
A Toolkit for Building More Adaptable User
Interfaces for Vision-impaired Users

Calvin Luy, Jeremy Law, Lily Ho, Richard Matheson, Tracey Cai,
Anuradha Madugalla, John Grundy

Department of Software Systems and Cybersecurity, Monash University, Australia
{calvinluy, jeremylaw3535, lilyyho98, richardmatheson.rm, Traceykycai}@gmail.com

{anu.madugalla, john.grundy}@monash.edu

Abstract—Most prior research into adaptable and adaptive
user interfaces primarily focuses on facilitating consistent user
experiences across devices and pays less attention to facilitating
universal access for diverse end users. We address this short-
coming by developing adaptable user interface components for
a category of diverse users, the vision impaired. This paper
presents a framework that supports run time adaptation of
web components to suit vision impaired users by using a set
of adaptable, reusable widgets. We developed a prototype using
these components and evaluated its effectiveness. Our results
show that an such an adaptable user interface provides significant
benefit in many key W3C accessibility areas, helping to make the
web more accessible for diverse end users.

Index Terms—Human computer interaction, Adaptive user
interface, Accessibility, Visual impairment, Personalised UI

I. INTRODUCTION

Universal access to digital technology has been a long
term challenge [1]. Adaptive user interfaces (Adaptive UI)
automatically tailor the interface to user preferences based on
their predicted intent, by capturing and analysing user inputs
and behaviour [2]–[5]. Adaptable user interfaces (Adaptable
UI) allow users to tailor the UI components to their needs [6],
[7]. Diverse users include users are those with vision impair-
ment, cognitive impairments, aging population as well as users
from socially and culturally diverse backgrounds [8]–[10].
Frameworks to support this include Intelligent User Interfaces
[4], Adapt-UI [11] and OOUIC [6]. These provide insight into
a design model for automatically adapting the user interfaces
at runtime to allow for dynamically changing context of the
user. Developing adaptable UIs for vision impaired users
has received significantly lesser attention. Existing solutions
include responsive web designs (RWD), adaptable interfaces
and promoting best practices such as following accessibility
guidelines. However, poor implementations have led users to
experience greater dissatisfaction when navigating sites than
with conventional designs [12], [13]. Adaptable interfaces
allow users to select from a range of predefined configurations
that best suit them. Accessibility guidelines provide guidance
on common difficulties vision impaired users face, but can
only guide developers who generally lack understanding of
the vision impaired [14], [15].

We address this problem by developing and evaluating a
set of reusable, adaptable web interface components for a
subset of users people with vision impairments, aiming to

improve accessibility. In this study, we focus on users with
color blindness, low vision as well as users with dyslexia. By
integrating our framework to an existing website, we provided
a high level of adaptation especially using adaptable color
schemes, font settings, layout and image settings. We evaluated
our framework via a user study using personas of people with
varying levels of vision impairment.

As user interfaces (UIs) become increasingly complex,
developing a single user interface with a “one size fits all”
approach is no longer sufficient [3], and leads to compromises
due to conflicting user requirements [16]. As a result, usability
aspects of most software tend to focus on homogeneous
characteristics common to majority of users and neglect fea-
tures and support required by special users [16]. A possible
solution is to use OS specific adaptable features, such as
iOS font, colour customisation [17]. However, this changes
entire devices’ font and colour settings and is not user-friendly.
Another would be to use web browser plugins e.g. for colour
filtering [18]. Their performance varies greatly between web
sites, and impacts whole web sites. Therefore, much more
nuanced, user controlled UI adaptation is needed.

We analysed the popular Zomato website which aggregates
information and reviews on restaurants and food delivery
providers [19]. We evaluated its website against the WCAG
2.0, which are the standard accessibility evaluation guidelines,
using the WAVE Web Accessibility Evaluation Tool [20]. 92
errors were identified, such as ‘low colour contrast’ and ‘small
fonts’ issues. These demonstrate the limitations this site had
for accessibility limitations of vision impaired users. The view
of this website for a user with Deuteranopia is shown in Figure
1, highlighting colour contrast and small text issues. It can
be argued that browsers inbuilt zoom-in feature would be of
assistance to the small text issue. But as shown in Figure 2, this
would reduce the visible area leading to navigation problems
and disorientation [12]. We tried out browser plug-ins and
laptop and mobile device accessibility settings to try and
support users with these challenges. While some support was
helpful, much failed or didn’t directly address key problems.
This was due to (i) lack of user control over many settings;
(ii) failure of the adapted application to display properly e.g.
layout, interaction; and (iii) inability to control individual
interface parts. Some web site components did not seem built
to support accessibility at all.

John Grundy
2021 IEEE Symposium on Visual Languages and Human-centric Computing (VLHCC2021), 10-13 October, St Louis, USA

Fig. 1: Deuteranopia filtered Zomato –
green-blind user view

Fig. 2: Zoomed via browser leading to
layout issues

Fig. 3: Adaptive Zomato – text size in-
creased, colour changed

II. METHODOLOGY

We wanted to answer the following questions: RQ1: What
limitations surround current frameworks that support adaptive
and adaptable user interfaces? RQ2: How can we determine
the degree and type of accessibility required by diverse end
users? RQ3: When used, does our adaptable web application
impact user accessibility?

A. Our Approach

The UI adaptation requirements for the vision impaired vary
with the degree of vision issues, resulting in an overwhelming
number of combinations to be catered for [14]. Therefore
in our work, we focused only on two key customisations:
colour and font. We chose these since they have the highest
impact and are most visible. We provide a customised set of
UI components in open-source libraries and an architectural
framework. We designed and implemented a framework that
grants the user autonomy to modify their UI based on their
individual needs. Contrary to the automated adaptive interface
approach, we created a manual adaptable interface where users
are able to set fine-grained options that modify the UI to better
suit their individual needs.

B. Adaptable UI Framework and Components

We utilised Flutter as the basis of our adaptable framework
[21]. Flutter is an open source software development toolkit
that uses the Dart programming language to programmatically
build front end UIs. This is an SDK that is increasingly
becoming popular among web developers due to it’s ease
of use. Therefore our solution explores the possibility of
using this SDK to ensure adaptability. Flutter interfaces are
composed of components, called ‘widgets’. Widgets are built
when the application is first loaded, and are rebuilt when
state changes. We leveraged this rebuilding ability to develop
“adaptable Widgets” which can be used as replacements for
some commonly used basic Flutter widgets. Composition of
Flutter applications using our new suite of “Adaptive Widgets”
and Adaptable Settings create an adaptable interface model.
User (or in future, also automatic, adaptive) changes to the
settings will modify the appearance of the UI at run time.
The changes in the Adaptable Settings by the user in the
Presentation Layer of the application, triggers changes of state
in the Adaptive View Models that track the state of various

accessibility settings. All Adaptive Widgets are designed to
listen to changes in View Models, leading to an automated
re-build of the Adaptive Widget in the case of changes.

C. Our Novel Adaptive Flutter Widgets

We built a set of Adaptive Widgets that change auto-
matically based on user Adaptable Settings changes (which
could also be changed automatically in future). They include
Adaptive Text, Adaptive Button, Adaptive Text Field, Adaptive
Link. We added functionality to listen to the View Model and
incorporated changes to the widgets to account for the settings
that are applicable for them. When building our Adaptive
Text widget, we added 3 listeners (bold text, dyslexic friendly
font and font size) to the Adaptive Widgets View Model.
For example, if the state for bold text is changed to true,
logic is applied within the widget modifying the existing
text style. In our rebuild of the Button widget, we added a
differentiate without colour listener by enabling rebuild of the
widget to have all buttons underlined. Upon changing the state
of Dyslexic Friendly font, the Adaptive Text in the Adaptive
Button is modified to contain a dyslexic friendly font. Our
adaptable widgets are used as one to one to replacements for
and can be mixed with non-adaptive Flutter widgets.

D. Adaptable Settings Menu

Guided by W3C accessibility standards we selected Colour
Themes, Font Settings and Image Colour Filters as the main
sections of our accessibility menu. These menu options dictate
the behaviour of our Adaptive Widgets.

1) Colour Themes: We implemented colour theme change
for pages which automatically updates elements to a specific
colour theme. Predefined Colour Vision Deficiency Themes
improve the experience for those with a specific colour vision
deficiency. There are three major types of color blindness with
many sub-types [22]. We predefined four colour themes –
red, green, blue and total colour-blind friendly [23]. When
selecting one of these themes, the background, accent and
text colour are automatically applied to all elements on the
website, as shown in Figure 6. Custom Colour Theme Selection
gives users full control to define their own custom colour
theme. To assist users with selecting high contrasting colours,
the accessibility menu provides a contrast ratio based on the
selected primary and accent colours. The contrast ratio is

Fig. 4: Our Adaptable UI Framework
Fig. 5: Widget Tree of Adaptive Zomato Prototype

a measure of the difference in luminance of two colours,
expressed as a ratio. The minimum contrast ratio required by
the W3C standards is 4.5:1 for normal text.

2) Font Settings: Text Colour settings help people with
colour vision deficiency who are often unable to read text
on certain colour backgrounds [24]. We implemented the
capability to change text colour of page body based on user
preference.Text Size is another problem where it’s difficult to
perceive text and distinguish between different page elements.
We implemented customisable font settings targeted at users
with low vision, allowing them to bold text and adjust the
default font size. We also allows users with better visual
acuity to see more information by reducing font size. Font type
focus on improve readability for users with common dyslexia
symptoms. It enables applying a dyslexia friendly font: type-
face OpenDyslexic, which provides weighted bottoms for each
letter and unique letter shapes [25].

Fig. 6: Menu with predefined colour theme applied

3) Differentiate Without Colour: caters to those who cannot
distinguish colours. We provide a switch to toggle the “differ-
entiate without colour” option, making buttons and text links
easily distinguishable with underlining.

4) Image settings: Our Image settings adaptations allow
users to select an image filter colour to apply to all images,
helping to better distinguish colours in images. This works
by applying the inbuilt Flutter method BlendMode.modulate()
which multiplies the colour components of the selected colour
and the source image to produce the filtered image. We also
allows users to adjust the intensity of the filter.

E. Adaptable UI Prototype

Figure 3 shows our rebuilt adaptive Zomato web site in
use after colour, text and image adaptation configurations set
via the menu in Figure 6. It shows text colour changed to
a colour more suitable for a green-blind user. The stronger
contrast is more suited to the user. Similarly, adjusting text
size enables the user to see smaller text more easily without
website layout being compromised. The user is still able to
see the full page and its contents with larger fonts in each
widget. The code can be downloaded from https://github.com/
anukmd/toolKitAdaptiveUI

III. EVALUATION

A. Method

Our evaluation, approved by our University Ethics Com-
mittee, used participants recruited by the authors from an
advanced software engineering class. Each participant was
assigned an author who conducted an evaluation session.
The intended audience of this tool was people with colour
blindness and reduced vision. However, due to COVID-19
and unavailability of working closely with the intended par-
ticipants, we worked with participants with normal colour
vision. We simulated colour blindness for them through the
use of colour filter plugins. Fourteen participants partook in
the evaluation. Table I show the distribution of participants
and their simulated type of vision impairment.

To evaluate the accessibility of our prototype adaptable
application, personas were assigned to each participant. As
this application caters to a variety of colour blind users, the
personas varied in their type of colour blindness, and variation
between normal and shortsightedness. To aid personas, a
Google Chrome colour vision simulator Colorblindly was

https://github.com/anukmd/toolKitAdaptiveUI
https://github.com/anukmd/toolKitAdaptiveUI

Fig. 7: Participant responses evaluating
Contrast

Fig. 8: Participant responses evaluating
Colour

Fig. 9: Participant responses evaluating
Text Size

applied to the web browser, allowing the participant to view
the websites as their persona would.

TABLE I: Summary of Personas Participants Simulated

Type of Colour Blindness Type of Partial Sightedness Participants
Normal Normal 4
Deuteranopia Normal 4
Protanopia Normal 2
Tritanopia Normal 2
Monochromacy Normal 2
Normal Short Sighted 4
Deuteranopia Short Sighted 4

A questionnaire was designed for the evaluation based
on heuristic evaluation method. This was selected as the
testing method for this study, as it helps to find usability
and accessibility problems in UI designs [26]. The selected
heuristics correspond to the W3C accessibility guidelines [27]

B. Results

Results from our heuristic evaluations indicated that the
users perceived the recreated adaptive Zomato website to be
much more accessible than the original website for almost
all W3C vision impairment guidelines. Low scores in Line
Spacing, Line Length and Letter Spacing, could be attributed
to side effects of the available Flutter settings. For exam-
ple, changing the font size will increase the line spacing,
and enabling the dyslexia friendly font would increase letter
spacing. Capitalisation, Hyphenation, Justification and Margin
and Borders scores need further evaluation with more users to
better understand the cause.

Contrast: Ability for a user to customise colours of web
elements helps to distinctly differentiate elements by colour.
Users had the option to choose between predefined colour
blind friendly themes or picking their own colour combi-
nations. Figure 7 results indicate that the original Zomato
website performed poorly, with a mode value of 1. This was
consistent across the respondents, as 70% of them rated the
contrast 1 or 2. By comparison, our adaptive version of Zomato
outperformed the original in terms of contrast, with approx
80% of respondents rating it a 5. This indicated that the
adaptive interface was highly effective in allowing users to
set background and text colour in order to improve contrast.

Differentiate without Colour: The ability to convey in-
formation, indicate an action or distinguish certain visual ele-
ments without a reliance on colour is a core W3C Accessibility
guideline. When asked if “colour is not the only visual means

of conveying information, indicating an action, prompting a
response, or distinguishing a visual element” [27], the original
Zomato website performed at an acceptable standard. As seen
in Figure 8, 3 and 4 received highest responses with each
of them making up 42.9%. This shows that it performed
slightly above average in this category, and therefore, did
not rely solely on colour to convey information. However
results demonstrate that our adaptive Zomato outperformed
the original with 64.3% rating it 5, and 36.7% as 4.

Text Size: Our menu allows users to change the font size of
the screen text, without having to zoom in or out. Participants
were asked to evaluate whether or not they could “change the
text size of text, without zooming the entire interface” [27].
There was a large difference between the results, as illustrated
in Figure 9. For the original Zomato website, 78.6% of the
participants down voted the original website’s performance.
In contrast, our adaptable version showed the opposite results,
with 78.6% rating the website a 5.

IV. LIMITATIONS

One of our study’s limitations was the lack of real user
involvement. This can be overcome in the future by conducting
user studies with actual visual-impaired users. It would also
help to overcome the limitation of possible bias in current
participants since they were from a software engineering class.
Once such a future work is completed, a comparison of task
completion between real vs. simulated user groups may reveal
interesting insights.

V. SUMMARY

We prototyped a framework that grants the user autonomy to
make detailed modifications to their web application interface
based on their preferences. We designed, implemented and
evaluated a set of web SDK components on top of Flutter to
implement the framework. Participants found the functionality
provided by our accessibility settings menu helpful for their
simulated vision deficiency, enabling them to more easily
view certain elements on the website. Future work needs to
incorporate a range of vision impaired participants in order to
gain a more accurate understanding of their perspectives when
using adaptive user interfaces.

ACKNOWLEDGEMENTS

Grundy is supported by ARC Laureate Fellowship
FL190100035, and Madugalla is supported by ARC Trans-
formation Hub IH170100013.

REFERENCES

[1] E. Machado, D. Singh, F. Cruciani, L. Chen, S. Hanke, F. Salvago,
J. Kropf, and A. Holzinger, “A conceptual framework for adaptive user
interfaces for older adults,” in 2018 IEEE Int. Conference on Perva-
sive Computing and Communications Workshops (PerCom Workshops).
IEEE, 2018, pp. 782–787.

[2] M. Peissner, A. Schuller, and D. Spath, “A design patterns approach to
adaptive user interfaces for users with special needs,” in Int. Conference
on Human-Computer Interaction. Springer, 2011, pp. 268–277.

[3] K. Montague, V. L. Hanson, and A. Cobley, “Adaptive interfaces: a little
learning is a dangerous thing...” in Int. Conference on Universal Access
in Human-Computer Interaction. Springer, 2011, pp. 391–399.

[4] L. Rothrock, R. Koubek, F. Fuchs, M. Haas, and G. Salvendy, “Review
and reappraisal of adaptive interfaces: toward biologically inspired
paradigms,” Theoretical issues in ergonomics science, vol. 3, no. 1, pp.
47–84, 2002.

[5] D. Benyon and D. Murray, “Experience with adaptive interfaces,” The
Computer Journal, vol. 31, no. 5, pp. 465–473, 1988.

[6] L. Zhang, Q.-X. Qu, W.-Y. Chao, and V. G. Duffy, “Investigating the
combination of adaptive uis and adaptable uis for improving usability
and user performance of complex uis,” Int. Journal of Human–Computer
Interaction, vol. 36, no. 1, pp. 82–94, 2020.

[7] C. De Los Rios Perez, “Adaptable user interfaces for people with autism:
A transportation example,” in Proc. Internet of Accessible Things, 2018,
pp. 1–2.

[8] H. Petrie, F. Hamilton, and N. King, “Tension, what tension? website
accessibility and visual design,” in Proc. 2004 Int. cross-disciplinary
workshop on Web accessibility (W4A), 2004, pp. 13–18.

[9] L. Levanthal, B. Teasley, D. Stone, A.-M. Lancaster, A. Marcus,
B. Nardi, J. Nielsen, M. Kurosu, and R. Heller, “Designing for diverse
users: will just a better interface do?” in Conference companion on
Human factors in computing systems, 1994, pp. 191–192.

[10] J. Grundy, H. Khalajzadeh, and J. Mcintosh, “Towards human-centric
model-driven software engineering.” in ENASE, 2020, pp. 229–238.

[11] E. Yigitbas, S. Sauer, and G. Engels, “Adapt-ui: an ide supporting
model-driven development of self-adaptive uis,” in Proc. ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, 2017, pp.
99–104.

[12] T. C. Nogueira, D. J. Ferreira, S. T. Carvalho, and L. O. Berreta,
“Evaluating responsive web design’s impact on blind users,” IEEE
MultiMedia, vol. 24, no. 2, pp. 86–95, 2017.

[13] T. do Carmo Nogueira, D. J. Ferreira, S. T. de Carvalho,
L. de Oliveira Berretta, and M. R. Guntijo, “Comparing sighted and blind
users task performance in responsive and non-responsive web design,”
Knowledge and Information Systems, vol. 58, no. 2, pp. 319–339, 2019.

[14] J. A. Jacko and A. Sears, “Designing interfaces for an overlooked user
group: Considering the visual profiles of partially sighted users,” in Proc.
3rd Int. ACM conference on Assistive technologies, 1998, pp. 75–77.

[15] A. P. Freire, C. M. Russo, and R. P. Fortes, “A survey on the accessibility
awareness of people involved in web development projects in brazil,”
in Proc. 2008 Int. cross-disciplinary conference on Web accessibility
(W4A), 2008, pp. 87–96.

[16] J. Sauer, A. Sonderegger, and S. Schmutz, “Usability, user experience
and accessibility: towards an integrative model,” Ergonomics, no. just-
accepted, pp. 1–23, 2020.

[17] “Use display and text size preferences on your iphone, ipad and ipod
touch – apple support,” shorturl.at/hluCI, (Accessed on 04/23/2021).

[18] “Colorblindly - chrome web store,” shorturl.at/fnM35, (Accessed on
04/23/2021).

[19] “Mcdonald’s, cbd, melbourne,” shorturl.at/asxK6, 2008-2020, (Accessed
on 12/07/2020).

[20] “Wave web accessibility evaluation tool,” https://wave.webaim.org/,
2020, (Accessed on 12/13/2020).

[21] “Flutter - beautiful native apps in record time,” https://flutter.dev/, 2020,
(Accessed on 12/07/2020).

[22] “Types of color blindness, national eye institute,” https:
//www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/
color-blindness/types-color-blindness, (Accessed on 04/23/2021).

[23] M. Geissbuehler and T. Lasser, “How to display data by color schemes
compatible with red-green color perception deficiencies,” Optics express,
vol. 21, no. 8, pp. 9862–9874, 2013.

[24] J. T. Nganji and S. H. Nggada, “Disability-aware software engineering
for improved system accessibility and usability,” Int. Journal of Software
Engineering and Its Applications, vol. 5, no. 3, pp. 47–62, 2011.

[25] J. J. Wery and J. A. Diliberto, “The effect of a specialized dyslexia font,
opendyslexic, on reading rate and accuracy,” Annals of dyslexia, vol. 67,
no. 2, pp. 114–127, 2017.

[26] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in
Proc. SIGCHI conference on Human factors in computing systems, 1990,
pp. 249–256.

[27] “Accessibility requirements for people with low vision,” https://www.
w3.org/TR/low-vision-needs/, March 2016, (Accessed on 12/06/2020).

shorturl.at/hluCI
shorturl.at/fnM35
shorturl.at/asxK6
https://wave.webaim.org/
https://flutter.dev/
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/color-blindness/types-color-blindness
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/color-blindness/types-color-blindness
https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/color-blindness/types-color-blindness
https://www.w3.org/TR/low-vision-needs/
https://www.w3.org/TR/low-vision-needs/

	Introduction
	Methodology
	Our Approach
	Adaptable UI Framework and Components
	Our Novel Adaptive Flutter Widgets
	Adaptable Settings Menu
	Colour Themes
	Font Settings
	Differentiate Without Colour
	Image settings

	Adaptable UI Prototype

	Evaluation
	Method
	Results

	Limitations
	Summary
	References

