

Sparse Predictive Hierarchies
Eric Laukien, Ogma Corp

An alternative to Deep Learning
● Deep Learning (DL) has had many successes, but still

has some fundamental drawbacks
● In particular, the reliance on the backpropagation

algorithm prohibits:
1 - Online/incremental learning: Learning from data streams
without replay or other heavy decorrelation mechanisms

2 - Remembering beyond a replay buffer horizon

1 – Online/Incremental learning
● Online (or incremental) learning allows construction of a model

through observation of temporally correlated streams of data.
● Dense backpropagation has an i.i.d. assumption, which when

ignored leads the model to chase the last values observed (in most
cases)

● Backpropagation can therefore only learn in an incremental/online
setting through the use of replay buffers or other decorrelation
mechanisms.
– These mechanisms are very slow and especially memory intensive

2 - Remembering and Catastrophic
Interference

● Due to backpropagation’s need to use something like a
replay buffer or similar expensive methods (such as
multiple agents), Deep Learning algorithms have a
tendency to forget beyond their replay buffer horizon

● This is known as catastrophic interference
– Stems from the reliance on dense (not sparse)

representations primarily, as these result in “hidden” units in
a network interfering with each other (hence the name) –
Dense backpropagation doesn’t generally learn orthogonal
representations

● Replay buffers get extremely large and memory
intensive. Iterating over them is also expensive

So what do we do?
● Age old answer: Turn to biology
● Biology doesn’t use backpropagation

– Would require replay memory which biology
doesn’t have

– Would require hierarchical synchronization and
way faster neurons

– Animal (and human) brains are sparse – cannot
backpropagate through sparse representations
(non-differentiable)

● Biology seems to use sparse coding – Gabor
filters are common in V1

● How do we perform credit assignment
without backpropagation?

Olshausen and Field 1997

Sparse Coding
● Sparse coding seeks to find a sparse representation for a signal giving some codebook (dictionary)
● Coding can occur iteratively, and dictionaries can be updated with Hebbian rules
● There exist both biologically plausible and implausible variants, which achieve similar results with

slightly different methods
● Typically requires some sort of iterative solving of the code, followed by a dictionary update (then

repeat)
● Sparse coding performed on whitened natural image patches yields gabor filters
● Sparsity causes units to “compete”
● Can be made fully incremental relatively easily – since sparsity forces orthogonality in the

parameters!
– Essentially “bins” things into discrete representations with little to no overlap

Spiking Sparse Coding
● An optional improvement to the

sparse coding is to not only make
it sparse in space but also in time

● We can do this by switching from
binary neurons to binary spiking
neurons (they have a refractory
period)

● Experimentally improves results
depending on task

Sparse Representation Format
● We want to use sparse coding as an unsupervised learning method
● What format should our sparse code take?

– Normally, it is unrestricted in structure – nonzero values seem uniformly randomly distributed

● Unrestricted structure works well when the dictionary is fully connected. However, when it is sparsely connected,
units will compete on different input patterns, resulting in “unfair competition” that leads certain units to dominate
the code

● Fix: Adopt a locally fully connected structure - “columns”
– A column is a 1D array of “cells”
– All cells in a column see the same input patch
– No competition between columns, only within
– Columns are typically one-hot (1 active unit at a time)

● In order to be able to handle visual input (2D) later on, we organize columns into a 2D grid of columns (therefore a
3D grid of cells)

● We call this structured representation a Columnar Sparse Distributed Representation (CSDR).
● Since each column is one-hot, we can represent a CSDR as a 2D array of integers, where the integers index the

active unit in each column

Connectivity between CSDRs
(“layers”)

● Connectivity is sparse, can be represented
through a sparse matrix (we use
Compressed Sparse Row (CSR) format)

● A column connects to other columns locally
with some radius (“receptive field”)

● This is NOT convolutional – connections
(“synapses”) between cells/columns are not
shared. Biology doesn’t use convolutions
either, at least not ones that learn. This also
has the benefit of making layer sizes very
flexible with no padding needed

Layers
● Layers consist of two superimposed

CSDRs along with several sparse
weight matrices
– Current layer state, and predicted state
– A layer is tasked with:

● Encoding the input (bottom-up) into the
current layer state

● Predicting the next (t+1) input state (top-
down), while taking its own state and
predictions of its own state from above
(feed-back) into account

Taking a step back
● We have layers now that can encode input into

CSDRs and form some kind of prediction?
● Why do we predict, what do we predict, and

how?

World Modeling
● In SPH, the goal is to predict the input one timestep ahead of time
● If we can do this successfully, we know that:

– The model understands the world at that timescale
– The model also understands the world at every timescale “above” (lower

resolution) that timescale (since we can just chain together predictions at
higher resolutions to get lower resolution ones)

● Given some vector X_t, we try to predict X_(t+1) at every t. If we
can do this accurately enough, then we have successfully modeled
the environment

Prediction over Layers
● As mentioned earlier, each layer predicts one timestep ahead of time
● The target of this prediction is simply the state of the layer directly below
● A layer predicts the state of the layer below (or input, if it’s the first layer)

using:
– The current layer state
– The predictions from the layer above as context

● Since these predictions are of the state of the current layer, they are useful context for
predicting the state of the layer below as well

● Avoids backpropagation!

Hierarchy
● We organize the layers into a bi-directional hierarchy
● Compress and extract features going up via sparse

coding
● Predict next timestep of each layer going down,

using next higher layer predictions as context.
Predictions are formed through simple incremental
regression (perceptron)

● Sparse codes provide the needed nonlinearity
● Implemented in two passes, but can also be done

asynchronously

Working Memory
● If we keep the hierarchy as shown in the previous slide,

each layer receives 1 timestep of data and produces 1
timestep of prediction

● It has no working memory, and cannot remember past 1
step

● It would seem natural to just add recurrent connections in
the sparse coder
– This works alright, but we can do better

Exponential Memory
● To address the working memory issue, we make each layer take N timesteps of data and produce N

timesteps as well
– A layer therefore has both a sliding “input window” and a sliding “output window”

● We “clock” each layer N times slower than the layer below
– Kind of like a bi-directional Clockwork RNN

● We therefore get N^(number of layers) timesteps of memory
– Exponential growth with respect to layer count!

● So, when doing the “upward/encoding” pass, we only encode after a layer has received N inputs from
the layer below

● When doing the “downward/prediction” pass, we select the particular prediction of the N predictions a
layer produces to serve as context for the layer below
– We select this “slice” of prediction based on the current layer clock, so each layer still receives a t+1 prediction

from the layer above as context
– We call this “de-striding”

● N is typically 2. If we want less memory, we can make N=1 for some layers and 2 for others.

Exponential Memory (Cont.)
Since we only need to update every layer half as often as the
previous (if N=2), we cannot exceed twice the cost of the first layer
in terms of processing!

Exponential Memory (Cont.)

Pre-Encoders and Pre-Decoders
● Our system assumes that both the input as well as the

final prediction of the model is itself a CSDR
● CSDRs are a very specific data format, so how do we train

on e.g. audio waveforms or video data?
● We use Pre-Encoders and Pre-Decoders

– We often refer to both as just “Pre-Encoder” since the Pre-
Decoder is often just a reverse transformation built into the Pre-
Encoder

Example: Bounded Uniform Scalars
● We can easily pre-encode scalar signals if they are bounded and uniformly

distributed
● Just one-hot encode the scalar into a single input column (1x1xColSize input)
● Since we represent one-hot columns with integers, the integer value of a column

is simply:
index = round((scalar - lowerBound) / (upperBound - lowerBound) * (ColSize - 1))

● Then to get the scalar back from the prediction:
scalar = index / (ColSize - 1) * (upperBound - lowerBound) + lowerBound

● Useful for modeling e.g. scalar time series, since this is typically bounded and
mostly uniform

Example: Video Data
● For video data, we need to use sparse coding again, but this time we are encode

an image instead of another CSDR (one frame is entered into the hierarchy at a
time)

● Since frames are dense, we need to be careful about how we design this pre-
encoder to not have forgetting

● Biology uses far more complex algorithms that we may try to model more
accurately in the future, but for now simple methods such as decaying self-
organizing maps (SOMs) work fine

● Depending on the task, it is often desirable to filter the frames with e.g. a
Difference of Gaussian filter or similar to extract edges. This mimics the center-
surround receptive fields in the brain

Beyond Prediction
● Up until now we have only described SPH in

terms of model-building and learning to predict
the next timestep of data

● This is useful for many tasks, but we also want
to build intelligent agents

● What about reinforcement learning?

Aside: Reinforcement Learning with
SPH

● Let us assume that our input data contains both sensory (state)
information as well as the action last taken by the agent

● If we predict this and act upon the action portion of the prediction, we
are essentially learning how to act

● In order to maximize reward, we modify the decoders (down pass) to
perform TD-learning

● This works because a prediction can be interpreted as an action
● When using exponential memory, each layer receives the average of

the rewards experienced before the layer clocked

Implementation Concerns
● Since the system is online/incremental and due

to exponential memory, this is already a very
fast system

● But we can do better
– What about all the sparsity? Why process all the

zero elements?

The Sparsity Optimization
● We can indeed ignore the zero-elements. Since CSDRs are stored as

2D arrays of integers, we already know where the active units (1’s) are
located. All the rest are zero, so we only need to iterate through the
nonzero elements

● Provides large speed boost depending on the level of sparsity. If the
sparsity ratio is 2%, then we theoretically get a 50X speed boost!
– Works very well in practice, too

● Dense networks require one to update all elements all the time, while
with sparse networks we only need to update a small fraction at a time

Is it really that fast?
● We can perform both learning and

inference for a toy vision-based self-
driving car on-board a Raspberry Pi
Zero (1 CPU core, 1 GHz)

● We can perform tasks such as e.g.
learn sequence copy more
accurately and many times faster
than an LSTM can even do inference

● Can compress audio data in real-
time (44000 Hz)

OgmaNeo
● OgmaNeo is our implementation of SPH
● Available on GitHub:

https://github.com/ogmacorp/OgmaNeo2
● Python bindings:

https://github.com/ogmacorp/PyOgmaNeo2

https://github.com/ogmacorp/OgmaNeo2
https://github.com/ogmacorp/PyOgmaNeo2

Self-Driving Micro-Car Demo
● Version 1 used a Raspberry Pi Zero
● Version 2 uses a NanoPi Duo (smaller,

more powerful)
– SOM Image Pre-Encoder
– Learns by passively observing a human

teacher
– Drives by predicting the next steering

angle
● And loops it back in to complete the next input Micro-SDC vs original modified

RC car SDC

Future Directions?
● Reinforcement learning is one of our

main focuses now
● Also experimenting with a variant of

OgmaNeo, Topo-OgmaNeo
● Exploits topology to better generalize

– Based on multi-winner self-organizing
maps

– Looks a bit like grid cells

● FPGA version

End
● Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

