{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# `prettyplotlib.boxplot`\n", "\n", "The original matplotlib boxplots are okay, but their lines are too thick and the blues and reds are a little garish." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import matplotlib.pyplot as plt\n", "np.random.seed(10)\n", "\n", "data = np.random.randn(8, 4)\n", "labels = ['A', 'B', 'C', 'D']\n", "\n", "fig, ax = plt.subplots()\n", "ax.boxplot(data)\n", "ax.set_xticklabels(labels)\n", "fig.savefig('boxplot_matplotlib_default.png')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD9CAYAAABHnDf0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF4dJREFUeJzt3X9M1Pcdx/HXFWg61KmsDg2wQAIdSAFRN/aLei6lTpjE\n6jpt10iscczFOvfHui1ZIiSWjnRLu5bE1CVzNUvA1YRCMnrRbf026wySKVnX6VJMxzxACAZt1XaT\nkdsfrhS9O7i77/f4/rjnI7mmcB/u++63x4vPvb+f7/frC4VCIQEAPOUuuwsAAFiPcAcADyLcAcCD\nCHcA8CDCHQA8iHAHAA8yFe7BYFDr169XaWmp7r//fr3wwgthYwzD0OLFi1VZWanKykodPHjQzCYB\nADFIN/PDGRkZeu6557Rq1Spdv35da9asUU1NjUpKSm4bt27dOnV3d5sqFAAQO1Mz9+XLl2vVqlWS\npIULF6qkpEQjIyNh4zhPCgDml2U998HBQfX396uqquq27/t8Pp06dUoVFRWqra3VuXPnrNokACCa\nkAWuXbsWWrNmTaizszPsuffffz9048aNUCgUCvX09ISKiooivoYkHjx48OCRwCMS0zP3yclJbd26\nVY8//rg2b94c9vyiRYuUmZkpSdq4caMmJyc1MTER8bVCoZDjHwcOHLC9Bq882JfsTyc/3LI/ozEV\n7qFQSLt27dLKlSu1f//+iGPGxsamC+jr61MoFFJWVpaZzQIA5mBqtcyf//xn/eY3v1F5ebkqKysl\nSS0tLbp48aIkqbGxUcePH9ehQ4eUnp6uzMxMdXR0mK8aADArX2i2ef088vl8s37EcArDMOT3++0u\nwxPYl9Zif1rLLfszWnYS7gBSis/ns/T17M6taNlpqi0DAG5jdxjPF64tAwAeRLgDQARNTXZXYA49\ndwCIwOeT3BBJ0bKTmTsAeBDhDgAeRLgDgAcR7gDgQYQ7AERw4IDdFZjDahkAcDFWywBACiHcAcCD\nCHcA8CDCHQA8iHAHgAjcfm0ZU+EeDAa1fv16lZaW6v7779cLL7wQcdy+fftUVFSkiooK9ff3m9kk\nAMyL5ma7KzDH1PXcMzIy9Nxzz2nVqlW6fv261qxZo5qaGpWUlEyP6enp0YULFzQwMKDTp09rz549\n6u3tNV04ACA6UzP35cuXa9WqVZKkhQsXqqSkRCMjI7eN6e7uVkNDgySpqqpKV69e1djYmJnNAgDm\nYNmdmAYHB9Xf36+qqqrbvj88PKy8vLzpr3NzczU0NKTs7Oyw12ia0eTy+/2uuH8hAMwnwzBkGMac\n4ywJ9+vXr+sb3/iGfvGLX2jhwoVhz9959lS0exg2uf0IBgAk2Z0T3+YoBwdMr5aZnJzU1q1b9fjj\nj2vz5s1hz+fk5CgYDE5/PTQ0pJycHLObBYCkcvu1ZUyFeygU0q5du7Ry5Urt378/4pj6+nodPXpU\nktTb26slS5ZEbMkAgJO4vZFg6sJhb775ph544AGVl5dPt1paWlp08eJFSVJjY6Mkae/evQoEAlqw\nYIGOHDmi1atXhxfChcMAIG7RspOrQgKAi3FVSABIIYQ7AHgQ4Q4AEaT0AVUr0XMH4CQ+n+SGSKLn\nDgAphHAHAA8i3AHAgwh3APAgwh0AInD7tWVYLQMALsZqGQBIIZbdrAOYKdo1+xPFpzogPszckRSh\nUGjOx4EDc4/56AEgPvTcYRu3nAEIOBk9dwCIA9eWsQgz99TDzB1O5pb3Z9Jm7k888YSys7NVVlYW\n8XnDMLR48WJVVlaqsrJSBw8eNLtJAMAcTIf7zp07FQgEZh2zbt069ff3q7+/Xz/5yU/MbhJABIZh\ndwVwEtPhXl1draVLl846hnYLInH7GYBOQ7hjpqSvc/f5fDp16pQqKiqUk5Ojn/3sZ1q5cmXEsU0z\njmD4/X75/f5klwcbuf2AFWAHwzBkxPCX3JIDqoODg9q0aZP+9re/hT137do1paWlKTMzU6+99pq+\n973v6Z133gkvhAOqQNwM4+MZe3Pzx5+G/P5bDySuqckdE5Bo2Zn0cL9TQUGBzpw5o6ysrJgKBBAb\nt4QRrGXbOvexsbHpDff19SkUCoUFOwDAWqZ77o8++qjeeOMNXb58WXl5eWpubtbk5KQkqbGxUceP\nH9ehQ4eUnp6uzMxMdXR0mC4aQDjaMJiJk5hgG9oIgHlJ7blbgXBPPW45AxBwMq4tAwBxcPunSmbu\nsA0zdziZW96f0bKTm3X8HzeXAOAlhPv/xRrGbvlrDiC10XOHbbi2DJA89NzjxMwdSA1u+V1ntQwA\nz8vKuhXKVjwka17HrhPy6bnHiVYC4FxXrjhvtm3xWo3Yt0tbBoBXOLGVkuyaaMsAQAoh3GEbt58B\nCDgZbRnYxokfoeFuTnxP0ZYBAFiGcI8TrQQAbkBbJk5O/NjnVuxLWM2J7ynXtmWeeOIJZWdnq6ys\nLOqYffv2qaioSBUVFerv7ze7SQDAHEyH+86dOxUIBKI+39PTowsXLmhgYECHDx/Wnj17zG4SHsEJ\nYUDymA736upqLV26NOrz3d3damhokCRVVVXp6tWrGhsbM7tZeADHL4DkSfrlB4aHh5WXlzf9dW5u\nroaGhpSdnR02tmnGb7vf75efO/4CwG0Mw5BhGHOOm5dry9zZ7I92Y4wmF0zlaCUAsNOdE9/m5uaI\n45K+FDInJ0fBYHD666GhIeXk5CR7s0njgr8/AJD8cK+vr9fRo0clSb29vVqyZEnElgwAwDqm2zKP\nPvqo3njjDV2+fFl5eXlqbm7W5OSkJKmxsVG1tbXq6elRYWGhFixYoCNHjpguGt7Q1MQnISBZOIkJ\ntnHiCSdwNye+p1x7EhMAwHkI9zjRRgDgBrRl4uTEj31uxb6E1Zz4nqItAwCwDDfIRlyysm7dhNgq\nVt08eOlSaWLCmtcCvIC2TJyc+LFvPjn1v9+pdWF+OfF9QFsGAGCZlAj3rKxbfz2teEjWvE5Wlr37\nBIC3pUTP/coVZ35UA4BkSYmZOwCkGsIdADyIcAcADyLcAcCDCHcA8CDCHQA8yHS4BwIBFRcXq6io\nSK2trWHPG4ahxYsXq7KyUpWVlTp48KDZTQIA5mBqnfvU1JT27t2r3//+98rJydHnPvc51dfXq6Sk\n5LZx69atU3d3t6lCAQCxMzVz7+vrU2FhofLz85WRkaHt27erq6srbJwbrhkDAF5iKtyHh4eVl5c3\n/XVubq6Gh4dvG+Pz+XTq1ClVVFSotrZW586dM7NJAEAMTLVlfDGcQ7969WoFg0FlZmbqtdde0+bN\nm/XOO+9EHNs04zZHfr9ffr/fTHkA4DmGYcgwjDnHmbrkb29vr5qamhQIBCRJzzzzjO666y798Ic/\njPozBQUFOnPmjLLuuHJWMi/5m4qXAU0Wp9bt1Lowv5z4PnDlJX/Xrl2rgYEBDQ4O6ubNmzp27Jjq\n6+tvGzM2Nja94b6+PoVCobBgBwBYy1RbJj09XW1tbdqwYYOmpqa0a9culZSU6KWXXpIkNTY26vjx\n4zp06JDS09OVmZmpjo4OSwoHUkksLdBYscAhNaTEnZhS8aNasji1bqfWNZ/YB87cB65sywAAnCkl\nbtYB64Tkkxx4o5HQjH8CINwRJ59CjvvYK/3/o6/dRQAOQlsGADyImTtgo6ysW/f4tYpVi2qWLpUm\nJqx5LdiDcAds5MSbt0vcwN0LCHcAnuHEA/52Hewn3AEbOTGMJPeuPnLiAX+7DvYT7oCNnBhGEquP\nvIDVMgDgQYQ7AHgQ4Q4AHkS4A4AHEe4A4EGEOwB4EOEOAB5kOtwDgYCKi4tVVFSk1tbWiGP27dun\noqIiVVRUqL+/3+wmAQBzMBXuU1NT2rt3rwKBgM6dO6f29nadP3/+tjE9PT26cOGCBgYGdPjwYe3Z\ns8dUwQCAuZkK976+PhUWFio/P18ZGRnavn27urq6bhvT3d2thoYGSVJVVZWuXr2qsbExM5sFAMzB\nVLgPDw8rLy9v+uvc3FwNDw/POWZoaMjMZgFP8fmc91i61O69ArNMXVsm1juy33nz1mg/19TUNP3v\nfr9ffr8/0dIAV7DyujJOvDk0rGcYhgzDmHOcqXDPyclRMBic/joYDCo3N3fWMUNDQ8rJyYn4ejPD\nHQAQ7s6Jb3Nzc8Rxptoya9eu1cDAgAYHB3Xz5k0dO3ZM9fX1t42pr6/X0aNHJUm9vb1asmSJsrOz\nzWwWADAHUzP39PR0tbW1acOGDZqamtKuXbtUUlKil156SZLU2Nio2tpa9fT0qLCwUAsWLNCRI0cs\nKRwAEJ0vdGdD3CY+ny+sN2/dazuvF+nEmmLh1LqdWtd8Yh84cx8ku6Zo2ckZqoBHHDhgdwVwkpSY\nuTv2br/O2PVxceLMSHJuXZhfTnwf2DVzT4nb7DnxVmbcxgxIDqfN5ew6ZyAlwh1AauC8gY/RcwcA\nDyLcAcCDCHfAIzjBGzOlxGoZJ/bOnFhTLJxat1Prmk/sA2u5ZX+m9GoZwO1ivUhfLMMcMp9zPLef\nN8DM3SZOrCkWTq3bqXUBycbMHZZx2jpiieuPA3ci3BEX1hED7sBqGQDwIMIdADyIcAeACNx+3gCr\nZWzixJrmG/sATuaW96flq2UmJia0bds2/etf/1J+fr5++9vfasmSJWHj8vPz9clPflJpaWnKyMhQ\nX19fopuEx7h9HTHgZAnP3J966inde++9euqpp9Ta2qorV67opz/9adi4goICnTlzRllZWbMXwswd\ngIO45XfU8jsxdXd3q6GhQZLU0NCgV199NepYh3R+ACBlJNyWGRsbU3Z2tiQpOztbY2NjEcf5fD49\n+OCDSktLU2Njo3bv3h31NZtmHMHw+/3y+/2JlgcAnmQYhgzDmHPcrG2ZmpoajY6Ohn3/6aefVkND\ng65cuTL9vaysLE1MTISNvXTpklasWKHx8XHV1NToxRdfVHV1dXghtGUAOEhTkztWzCR0QPXkyZNR\nn8vOztbo6KiWL1+uS5cu6dOf/nTEcStWrJAkLVu2TA8//LD6+voihjsAOIkbgn02Cffc6+vr9fLL\nL0uSXn75ZW3evDlszAcffKBr165Jkm7cuKETJ06orKws0U3CY9z+ywM4WcKrZSYmJvTNb35TFy9e\nvG0p5MjIiHbv3q3f/e53evfdd7VlyxZJ0n//+19961vf0o9//OPIhdCWSTnsA8C8aNnJSUw2cWJN\n8419AJhn+VJIAIBzEe4AEIHbjwnRlrGJE2uab+wDOJlb3p+0ZeA4XFsGSB5m7jZxYk0APuaW31Fm\n7gCQQgh3APAgwh0AInD7MSF67jZxYk0A3IeeOxzH7euIASdj5m4TJ9Y039gHgHnM3AEghRDuAOBB\nhDsAROD2Y0L03G3ixJrmG/sATuaW9yc9dziO29cRA06WcLi/8sorKi0tVVpams6ePRt1XCAQUHFx\nsYqKitTa2pro5uBBbv/YCzhZwuFeVlamzs5OPfDAA1HHTE1Nae/evQoEAjp37pza29t1/vz5RDcJ\nAIhReqI/WFxcPOeYvr4+FRYWKj8/X5K0fft2dXV1qaSkJNHNAgBikHC4x2J4eFh5eXnTX+fm5ur0\n6dNRxzfN+Jzu9/vl9/uTWB0AROfUY0KGYcgwjDnHzRruNTU1Gh0dDft+S0uLNm3aNOeL+3y+OcfM\n1JTEJmycpSTd0qV2VwBgNk49JnTnxLe5uTniuFnD/eTJk6aKyMnJUTAYnP46GAwqNzfX1Gsmwsrl\nTG5ZHuUGTU3O/QUC3M6SpZDR1qevXbtWAwMDGhwc1M2bN3Xs2DHV19dbsUl4QJQJBwALJBzunZ2d\nysvLU29vr+rq6rRx40ZJ0sjIiOrq6iRJ6enpamtr04YNG7Ry5Upt27aNg6kAbOXz+Sx9OFVKnKFq\nJdoy1mFfAuZxhioApBDCPU5OXR4FADMR7nFidYd1+EMJJA89dwBwMXruAJBCCHcA8CDCHQA8iHCP\nEwdUAbgB4R4nTpm3Dn8ogeRhtUycOKvSOuxLwDxWywBACiHcAcCDCHcA8CDCPU6cMg/ADQj3OLHC\nwzr8oQSSh9UyAOBilq+WeeWVV1RaWqq0tDSdPXs26rj8/HyVl5ersrJSn//85xPdHAAgDrPeIHs2\nZWVl6uzsVGNj46zjfD6fDMNQVlZWopsCAMQp4Zl7cXGx7rvvvpjG0m4Bks8w7K4ATpLwzD1WPp9P\nDz74oNLS0tTY2Kjdu3dHHds042il3++X3+9Pdnlxa2rioCqcyTAkB/7KwGKGYciI4S/5rAdUa2pq\nNDo6Gvb9lpYWbdq0SZK0fv16/fznP9fq1asjvsalS5e0YsUKjY+Pq6amRi+++KKqq6vDC3HJAVVO\nmbcOfyitxf5MTdGyc9aZ+8mTJ01veMWKFZKkZcuW6eGHH1ZfX1/EcEfqaW4mjMwyjI/bMTMvauf3\nM4tPdZa0ZaLNuD/44ANNTU1p0aJFunHjhk6cOKEDLG4GLHNniPPHEh9J+IBqZ2en8vLy1Nvbq7q6\nOm3cuFGSNDIyorq6OknS6OioqqurtWrVKlVVVenrX/+6HnroIWsqBwBExUlMcaLnbh32pbU4oJqa\nuOSvRegqwakIdsxEuMeJnqZ1+EMJJA9tGQBwMdoyAJBCCHcA8CDCHQA8iHCPEwdUY+Pz+Sx9AIgP\nB1TjxNpsAE7CAVUASCGEOwB4EOEOAB5EuAOABxHuceKUeQBuwGoZAHAxVssAQApJONx/8IMfqKSk\nRBUVFdqyZYvee++9iOMCgYCKi4tVVFSk1tbWhAt1ilhuTIvYsC+txf60ltv3Z8Lh/tBDD+nvf/+7\n/vrXv+q+++7TM888EzZmampKe/fuVSAQ0Llz59Te3q7z58+bKthubv8f7iTsS2uxP63l9v2ZcLjX\n1NTorrtu/XhVVZWGhobCxvT19amwsFD5+fnKyMjQ9u3b1dXVlXi1AICYWNJz/9WvfqXa2tqw7w8P\nDysvL2/669zcXA0PD1uxScvFeo2T5uZmroUCwPHSZ3uypqZGo6OjYd9vaWnRpk2bJElPP/207r77\nbj322GNh4+INOS+Fopf+W5KpubnZ7hI8hf1pLTfvz1nD/eTJk7P+8K9//Wv19PToD3/4Q8Tnc3Jy\nFAwGp78OBoPKzc2NOJZlkABgnYTbMoFAQM8++6y6urp0zz33RByzdu1aDQwMaHBwUDdv3tSxY8dU\nX1+fcLEAgNgkHO5PPvmkrl+/rpqaGlVWVuq73/2uJGlkZER1dXWSpPT0dLW1tWnDhg1auXKltm3b\nppKSEmsqBwBE5ZgzVJ3u1Vdf1ZYtW3T+/Hl99rOftbscV0tLS1N5eblCoZDS0tLU1tamL37xi3aX\n5Vqjo6Pav3+//vKXv2jJkiXKzs7W888/r6KiIrtLc52P3puTk5NKT0/Xjh079P3vf9+Vx9AI9xht\n27ZNH374oVavXq0mbsdkyqJFi3Tt2jVJ0okTJ9TS0uL6NcV2CYVC+tKXvqSdO3fq29/+tiTprbfe\n0vvvv6+vfOUrNlfnPjPfm+Pj43rsscf05S9/2ZW/81x+IAbXr1/X6dOn1dbWpmPHjtldjqe89957\nysrKsrsM13r99dd19913Twe7JJWXlxPsFli2bJkOHz6strY2u0tJyKyrZXBLV1eXvva1r+kzn/mM\nli1bprNnz2r16tV2l+VaH374oSorK/Xvf/9bly5d0h//+Ee7S3Ktt99+W2vWrLG7DM8qKCjQ1NSU\nxsfHtWzZMrvLiQsz9xi0t7frkUcekSQ98sgjam9vt7kid/vEJz6h/v5+nT9/XoFAQDt27LC7JNdy\nYy8Y84OZ+xwmJib0+uuv6+2335bP59PU1JR8Pp+effZZu0vzhC984Qu6fPmyLl++rHvvvdfuclyn\ntLRUx48ft7sMz3r33XeVlpbmulm7xMx9TsePH9eOHTs0ODiof/7zn7p48aIKCgr0pz/9ye7SPOEf\n//iHpqam9KlPfcruUlzpq1/9qv7zn//ol7/85fT33nrrLb355ps2VuUN4+Pj+s53vqMnn3zS7lIS\nwsx9Dh0dHfrRj3502/e2bt2qjo4OVVdX21SVu33Uc5durfY4evQo7QUTOjs7tX//frW2tuqee+5R\nQUGBnn/+ebvLcqWP3pt3LoV0I5ZCAoAH0ZYBAA8i3AHAgwh3APAgwh0APIhwBwAPItwBwIP+B84K\nYE1fs8t6AAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "In `prettyplotlib`, we did the usual softening of the blacks and removing of the axes. We also changed the colors of the boxplot, which is actually really annoying to do by hand:\n", "\n", " import brewer2mpl\n", " set1 = brewer2mpl.get_map('Set1', 'qualitative', 7).mpl_colors\n", "\n", " bp = ax.boxplot(x, **kwargs)\n", " plt.setp(bp['boxes'], color=set1[1], linewidth=0.5)\n", " plt.setp(bp['medians'], color=set1[0])\n", " plt.setp(bp['whiskers'], color=set1[1], linestyle='solid', linewidth=0.5)\n", " plt.setp(bp['fliers'], color=set1[1])\n", " plt.setp(bp['caps'], color='none')\n", "\n", "So using `prettyplotlib.boxplot` is much easier." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import prettyplotlib as ppl\n", "import matplotlib as mpl\n", "\n", "np.random.seed(10)\n", "\n", "data = np.random.randn(8, 4)\n", "labels = ['A', 'B', 'C', 'D']\n", "\n", "fig, ax = plt.subplots()\n", "ppl.boxplot(ax, data, xticklabels=labels)\n", "fig.savefig('boxplot_prettyplotlib_default.png')" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "AttributeError", "evalue": "'tuple' object has no attribute 'pop'", "output_type": "pyerr", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mppl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mboxplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxticklabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msavefig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'boxplot_prettyplotlib_default.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/olga/workspace-git/prettyplotlib/prettyplotlib/_boxplot.py\u001b[0m in \u001b[0;36mboxplot\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0;32mreturn\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \"\"\"\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmaybe_get_ax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0;31m# If no ticklabels are specified, don't draw any\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0mxticklabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'xticklabels'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/olga/workspace-git/prettyplotlib/prettyplotlib/utils.py\u001b[0m in \u001b[0;36mmaybe_get_ax\u001b[0;34m(args, kwargs)\u001b[0m\n\u001b[1;32m 80\u001b[0m \"\"\"\n\u001b[1;32m 81\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmpl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mAxes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 82\u001b[0;31m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 83\u001b[0m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0;34m'ax'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'tuple' object has no attribute 'pop'" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEIxJREFUeJzt3W9Ilff/x/HXiXNuRET/HJLnHLA8Bz1iamBZRHHaCF1j\n3qhu2K1mIiJEtFsbdSPtRsvujbxj0B/WShpbYDA7QdFpUDmjoqBamNR2PDCZK3EsKDtdvxv7fXVm\nHY96PNZ7zwcIXpyP1/XeB3nu6vwpl+M4jgAApsya6QEAAOlH3AHAIOIOAAYRdwAwiLgDgEHEHQAM\nGjfu27dvV3Z2tpYtW/bWNTt37lQwGFRJSYlu3bqV1gEBABM3btxramoUiUTe+nhHR4cePnyo7u5u\nHT58WA0NDWkdEAAwcePGfe3atVqwYMFbHz979qy2bdsmSSovL9fAwID6+vrSNyEAYMKm/Jx7PB6X\n3+8fPvb5fOrt7Z3qaQEAU5CWF1Rf/xsMXC5XOk4LAJgk91RP4PV6FYvFho97e3vl9XrHrAsEAurp\n6Znq5QDgPyUvL08PHz6c8M9N+c69qqpK33zzjSSps7NT8+fPV3Z29ph1PT09chyHL8fR3r17Z3yG\nd+WLvWAv2IvkX5O9KR73zn3r1q26fPmy+vv75ff71dTUpKGhIUlSfX29Nm7cqI6ODgUCAc2ZM0fH\njh2b1CAAgPQZN+5tbW3jnqSlpSUtwwAA0oNPqM6AcDg80yO8M9iLEezFCPZi6lyO42TkH+twuVzK\n0KUAwIzJtpM7dwAwiLgDgEHEHQAMIu4AYBBxBwCDiDsAGETcAcAg4g4ABhF3ADCIuAOAQcQdAAwi\n7gBgEHEHAIOIOwAYRNwBwCDiDgAGEXcAMIi4A4BBxB0ADCLuAGAQcQcAg4g7ABhE3AHAIOIOAAYR\ndwAwiLgDgEHEHQAMIu4AYBBxBwCDiDsAGETcAcAg4g4ABhF3ADCIuAOAQePGPRKJqKCgQMFgUM3N\nzWMe7+/vV2VlpUpLS1VUVKTjx49Px5wAgAlwOY7jvO3BRCKh/Px8XbhwQV6vVytWrFBbW5tCodDw\nmsbGRj1//lxfffWV+vv7lZ+fr76+Prnd7tEXcrmU5FIAgDeYbDuT3rl3dXUpEAgoNzdXHo9H1dXV\nam9vH7Vm8eLFGhwclCQNDg5q0aJFY8IOAMispBWOx+Py+/3Dxz6fTz///POoNXV1dfrwww+Vk5Oj\nv/76S9999930TAoASFnSuLtcrnFPsH//fpWWlioajaqnp0cbNmzQ7du3NXfu3DFrGxsbh78Ph8MK\nh8MTHhgALItGo4pGo1M+T9K4e71exWKx4eNYLCafzzdqzdWrV7Vnzx5JUl5enpYsWaIHDx6orKxs\nzPn+HXcAwFiv3/g2NTVN6jxJn3MvKytTd3e3Hj9+rBcvXuj06dOqqqoataagoEAXLlyQJPX19enB\ngwdaunTppIYBAKRH0jt3t9utlpYWVVRUKJFIqLa2VqFQSK2trZKk+vp67d69WzU1NSopKdGrV690\n8OBBLVy4MCPDAwDeLOlbIdN6Id4KCQATNi1vhQQAvJ+IOwAYRNwBwCDiDgAGEXcAMIi4A4BBxB0A\nDCLuAGAQcQcAg4g7ABhE3AHAIOIOAAYRdwAwiLgDgEHEHQAMIu4AYBBxBwCDiDsAGETcAcAg4g4A\nBhF3ADCIuAOAQcQdAAwi7gBgEHEHAIOIOwAYRNwBwCDiDgAGEXcAMIi4A4BBxB0ADCLuAGAQcQcA\ng4g7ABhE3AHAoHHjHolEVFBQoGAwqObm5jeuiUajWr58uYqKihQOh9M9IwBgglyO4zhvezCRSCg/\nP18XLlyQ1+vVihUr1NbWplAoNLxmYGBAa9as0fnz5+Xz+dTf36+srKyxF3K5lORSAIA3mGw7k965\nd3V1KRAIKDc3Vx6PR9XV1Wpvbx+15tSpU9q8ebN8Pp8kvTHsAIDMShr3eDwuv98/fOzz+RSPx0et\n6e7u1pMnT7R+/XqVlZXpxIkT0zMpACBl7mQPulyucU8wNDSkmzdv6uLFi3r27JlWr16tVatWKRgM\npm1IAMDEJI271+tVLBYbPo7FYsNPv/yP3+9XVlaWZs+erdmzZ2vdunW6ffv2G+Pe2Ng4/H04HObF\nVwB4TTQaVTQanfJ5kr6g+vLlS+Xn5+vixYvKycnRypUrx7yg+ssvv2jHjh06f/68nj9/rvLycp0+\nfVqFhYWjL8QLqgAwYZNtZ9I7d7fbrZaWFlVUVCiRSKi2tlahUEitra2SpPr6ehUUFKiyslLFxcWa\nNWuW6urqxoQdAJBZSe/c03oh7twBYMKm5a2QAID3E3EHAIOIOwAYRNwBwCDiDgAGEXcAMIi4A4BB\nxB0ADCLuAGAQcQcAg4g7ABhE3AHAIOIOAAYRdwAwiLgDgEHEHQAMIu4AYBBxBwCDiDsAGETcAcAg\n4g4ABhF3ADCIuAOAQcQdAAwi7gBgEHEHAIOIOwAYRNwBwCDiDgAGEXcAMIi4A4BBxB0ADCLuAGAQ\ncQcAg4g7ABhE3AHAoHHjHolEVFBQoGAwqObm5reuu379utxut86cOZPWAQEAE5c07olEQjt27FAk\nEtG9e/fU1tam+/fvv3HdF198ocrKSjmOM23DAgBSkzTuXV1dCgQCys3NlcfjUXV1tdrb28esO3To\nkLZs2aIPPvhg2gYFAKQuadzj8bj8fv/wsc/nUzweH7Omvb1dDQ0NkiSXyzUNYwIAJiJp3FMJ9a5d\nu3TgwAG5XC45jsPTMgDwDnAne9Dr9SoWiw0fx2Ix+Xy+UWtu3Lih6upqSVJ/f7/OnTsnj8ejqqqq\nMedrbGwc/j4cDiscDk9hdACwJxqNKhqNTvk8LifJrfbLly+Vn5+vixcvKicnRytXrlRbW5tCodAb\n19fU1OjTTz/Vpk2bxl7o/+/sAQCpm2w7k965u91utbS0qKKiQolEQrW1tQqFQmptbZUk1dfXT25a\nAMC0SnrnntYLcecOABM22XbyCVUAMIi4A4BBxB0ADCLuAGAQcQcAg4g7ABhE3AHAIOIOAAYRdwAw\niLgDgEHEHQAMIu4AYBBxBwCDiDsAGETcAcAg4g4ABhF3ADCIuAOAQcQdAAwi7gBgEHEHAIOIOwAY\nRNwBwCDiDgAGEXcAMIi4A4BBxB0ADCLuAGAQcQcAg4g7ABhE3AHAIOIOAAYRdwAwiLgDgEHEHQAM\nIu4AYFBKcY9EIiooKFAwGFRzc/OYx0+ePKmSkhIVFxdrzZo1unPnTtoHBQCkzuU4jpNsQSKRUH5+\nvi5cuCCv16sVK1aora1NoVBoeM21a9dUWFioefPmKRKJqLGxUZ2dnaMv5HJpnEsBAF4z2XaOe+fe\n1dWlQCCg3NxceTweVVdXq729fdSa1atXa968eZKk8vJy9fb2TngQAED6jBv3eDwuv98/fOzz+RSP\nx9+6/siRI9q4cWN6pgMATIp7vAUulyvlk126dElHjx7VlStX3vh4Y2Pj8PfhcFjhcDjlcwPAf0E0\nGlU0Gp3yecaNu9frVSwWGz6OxWLy+Xxj1t25c0d1dXWKRCJasGDBG8/177gDAMZ6/ca3qalpUucZ\n92mZsrIydXd36/Hjx3rx4oVOnz6tqqqqUWt+++03bdq0Sd9++60CgcCkBgEApM+4d+5ut1stLS2q\nqKhQIpFQbW2tQqGQWltbJUn19fXat2+fnj59qoaGBkmSx+NRV1fX9E4OAHircd8KmbYL8VZIAJiw\naXsrJADg/UPcAcAg4g4ABhF3ADCIuAOAQcQdAAwi7gBgEHEHAIOIOwAYRNwBwCDiDgAGEXcAMIi4\nA4BBxB0ADCLuAGAQcQcAg4g7ABhE3AHAIOIOAAYRdwAwiLgDgEHEHQAMIu4AYBBxBwCDiDsAGETc\nAcAg4g4ABhF3ADCIuAOAQcQdAAwi7gBgEHEHAIOIOwAYRNwBwCDiDgAGjRv3SCSigoICBYNBNTc3\nv3HNzp07FQwGVVJSolu3bqV9SADAxCSNeyKR0I4dOxSJRHTv3j21tbXp/v37o9Z0dHTo4cOH6u7u\n1uHDh9XQ0DCtA1sQjUZneoR3Bnsxgr0YwV5MXdK4d3V1KRAIKDc3Vx6PR9XV1Wpvbx+15uzZs9q2\nbZskqby8XAMDA+rr65u+iQ3gF3cEezGCvRjBXkxd0rjH43H5/f7hY5/Pp3g8Pu6a3t7eNI8JAJiI\npHF3uVwpncRxnEn9HABgeriTPej1ehWLxYaPY7GYfD5f0jW9vb3yer1jzpWXl0f0/6WpqWmmR3hn\nsBcj2IsR7MU/8vLyJvVzSeNeVlam7u5uPX78WDk5OTp9+rTa2tpGramqqlJLS4uqq6vV2dmp+fPn\nKzs7e8y5Hj58OKkBAQATlzTubrdbLS0tqqioUCKRUG1trUKhkFpbWyVJ9fX12rhxozo6OhQIBDRn\nzhwdO3YsI4MDAN7O5bz+hDkA4L2X9k+o8qGnEePtxcmTJ1VSUqLi4mKtWbNGd+7cmYEpMyOV3wtJ\nun79utxut86cOZPB6TInlX2IRqNavny5ioqKFA6HMztgBo23F/39/aqsrFRpaamKiop0/PjxzA+Z\nIdu3b1d2draWLVv21jUT7qaTRi9fvnTy8vKcR48eOS9evHBKSkqce/fujVrz448/Oh9//LHjOI7T\n2dnplJeXp3OEd0Yqe3H16lVnYGDAcRzHOXfu3H96L/63bv369c4nn3zifP/99zMw6fRKZR+ePn3q\nFBYWOrFYzHEcx/njjz9mYtRpl8pe7N271/nyyy8dx/lnHxYuXOgMDQ3NxLjT7qeffnJu3rzpFBUV\nvfHxyXQzrXfufOhpRCp7sXr1as2bN0/SP3th9fMBqeyFJB06dEhbtmzRBx98MANTTr9U9uHUqVPa\nvHnz8LvSsrKyZmLUaZfKXixevFiDg4OSpMHBQS1atEhud9KXCd9ba9eu1YIFC976+GS6mda486Gn\nEansxb8dOXJEGzduzMRoGZfq70V7e/vwX19h8W2zqexDd3e3njx5ovXr16usrEwnTpzI9JgZkcpe\n1NXV6e7du8rJyVFJSYm+/vrrTI/5zphMN9P6v0E+9DRiIv9Nly5d0tGjR3XlypVpnGjmpLIXu3bt\n0oEDB+RyueQ4zpjfEQtS2YehoSHdvHlTFy9e1LNnz7R69WqtWrVKwWAwAxNmTip7sX//fpWWlioa\njaqnp0cbNmzQ7du3NXfu3AxM+O6ZaDfTGvd0fujpfZfKXkjSnTt3VFdXp0gkkvSPZe+zVPbixo0b\nqq6ulvTPC2nnzp2Tx+NRVVVVRmedTqnsg9/vV1ZWlmbPnq3Zs2dr3bp1un37trm4p7IXV69e1Z49\neyT980GeJUuW6MGDByorK8vorO+CSXUzba8IOI4zNDTkLF261Hn06JHz/PnzcV9QvXbtmtkXEVPZ\ni19//dXJy8tzrl27NkNTZkYqe/Fvn332mfPDDz9kcMLMSGUf7t+/73z00UfOy5cvnb///tspKipy\n7t69O0MTT59U9uLzzz93GhsbHcdxnN9//93xer3On3/+ORPjZsSjR49SekE11W6m9c6dDz2NSGUv\n9u3bp6dPnw4/z+zxeNTV1TWTY0+LVPbivyCVfSgoKFBlZaWKi4s1a9Ys1dXVqbCwcIYnT79U9mL3\n7t2qqalRSUmJXr16pYMHD2rhwoUzPPn02Lp1qy5fvqz+/n75/X41NTVpaGhI0uS7yYeYAMAg/pk9\nADCIuAOAQcQdAAwi7gBgEHEHAIOIOwAYRNwBwCDiDgAG/R9h/b4XlfACjQAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }