Contrasting
this artefact against the 15 papers on code snippets, we
see two documentation artefacts of at least high value to
practitioners, yet, evidently, researchers have paid attention
to one over the other.

As fig. 6 shows, the need for additional support [D]
within documentation is the largest requirement that may
be an indicator for further research in this domain (see
section 7.3). Notably, RQ2 of our SMS identified the method-
ologies and data collection techniques by which our existing
understanding of API documentation requirements were
gathered; as demonstrated through fig. 3, a majority of
our understanding is grounded through the opinions of
developers, namely evaluation research using direct tech-
niques. Too many studies are shown to rely on a handful of
data collection techniques (interviews and questionnaires,
shadowing and observation, think-aloud sessions) and a
stronger emphasis for indirect and independent techniques
is needed moving forward; there is therefore a gap in liter-
ature on other types of data collection techniques that may
provide different insights into satisfying the documentation
requirements within our taxonomy.

For example, we see [A9] (exhaustive list of major API
components) as a high-value documentation artefact that
satisfies the requirement of the API usage description [A].
However research attention is lower. A validation research
paper could propose a method to generate a baseline list
of these components through an independent technique,
such mining the API codebase for its major components
through class usage (static analysis) or analysing an existing
work database or tool use logs to see which components
developers have accessed the most. This would satisfy the
need for the documentation artefact, bolstering the API

usage requirement and exploring new techniques to do so.

Few philosophical papers result in a lack of insight
into completely new ways of exploring API documenta-
tion. Further exploration into this type of research may
help us devise a whole new framework of producing API
documentation. For example, as shown by developers and
vendors, quick-start guides [A1] are highly valued, and
well-documented in computer vision services. But litera-
ture does not provide any vocabulary or frameworks into
how best to develop such guides. Involving both software
engineering researchers and developers through a brain-
storming or focus group to conceptualise, devise, and refine
such a framework may be a worthwhile study to better
improve our understanding of quick-start guides whilst also
exploring new approaches to research new guidelines.

Beyond requirement [A], another insight identified is
the need for developers to have visualised maps of nav-
igational paths [E5] which is not yet provided by any of
the computer vision service providers investigated. With the
low ILS value in this category (14% or 3 studies), we see a
potential research topic for future exploration. For example,
if research can demonstrate that such visualised maps are
not just something developers desire, but can make them
more effective in their day-to-day work, then this could be a
strong case made to vendors to improve the presentation of
their documentation.

Thus, as we have shown in these sample recommenda-
tions, many potential studies and research directions can
stem by exploring the discrepancies of API documentation
in literature, in practice, and their presence in computer vi-
sion services (i.e., as a sample case study) when assessed on
a case-by-case basis. The method researchers decide upon
depends the research questions they wish to address; thus,
observations we present in fig. 3 may trigger fruitful reason-
ing about approaches future research could take, however
inferring methodological gaps will need to be compatible
with research goals. Thus, mapping these discrepancies to
gaps in the techniques used in studies to devise of novel
ways to improve API documentation whilst also explor-
ing new methodologies should be balanced carefully by
researchers.
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7 THREATS TO VALIDITY

7.1 Internal Validity
Threats to internal validity represent internal factors of
our study which affect concluded results. Kitchenham and
Charters’ guidelines on producing systematic reviews [26]
suggest that researchers conducting reviews should discuss
the review protocol, inclusion decisions, data extraction
with a third party. Within this study, we discussed our
protocols with other researchers within our research group
and utilised test-retest reliability. Further assessments into
reliability would involve an assessment of the review and
extraction processes, which can be investigated using inter-
rater reliability measures. Guidelines suggested by Garousi
and Felderer [14] describe methods for independent analysis
and conflict resolution could help resolve this.

As stated in section 3.2, we utilised a systematic SE
taxonomy development method by Usman et al. [54]. Two
additional taxonomy validation approaches proposed by
Usman et al. were not considered in our work: benchmark-
ing and orthogonality demonstration. To our knowledge,
there are no other studies that classify existing API docu-
mentation studies into a structured taxonomy, and there-
fore we are unable to benchmark our taxonomy against
others. We would encourage the research community to
conduct a replication of our work and investigate whether
our taxonomy classification approaches are replicable to
ensure that categories are reliable and the dimensions fit the
objectives of the taxonomy. Moreover, we did not investigate
orthogonality demonstration as our primary goals for this
work were to investigate the efficacy of the taxonomy by
practitioners and in-practice, with reference to our wider
research area of intelligent computer vision services. There-
fore, we solely adopted the utility demonstration approach
in two detailed experiments (sections 5 and 6) to analyse the
efficacy of our taxonomy and identify potential improve-
ments for these services’ API documentation.

7.2 External Validity
Threats to external validity concern the generalisation of our
observations. Our systematic mapping study has used a
broad range of sources however not all papers contributing
to API documentation may have been found or captured
within the taxonomy. While we attempted to include as
many papers as we could find in our study, some papers
may have been filtered out due to our exclusion criteria.
For example, there are studies we found that were excluded
as they were not written in English, and these excluding
factors may alter our conclusions, introducing conflicting
recommendations. However, given the consistency of these
trends within the studies that were sourced, we consider
this a low likelihood.

Online documentation of APIs are non-static, and may
evolve using contributions from both official sources and the
developer community (e.g., via GitHub). We downloaded
the three service’s API documentation in March of 2019—
it is highly likely that new documentation may have been
added since or modified since publication. A recommen-
dation to mitigate this would be to re-evaluate this study
once intelligent computer vision services have matured and
become even more mainstream in developer communities.

Unless significant inducements are offered, Singer et al.
[51] report that a consistent response rate of 5% has been
found in software engineering questionnaires distributed
and in information systems the median response rates for
surveys are 60% [3]. We observe that low response rates
may adversely effect the findings of our survey, typically
as software engineers find little time to do them [51].
When compared to typical software engineering studies,
our response rate of 67.97% was likely successful due to
designing and carefully testing succinct, unambiguous and
well-worded questions with researchers within our research
group. All adjustments made from the pilot study due to
unexpected poor quality of the questionnaire have been
reported and explained in section 5.1.2. However, further
improvements could be made to increase this response rate.

The survey reached 82 external and 22 internal partici-
pants. This yielded a total of 104 participants. However, only
91 participants fully completed the survey and, on average,
those who only partially completed the survey completed
43.23% of all questions. Therefore, demographic data for
these participants is largely missing. To verify the reliability
of partially submitted responses, we calculated the average
response of each item in our survey (i.e., question) for all
fully completed results and all partially completed results.
All partially completed questions, except [B7], were within
1 standard deviation from the mean, and therefore we
believe the 13 partial results to be valid when excluding B7.
Even if these partial results are excluded, our full-response
participant count of 91 is still comparable to existing stud-
ies, such as Nykaza et al. [40] (57 participants), Robillard
and Deline [46] (80 participants), or [45] (83 participants).
Therefore, given these comparable numbers, we believe this
does not compromise validity of our results.

We also adopt research conducted in the field of ques-
tionnaire design, such as ensuring all scales are worded
with labels [30] and have used a summating rating scale
[52] to address a specific topic of interest if people are
to make mistakes in their response or answer in different
ways at different times. This approach was also extended
using alternating positive and negative sentiment for each
question—as multiple studies have shown [48, 7], this ap-
proach helps reduce poor-quality responses by minimising
extreme responses and acquiescence biases.

7.3 Construct Validity

Threats to construct validity relates to the degree by which
the data extrapolated in this study sufficiently measures its
intended goals. Our interpretation of the ILS (as given in
sections 4 and 6.1.2) is reported as the proportion of papers
whose research investigates or explores issues regarding
the aspects of specific API documentation artefacts (i.e.,
categories in the taxonomy) that, collectively, comprise the
requirements of good API documentation (i.e., dimensions
in the taxonomy). Every effort has been made in this work
to provide a constructive analysis on the API documenta-
tion landscape, however, the studies that comprise the ILS
may differ in their intent toward a specific documentation
artefact. For example, some studies may have distinct goals
to extensively study how code snippets [A5] specifically
improve developer productivity (e.g., through interviews or
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by observational studies), while others may just reflect that
code snippets are a commonly-used artefact self-reported by
developers (e.g., through a survey). Thus, the interpretation
of the ILS may range between deep exploration of an
artefact or whether a study mentions the artefact without
any attempts to thoroughly investigate it. For this reason,
we suggest that a high ILS value for a category within
the taxonomy suggests that the documentation artefact is
within the attention of the research community, and that
subsequent attention may be required for those artefacts
with low ILS values as a potential indicator for future research
(i.e., it also may not). However, each artefact with a low
ILS (but high IPS) would need to be carefully examined
in isolation to evaluate whether future research is indeed
warranted, and how that research can be conducted with
the ultimate goal to assist practitioners.

Automatic searching was conducted in the SMS by
choice of three popular databases (see section 3.1). As a con-
sequence of selecting multiple databases, duplicates were
returned. This was mitigated by manually curating out all
duplicate results from the set of studies returned. Addi-
tionally, we acknowledge that the lack manual searching
of papers within particular venues may be an additional
threat due to the misalignment of search query keywords
to intended papers of inclusion. Thus, our conclusions are
only applicable to the information we were able to extract
and summarise, given the primary sources selected.

While we have investigated the application of this tax-
onomy using a user study (section 5.1), we would like
to explore a controlled study of developers to assess how
improved and non-improved API documentation impacts
developer productivity. The outcome of this work can help
design a follow-up experiment, consisting of a comparative
controlled study [50] that capture firsthand behaviours and
interactions toward how software engineers approach using
a computer vision service with and without our taxonomy
applied. This can be achieved by providing ‘mock’ im-
proved documentation with the suggested improvements
included in this work. Such an experiment could recruit a
sample of developers of varying experience (from beginner
programmer to principal engineer) to complete a certain
number of tasks under a comparative controlled study,
half of which will (a) develop using the improved ‘mock’
documentation, and the other half will (b) develop with the
as-is/existing documentation. From this, we can compare if
the taxonomy makes improvements by capturing metrics
and recording the sessions for qualitative analysis. Visual
modelling can be adopted to analyse the qualitative data
using matrices [12], maps and networks [49] as these help
illustrate any causal, temporal or contextual relationships
that may exist to map out the developer’s mindset and
difference in approaching the two sets of designs of the same
tasks.

8 CONCLUSIONS & FUTURE WORK

The emergence of AI-based intelligent components present
significant challenges to our existing understanding of tra-
ditional API documentation. The inherent probabilistic and
non-deterministic nature of these components means that
developers must shift their mindset of conventional APIs,

and vendors of these services must similarly shift the
mindset of documenting their APIs using traditional means.
Without adapting to the new mental model (of the vendors
designing these services) and by vendors presenting poor
or incomplete (traditional) documentation that is not com-
patible with these next-generation components, developers
face many struggles. They fail to grasp how to properly
understand how these services work, seeking further doc-
umentation or support from their peers on forums on such
as Stack Overflow [11]. This ultimately hinders developers’
productivity and thus adversely affects the internal quality
of the applications that they build.

This study has explored the artefacts and means by
which traditional API documentation is studied through the
use of an SMS of 4,501 studies, identifying 21 key works.
From this, we synthesised a taxonomy of the various docu-
mentation artefacts that improves API documentation qual-
ity, and thus collectively synthesising the requirements of
good API documentation. Furthermore, we also capture the
most commonly used analysis techniques used in the aca-
demic literature to understand the means by which the goals
of these studies resulted in their findings. We then validate
our taxonomy against developers to assess its efficacy with
practitioners, and conduct a heuristic evaluation against
three popular computer vision services. We determine that
developers demand certain documentation artefacts more
than others, since not all documentation artefacts are equally
valued. We map the value (to developers) of these artefacts
against their exposure within the software engineering lit-
erature, thereby highlighting the gaps by which future re-
search could expand upon. Furthermore, we present a simi-
lar mapping against how well the coverage computer vision
services have incorporated such artefacts into their own
API documentation, thus highlighting that while industry
vendors cover most documentation artefacts that may not
be in the interest to researchers, some artefacts with low
research interest are still largely missing (see table 4). We
therefore provide several generalised recommendations to
vendors and the wider research community to explore how
best these artefacts can be better addressed and incorporated
into further research, thus improving our understanding of
the requirements of good API documentation.

Future extensions of our work may involve a restricted
systematic literature review in API documentation artefacts,
and many suggestions are further detailed in section 7. Fur-
ther, a review into the techniques of these primary studies
may extend the mapping we conducted in this work, by
evaluating the the effectiveness of the various approaches
used in each study and assessing these against the proposed
conclusions of each study.

The findings of our work provides a solid baseline
for improving the documentation of non-deterministic soft-
ware, such as computer vision services. While our aim is
to eventually improve the quality of API documentation,
the ultimate goal is to improve the software engineer’s
experience of non-deterministic and abstracted AI-based
components, such as intelligent web services. We hope the
guidelines from this extensive study help both software
developers and API providers alike by using our taxonomy
as a go-to checklist for what should be considered in docu-
menting any API.
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