{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# `prettyplotlib.hist`\n", "\n", "The default `matplotlib` histogram isn't that bad, but it leaves much to be desired." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "np.random.seed(12)\n", "\n", "fig, ax = plt.subplots(1)\n", "\n", "ax.hist(np.random.randn(1000))\n", "fig.savefig('hist_matplotlib_default.png')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFg5JREFUeJzt3X9M1Pfhx/HXITSLAVqt43B3LtcJDg6Vu7jAsszlnKLf\nzUHobOhgWjL1nzZd0tqs1i5toYmCW02jXUyaxXYszXTujwJZlFCbXte5bGcrJltohm2wwvEjWkSl\n1qLw+f7heikCdycc98E3z0dyyXH3+dz7dcC97nOfX+ewLMsSAMAIKXYHAAAkDqUOAAah1AHAIJQ6\nABiEUgcAg1DqAGCQqKV+/fp1FRcXy+fzyev1ateuXZKkgYEBlZSUaNmyZVq/fr0GBwcj89TV1Sk3\nN1d5eXlqbW2d2fQAgDEcsfZTv3btmubPn6+bN2/q+9//vl566SU1Nzdr0aJFevrpp7V3715dunRJ\n9fX1am9vV1VVlU6dOqVwOKx169apo6NDKSl8IACAZIjZtvPnz5ckDQ8Pa2RkRAsWLFBzc7Oqq6sl\nSdXV1WpsbJQkNTU1qbKyUmlpafJ4PMrJyVEoFJrB+ACAr4pZ6qOjo/L5fHI6nVqzZo0KCgrU398v\np9MpSXI6nerv75ck9fT0yO12R+Z1u90Kh8MzFB0AcLvUWBOkpKTozJkzunz5sjZs2KB33nlnzP0O\nh0MOh2PS+aPdBwBIrJil/qV7771XGzdu1AcffCCn06m+vj5lZ2ert7dXWVlZkiSXy6Wurq7IPN3d\n3XK5XOMeKycnRx9//HEC4gPA3LF06VJ99NFHUaeJuvrl4sWLkT1bPv/8c7311lvy+/0qKytTQ0OD\nJKmhoUHl5eWSpLKyMh05ckTDw8Pq7OzU2bNnVVRUNO5xP/74Y1mWNesvL7zwgu0ZTMl5N2QkJzln\n+yWeheGoS+q9vb2qrq7W6OioRkdHtWXLFq1du1Z+v18VFRU6dOiQPB6Pjh49Kknyer2qqKiQ1+tV\namqqDh48yOoXAEiiqKW+YsUKnT59etztCxcu1IkTJyac59lnn9Wzzz6bmHQAgDvCDuRRBAIBuyPE\n5W7IeTdklMiZaORMvpgHH83IoA6HbBgWAO5q8XQnS+oAYBBKHQAMQqkDgEEodQAwCKUOAAah1AHA\nIJQ6ABiEUgcAg1DqAGAQSh0ADEKpA4BBKHUAMAilDgAGodQBwCCUOgAYhFIHAINQ6gBgEEodAAxC\nqQOAQSh1ADAIpQ7jZWYulMPhSOolM3Oh3U8bc5TDivXV1DMxaBzfiA0kisPhkJTs/zf+x5F48XQn\nS+oAYBBKHQAMQqkDgEEodQAwSNRS7+rq0po1a1RQUKDly5frwIEDkqSamhq53W75/X75/X4dP348\nMk9dXZ1yc3OVl5en1tbWmU0PABgj6t4vfX196uvrk8/n09DQkFatWqXGxkYdPXpUGRkZ2rFjx5jp\n29vbVVVVpVOnTikcDmvdunXq6OhQSsrY9w72fkEysfcLTDHtvV+ys7Pl8/kkSenp6crPz1c4HJak\nCR+4qalJlZWVSktLk8fjUU5OjkKh0FTzAwDuUNzr1M+dO6e2tjZ997vflSS98sorKiws1LZt2zQ4\nOChJ6unpkdvtjszjdrsjbwIAgJkXV6kPDQ3poYce0v79+5Wenq5HH31UnZ2dOnPmjBYvXqynnnpq\n0nlvffQFACRDaqwJbty4oU2bNmnz5s0qLy+XJGVlZUXu3759u0pLSyVJLpdLXV1dkfu6u7vlcrkm\nfNyamprI9UAgoEAgMJX8AGCsYDCoYDB4R/NE3VBqWZaqq6t1//336+WXX47c3tvbq8WLF0uSXn75\nZZ06dUp/+tOfIhtKQ6FQZEPpRx99NG5pnQ2lSCY2lMIU8XRn1CX1kydP6o033tDKlSvl9/slSXv2\n7NHhw4d15swZORwOPfDAA3r11VclSV6vVxUVFfJ6vUpNTdXBgwdZ/QIAScQJvWA8ltRhCk7oBQBz\nDKUOAAah1AHAIJQ6ABiEUgcAg1DqAGAQSh0ADEKpA4BBKHUAMAilDgAGodQBwCCUOgAYhFIHAINQ\n6gBgEEodAAxCqQOAQSh1ADAIpQ4ABqHUAcAglDoAGIRSBwCDUOoAYBBKHQAMQqkDgEEodQAwCKUO\nAAah1AHAIJQ6ABgk1e4AmFsyMxfq6tVLdsdIglQ5HI6kjZaRsUBXrgwkbTzMXlGX1Lu6urRmzRoV\nFBRo+fLlOnDggCRpYGBAJSUlWrZsmdavX6/BwcHIPHV1dcrNzVVeXp5aW1tnNj3uOrcK3UryxQ43\n7zDj9C5z440S8XBYljXpf31fX5/6+vrk8/k0NDSkVatWqbGxUa+//roWLVqkp59+Wnv37tWlS5dU\nX1+v9vZ2VVVV6dSpUwqHw1q3bp06OjqUkjL2vcPhcCjKsDDYraXXZP/t58KYvKbmgni6M+qSenZ2\ntnw+nyQpPT1d+fn5CofDam5uVnV1tSSpurpajY2NkqSmpiZVVlYqLS1NHo9HOTk5CoVCiXguAIA4\nxL2h9Ny5c2pra1NxcbH6+/vldDolSU6nU/39/ZKknp4eud3uyDxut1vhcDjBkQEAk4lrQ+nQ0JA2\nbdqk/fv3KyMjY8x9Docj6gahye6rqamJXA8EAgoEAvFEAYA5IxgMKhgM3tE8MUv9xo0b2rRpk7Zs\n2aLy8nJJt5bO+/r6lJ2drd7eXmVlZUmSXC6Xurq6IvN2d3fL5XJN+LhfLXUAwHi3L/DW1tbGnCfq\n6hfLsrRt2zZ5vV498cQTkdvLysrU0NAgSWpoaIiUfVlZmY4cOaLh4WF1dnbq7NmzKioqmspzAQBM\nQdS9X/7+97/rBz/4gVauXBlZjVJXV6eioiJVVFTo/Pnz8ng8Onr0qO677z5J0p49e/Taa68pNTVV\n+/fv14YNG8YPyt4vcxZ7v8zceLymzBdPd0Yt9ZlCqc9dlPrMjcdrynzT3qURAHB3odQBwCCUOgAY\nhFIHAINQ6gBgEEodAAxCqQOAQSh1ADAIpQ4ABqHUAcAglDoAGIRSBwCDUOoAYBBKHQAMQqkDgEEo\ndQAwCKUOAAah1AHAIJQ6ABiEUgcAg1DqAGAQSh0ADEKpA4BBKHUAMAilDgAGodQBwCCUOgAYhFIH\nAIPELPWtW7fK6XRqxYoVkdtqamrkdrvl9/vl9/t1/PjxyH11dXXKzc1VXl6eWltbZyY1AGBCDsuy\nrGgTvPfee0pPT9cjjzyif//735Kk2tpaZWRkaMeOHWOmbW9vV1VVlU6dOqVwOKx169apo6NDKSlj\n3zscDodiDAtDORwOScn+28+FMXlNzQXxdGfMJfXVq1drwYIF426f6IGbmppUWVmptLQ0eTwe5eTk\nKBQK3UFkAMB0THmd+iuvvKLCwkJt27ZNg4ODkqSenh653e7ING63W+FwePopAQBxSZ3KTI8++qie\nf/55SdJzzz2np556SocOHZpw2lsft8erqamJXA8EAgoEAlOJAgDGCgaDCgaDdzTPlEo9Kysrcn37\n9u0qLS2VJLlcLnV1dUXu6+7ulsvlmvAxvlrqAIDxbl/gra2tjTnPlFa/9Pb2Rq6/+eabkT1jysrK\ndOTIEQ0PD6uzs1Nnz55VUVHRVIYAAExBzCX1yspKvfvuu7p48aKWLFmi2tpaBYNBnTlzRg6HQw88\n8IBeffVVSZLX61VFRYW8Xq9SU1N18ODBSVe/AAASL+YujTMyKLs0zlns0jhz4/GaMl9CdmkEANw9\nKHUAMAilDgAGodQBwCCUOgAYhFIHAINQ6gBgkCmdJgBmyMxcqKtXL9kdA0ACcfDRHMaBQCaNyWtq\nLuDgIwCYYyh1ADAIpQ4ABqHUAcAglDoAGIRSBwCDUOoAYBBKHQAMQqkDgEEodQAwCKUOAAah1AHA\nIJQ6ABiEUgcAg1DqAGAQSh0ADEKpA4BBKHUAMAilDgAGiVnqW7duldPp1IoVKyK3DQwMqKSkRMuW\nLdP69es1ODgYua+urk65ubnKy8tTa2vrzKQGAEwoZqn/4he/UEtLy5jb6uvrVVJSoo6ODq1du1b1\n9fWSpPb2dv35z39We3u7Wlpa9Nhjj2l0dHRmkgMAxolZ6qtXr9aCBQvG3Nbc3Kzq6mpJUnV1tRob\nGyVJTU1NqqysVFpamjwej3JychQKhWYgNoCxUuVwOJJ6ycxcaPeTxgSmtE69v79fTqdTkuR0OtXf\n3y9J6unpkdvtjkzndrsVDocTEBNAdDclWUm9XL16KTlPDXckdboP8OW7drT7J1JTUxO5HggEFAgE\nphsFAIwSDAYVDAbvaJ4plbrT6VRfX5+ys7PV29urrKwsSZLL5VJXV1dkuu7ubrlcrgkf46ulDgAY\n7/YF3tra2pjzTGn1S1lZmRoaGiRJDQ0NKi8vj9x+5MgRDQ8Pq7OzU2fPnlVRUdFUhgAATEHMJfXK\nykq9++67unjxopYsWaIXX3xRzzzzjCoqKnTo0CF5PB4dPXpUkuT1elVRUSGv16vU1FQdPHgw6qoZ\nAEBiOSzLspI+qMMhG4bFbW694Sb778CYZox3a0xex8kVT3dyRCkAGIRSBwCDUOoAYBBKHQAMQqkD\ngEEodQAwCKUOAAah1AHAIJQ6ABiEUgcAg1DqAGAQSh0ADEKpA4BBKHUAMAilDgAGodQBwCCUOgAY\nhFIHAINQ6gBgEEodAAxCqQOAQSh1ADAIpQ4ABqHUAcAglDoAGIRSBwCDUOoAYBBKHQAMkjqdmT0e\njzIzMzVv3jylpaUpFAppYGBADz/8sD755BN5PB4dPXpU9913X6LyAgCimNaSusPhUDAYVFtbm0Kh\nkCSpvr5eJSUl6ujo0Nq1a1VfX5+QoACA2Ka9+sWyrDE/Nzc3q7q6WpJUXV2txsbG6Q4BAIjTtJfU\n161bp+985zv6/e9/L0nq7++X0+mUJDmdTvX3908/JQAgLtNap37y5EktXrxYFy5cUElJifLy8sbc\n73A45HA4phUQABC/aZX64sWLJUlf//rX9eCDDyoUCsnpdKqvr0/Z2dnq7e1VVlbWhPPW1NRErgcC\nAQUCgelEAQDjBINBBYPBO5rHYd2+UjxO165d08jIiDIyMvTZZ59p/fr1euGFF3TixAndf//92rlz\np+rr6zU4ODhuY6nD4Ri3Lh7Jd+tTVLL/Doxpxni3xuR1nFzxdOeUS72zs1MPPvigJOnmzZv6+c9/\nrl27dmlgYEAVFRU6f/78pLs0UuqzA6Vu0piU+lwwo6U+HZT67ECpmzQmpT4XxNOdHFEKAAah1AHA\nIJQ6ABiEUgcAg1DqAGAQSh0ADEKpA4BBpnWaACRWZuZCXb16ye4YAO5iHHw0iyT/YKC5cFDOXBmT\ng4/mAg4+AoA5hlIHAINQ6gBgEEodAAxCqQOAQdilEcAUpSb96yozMhboypWBpI55t6HUAUzRTSV7\nN8qrV/nO41hY/QIABqHUAcAglDoAGIRSBwCDUOoAYBBKHQAMQqkDgEHYT30SnNscwN2I86lPIvnn\nNpfmyjm4GdOE8ewbc7Z3x0zifOoAMMdQ6gBgENapA7iLcBKxWGZkSb2lpUV5eXnKzc3V3r17Z2II\nAHPSlycRS97lbtthIuGlPjIyoscff1wtLS1qb2/X4cOH9eGHHyZ6mCQJ2h0gTkG7A8QhaHeAOAXt\nDhCnoN0B4hS0O0CcgnYHSJiEr34JhULKycmRx+ORJP3sZz9TU1OT8vPzp/R4L730sp5//sUEJowt\nNXXe/64FJQWSOvbUBDX7cwY1+zNK5Ey0oMiZXAkv9XA4rCVLlkR+drvd+te//jXlx/vkk259/vkO\nSY8nIF18MjP/T9KnSRsPABIl4aWe6I0Y8+al6GtfO6x77gkl9HGj+eKLjqSNBQCJlPBSd7lc6urq\nivzc1dUlt9s9ZpqlS5fecflfv27Hevna/12SaapvilPNmcw9Cb7MaMe319zJmIn6m8/087w952z9\nvSb6NTRTz3PynMne42YyS5cujTlNwo8ovXnzpr797W/r7bff1je+8Q0VFRXp8OHDU16nDgCIX8KX\n1FNTU/W73/1OGzZs0MjIiLZt20ahA0CS2HLuFwDAzLD1NAH79u1TSkqKBgZm59Fazz33nAoLC+Xz\n+bR27dox2wpmk1/96lfKz89XYWGhfvrTn+ry5ct2R5rQX/7yFxUUFGjevHk6ffq03XHGuRsOmtu6\ndaucTqdWrFhhd5Sourq6tGbNGhUUFGj58uU6cOCA3ZHGuX79uoqLi+Xz+eT1erVr1y67I0U1MjIi\nv9+v0tLS6BNaNjl//ry1YcMGy+PxWJ9++qldMaK6cuVK5PqBAwesbdu22Zhmcq2trdbIyIhlWZa1\nc+dOa+fOnTYnmtiHH35o/fe//7UCgYD1wQcf2B1njJs3b1pLly61Ojs7reHhYauwsNBqb2+3O9Y4\nf/vb36zTp09by5cvtztKVL29vVZbW5tlWZZ19epVa9myZbPy9/nZZ59ZlmVZN27csIqLi6333nvP\n5kST27dvn1VVVWWVlpZGnc62JfUdO3boN7/5jV3DxyUjIyNyfWhoSIsWLbIxzeRKSkqUknLrT1lc\nXKzu7m6bE00sLy9Py5YtszvGhL560FxaWlrkoLnZZvXq1VqwYIHdMWLKzs6Wz+eTJKWnpys/P189\nPT02pxpv/vz5kqTh4WGNjIxo4cKFNieaWHd3t44dO6bt27fPzlPvNjU1ye12a+XKlXYMf0d+/etf\n65vf/KYaGhr0zDPP2B0nptdee00//vGP7Y5x15nooLlwOGxjInOcO3dObW1tKi4utjvKOKOjo/L5\nfHI6nVqzZo28Xq/dkSb05JNP6re//W1k4S2aGTtLY0lJifr6+sbdvnv3btXV1am1tTVyW6x3npk0\nWc49e/aotLRUu3fv1u7du1VfX68nn3xSr7/+ug0pY+eUbv1u77nnHlVVVSU7XkQ8OWej2bIfsmmG\nhob00EMPaf/+/UpPT7c7zjgpKSk6c+aMLl++rA0bNigYDCoQCNgda4y//vWvysrKkt/vVzAYjDn9\njJX6W2+9NeHt//nPf9TZ2anCwkJJtz5WrFq1SqFQSFlZWTMVZ1KT5bxdVVWVrUvAsXL+4Q9/0LFj\nx/T2228nKdHE4v19zjbxHDSHO3Pjxg1t2rRJmzdvVnl5ud1xorr33nu1ceNGvf/++7Ou1P/xj3+o\nublZx44d0/Xr13XlyhU98sgj+uMf/zjxDElZwx/FbN5Q2tHREbl+4MABa/PmzTammdzx48ctr9dr\nXbhwwe4ocQkEAtb7779vd4wxbty4YX3rW9+yOjs7rS+++GLWbii1LMvq7Oyc9RtKR0dHrS1btlhP\nPPGE3VEmdeHCBevSpUuWZVnWtWvXrNWrV1snTpywOVV0wWDQ+slPfhJ1Gtu/+Wg2f+zdtWuXVqxY\nIZ/Pp2AwqH379tkdaUK//OUvNTQ0pJKSEvn9fj322GN2R5rQm2++qSVLluif//ynNm7cqB/96Ed2\nR4r46kFzXq9XDz/88Kw8aK6yslLf+9731NHRoSVLlti2OjCWkydP6o033tA777wjv98vv9+vlpYW\nu2ON0dvbqx/+8Ify+XwqLi5WaWmp1q5da3esmGJ1JgcfAYBBbF9SBwAkDqUOAAah1AHAIJQ6ABiE\nUgcAg1DqAGAQSh0ADEKpA4BB/h/uKbSBqzq9yQAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "And if you add a grid, it looks pretty gross." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "np.random.seed(12)\n", "\n", "fig, ax = plt.subplots(1)\n", "\n", "ax.hist(np.random.randn(1000))\n", "ax.grid(True)\n", "fig.savefig('hist_matplotlib_grid.png')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHVZJREFUeJzt3X9M1Pf9B/Anv5pvjCBoy+k4l5s/8fzBkSbSNHM5h4DO\nYexscDAVpt2WGrdYmxV1aatLlOtWZ6WbyZLpcGmidX9UzGaJteHtOheHrZJ0xRa7QUV+zQ5RqbUo\nfL5/nFyLwOfewt3nfe/P5/lILvI57ng/uft8XhzPO844wzAMEBGRLcSrDkBERJHDoU5EZCMc6kRE\nNsKhTkRkIxzqREQ2wqFORGQjpkP99u3byMnJgc/ng9frxbZt2wAAXV1dyMvLw6xZs5Cfn4/u7u7Q\ndSoqKjBz5kxkZmbi5MmT0U1PRESDxIV7nfqtW7cwbtw43L17F9/85jfx8ssv4/jx43j44Yfx3HPP\n4aWXXsK1a9cQCATQ0NCAkpISnDt3Dq2trViyZAkaGxsRH89fCIiIrBB22o4bNw4A0Nvbi76+PqSl\npeH48eMoLS0FAJSWluLYsWMAgOrqahQXFyMpKQkejwczZsxAXV1dFOMTEdFXhR3q/f398Pl8cLlc\nWLx4MebOnYvOzk64XC4AgMvlQmdnJwCgra0Nbrc7dF23243W1tYoRSciovslhrtAfHw86uvrcf36\ndRQUFKC2tnbQ5+Pi4hAXFzfi9c0+R0REkRV2qA+YMGECli9fjvfeew8ulwsdHR2YPHky2tvbkZ6e\nDgDIyMhAS0tL6DpXrlxBRkbGkK+VkZGBtra2CMQnInKO6dOn4+OPPza9jGn98umnn4Ze2fL555/j\nrbfeQnZ2NlasWIFDhw4BAA4dOoSVK1cCAFasWIEjR46gt7cXTU1NuHTpEhYuXDjk67a1tcEwjJg/\nvfjii8oz2CWnDhmZkzlj/fTvf/877OA3faTe3t6O0tJS9Pf3o7+/H2vXrkVubi6ys7NRVFSEAwcO\nwOPx4OjRowAAr9eLoqIieL1eJCYmYv/+/VrXL83NzaojSNEhpw4ZAeaMNOa0nulQnz9/Ps6fPz/k\n/IkTJ+LUqVPDXmf79u3Yvn17ZNIREdED4QvITZSVlamOIEWHnDpkBJgz0pjTemH/+Cgqi8bFQcGy\nRERak5mdfKRuQgihOoIUHXLqkBFgzkhjTutxqBMR2QjrFyIiTbB+ISJyGA51E7r0bDrk1CEjwJyR\nxpzW41AnIrIRdupERJpgp05E5DAc6iZ06dl0yKlDRoA5I405rcehTkRkI+zUiYg0wU6diMhhONRN\n6NKz6ZBTh4wAc0Yac1qPQ52IyEbYqRMRaYKdOhGRw3Com9ClZ9Mhpw4ZAeaMNOa0Hoc6EZGNsFMn\nItIEO3UiIofhUDehS8+mQ06VGVNSJiIuLs7SU0rKxKh+Tzrc5wBzqsChTrZ38+Y1AIbkqfYBLjvy\nKbgmkfXYqZPtxcXFIThsLV2V+zhFHDt1IiKH4VA3oUvPpkNOHTIGCdUBpOhyezKn9TjUiYhsxLRT\nb2lpwbp16/Df//4XcXFx+PGPf4yf/exn2LFjB/7whz/gkUceAQDs3r0by5YtAwBUVFTg4MGDSEhI\nQGVlJfLz84cuyk6dLMROnexCZnaaDvWOjg50dHTA5/Ohp6cHjz76KI4dO4ajR48iOTkZW7ZsGXT5\nhoYGlJSU4Ny5c2htbcWSJUvQ2NiI+PjBvxBwqJOVONTJLsb8ROnkyZPh8/kAAOPHj8ecOXPQ2toK\nAMN+4erqahQXFyMpKQkejwczZsxAXV3daPMrp0vPpkNOHTIGCdUBpOhyezKn9aQ79ebmZly4cAGP\nPfYYAODVV19FVlYWNmzYgO7ubgBAW1sb3G536Dputzv0Q4CIiKJPaqj39PTgySefxL59+zB+/Hg8\n/fTTaGpqQn19PaZMmYJnn312xOsGf/XVk9/vVx1Big45dcgY5FcdQIoutydzWi8x3AXu3LmDVatW\nYc2aNVi5ciUAID09PfT5p556CoWFhQCAjIwMtLS0hD535coVZGRkDPt1y8rK4PF4AACpqanw+Xyh\nG3bgVyFuczsS20ECXw5sce/faG9jVHm5ze2BbSEEqqqqACA0L8MyTPT39xtr1641Nm/ePOj8tra2\n0Me/+c1vjOLiYsMwDOODDz4wsrKyjC+++ML4z3/+Y0ybNs3o7+8f8nXDLBszamtrVUeQokNOlRkB\nGIAheap9gMuanaK7j+twnxsGc0aazH5l+kj9zJkzeO2117BgwQJkZ2cDCL588fDhw6ivr0dcXBy+\n8Y1v4Pe//z0AwOv1oqioCF6vF4mJidi/f7/W9QsRkW743i9ke3xJI9kF3/uFiMhhONRNDDxhEet0\nyKlDxiChOoAUXW5P5rQehzoRkY2wUyfbY6dOdsFOnYjIYTjUTejSs+mQU4eMQUJ1ACm63J7MaT0O\ndSIiG2GnTrbHTp3sgp06EZHDcKib0KVn0yGnDhmDhOoAUnS5PZnTehzqREQ2wk6dbI+dOtkFO3Ui\nIofhUDehS8+mQ04dMgYJ1QGk6HJ7Mqf1ONSJiGyEnTrZHjt1sgt26kREDsOhbkKXnk2HnDpkDBKq\nA0jR5fZkTutxqBMR2Qg7dbI9dupkF+zUiYgchkPdhC49mw45dcgYJFQHkKLL7cmc1uNQJyKyEXbq\nZHvs1Mku2KkTETkMh7oJXXo2HXLqkDFIqA4gRZfbkzmtx6FORGQj7NTJ9tipk13IzM5Ei7IQAQBS\nUibi5s1rqmNYIPHeDxNrJCen4caNLsvWo9hlWr+0tLRg8eLFmDt3LubNm4fKykoAQFdXF/Ly8jBr\n1izk5+eju7s7dJ2KigrMnDkTmZmZOHnyZHTTR5kuPZsOOQcyBge6YfHpgZKO5tsbxt1RZpU91Q7a\njtUflDrsm4A+OWWYDvWkpCTs3bsXH3zwAc6ePYvf/e53uHjxIgKBAPLy8tDY2Ijc3FwEAgEAQEND\nA15//XU0NDSgpqYGGzduRH9/vyXfCBERPWCnvnLlSmzatAmbNm3C6dOn4XK50NHRAb/fjw8//BAV\nFRWIj49HeXk5AGDp0qXYsWMHHnvsscGLslN3LFX9tv3X5DHlBBF9nXpzczMuXLiAnJwcdHZ2wuVy\nAQBcLhc6OzsBAG1tbXC73aHruN1utLa2jiY7ERGNgtQTpT09PVi1ahX27duH5OTkQZ+Li4szfUJo\npM+VlZXB4/EAAFJTU+Hz+eD3+wF82W+p3h44L1byjLT9yiuvxOTt99Xt+vp6bN68GUHi3r9+i7YH\nzpO5/MDHkVgfYT4/lu16APffnve2YuD+Hti+/1hSnWek7a/un7GQZ2BbCIGqqioACM3LsIwwent7\njfz8fGPv3r2h82bPnm20t7cbhmEYbW1txuzZsw3DMIyKigqjoqIidLmCggLj7NmzQ76mxLIxoba2\nVnUEKTrkHMgIwAAMi08PsmatgjVHc7o/Z2weUzrsm4ahT06Z+9m0UzcMA6WlpZg0aRL27t0bOv+5\n557DpEmTUF5ejkAggO7ubgQCATQ0NKCkpAR1dXVobW3FkiVL8PHHHw95tM5O3bnYqUdvPR5T9icz\nO02H+t///nd861vfwoIFC0KDuaKiAgsXLkRRUREuX74Mj8eDo0ePIjU1FQCwe/duHDx4EImJidi3\nbx8KCgpGFYzsiUM9euvxmLK/MQ/1aNFlqAshQj1XLNMh50DG2B/qAoO7eCvWHA2BwTlj85jSYd8E\n9MnJd2kkInIYPlInS8X+I3Vd1+Qx5QR8pE5E5DAc6ia++hrbWKZDTh0yBgnVASQJ1QGk6HK/65JT\nBoc6EZGNsFMnS7FTj956PKbsj506EZHDcKib0KVn0yGnDhmDhOoAkoTqAFJ0ud91ySmDQ52IyEbY\nqZOl2KlHbz0eU/bHTp2IyGE41E3o0rPpkFOHjEFCdQBJQnUAKbrc77rklMGhTkRkI+zUyVLs1KO3\nHo8p+2OnTkTkMBzqJnTp2XTIqUPGIKE6gCShOoAUXe53XXLK4FAnIrIRdupkKXbq0VuPx5T9sVMn\nInIYDnUTuvRsOuTUIWOQUB1AklAdQIou97suOWVwqBMR2Qg7dbIUO/Xorcdjyv7YqRMROQyHugld\nejYdcuqQMUioDiBJqA4gRZf7XZecMjjUiYhshJ06WYqdevTW4zFlf+zUiYgchkPdhC49mw45dcgY\nJFQHkCRUB5Ciy/2uS04ZYYf6+vXr4XK5MH/+/NB5O3bsgNvtRnZ2NrKzs/Hmm2+GPldRUYGZM2ci\nMzMTJ0+ejE5qIiIaVthO/Z133sH48eOxbt06vP/++wCAnTt3Ijk5GVu2bBl02YaGBpSUlODcuXNo\nbW3FkiVL0NjYiPj4wT872Kk7Fzv16K3HY8r+ItKpL1q0CGlpaUPOH+4LV1dXo7i4GElJSfB4PJgx\nYwbq6uoeIDIREY3FqDv1V199FVlZWdiwYQO6u7sBAG1tbXC73aHLuN1utLa2jj2lIrr0bDrk1CFj\nkFAdQJJQHUCKLve7LjllJI7mSk8//TReeOEFAMDzzz+PZ599FgcOHBj2ssFft4cqKyuDx+MBAKSm\npsLn88Hv9wP48gZWvT0gVvKMtF1fXx9TeYbbrq+vD21/OZCs2h44z+r1EebzY9muH3G9WLi/ddv+\n6v4ZC3kGtoUQqKqqAoDQvAxH6nXqzc3NKCwsDHXqI30uEAgAALZu3QoAWLp0KXbu3ImcnJzBi7JT\ndyx26tFbj8eU/UXtdert7e2hj994443QK2NWrFiBI0eOoLe3F01NTbh06RIWLlw4miWIiGgUwg71\n4uJiPP744/joo48wdepUHDx4EOXl5ViwYAGysrJw+vRp7N27FwDg9XpRVFQEr9eLZcuWYf/+/SPW\nLzrQpWfTIacOGYOE6gCShOoAUnS533XJKSNsp3748OEh561fv37Ey2/fvh3bt28fWyoiIhoVvvcL\nWYqdevTW4zFlf3zvFyIih+FQN6FLz6ZDTh0yBgnVASQJ1QGk6HK/65JTBoc6EZGNsFMnS7FTj956\nPKbsj506EZHDcKib0KVn0yGnDhmDhOoAkoTqAFJ0ud91ySljVO/9QvaQkjIRN29eUx2DiCKInbqD\nsd+205o8ppyAnToRkcNwqJvQpWfTI6dQHUCSUB1AklAdQIoe+6Y+OWVwqBMR2Qg7dQdjp26nNXlM\nOQE7dSIih+FQN6FLz6ZHTqE6gCShOoAkoTqAFD32TX1yyuBQJyKyEXbqDsZO3U5r8phyAnbqREQO\nw6FuQpeeTY+cQnUASUJ1AElCdQApeuyb+uSUwaFORGQj7NQdjJ26ndbkMeUE7NSJiByGQ92ELj2b\nHjmF6gCShOoAkoTqAFL02Df1ySmDQ52IyEbYqTsYO3U7rcljygnYqRMROQyHugldejY9cgrVASQJ\n1QEkCdUBpOixb+qTUwaHOhGRjYTt1NevX4+//vWvSE9Px/vvvw8A6OrqwurVq/HJJ5/A4/Hg6NGj\nSE1NBQBUVFTg4MGDSEhIQGVlJfLz84cuyk49JrBTt9OaPKacICKd+g9/+EPU1NQMOi8QCCAvLw+N\njY3Izc1FIBAAADQ0NOD1119HQ0MDampqsHHjRvT394/hWyAiogcRdqgvWrQIaWlpg847fvw4SktL\nAQClpaU4duwYAKC6uhrFxcVISkqCx+PBjBkzUFdXF4XY1tClZ9Mjp1AdQJJQHUCSuG87EXFxcZae\nUlImhk+pxb6pT04Zo+rUOzs74XK5AAAulwudnZ0AgLa2Nrjd7tDl3G43WltbIxCTiMzdRbDuse50\n8+Y1a741eiCJY/0CAz+1zT4/nLKyMng8HgBAamoqfD4f/H4/gC9/anJbbnvgvAe9/pcGtv1R3rZ6\nvYHtgfNkLu+P4PoI8/lIf/1orzf8+mb7m9/vV358POjxECt5Bm67qqoqAAjNy3Ck/vioubkZhYWF\noSdKMzMzIYTA5MmT0d7ejsWLF+PDDz8Mdetbt24FACxduhQ7d+5ETk7O4EX5RGlM4BOldlpTzffI\n49haUfvjoxUrVuDQoUMAgEOHDmHlypWh848cOYLe3l40NTXh0qVLWLhw4WiWiAm69Gx65BSqA0gS\nqgNIEqoDSNFj39Qnp4yw9UtxcTFOnz6NTz/9FFOnTsUvf/lLbN26FUVFRThw4EDoJY0A4PV6UVRU\nBK/Xi8TEROzfv9+0miEiosjie784GOsXO63J+sUJ+N4vREQOw6FuQpeeTY+cQnUASUJ1AElCdQAp\neuyb+uSUwaFORGQj7NQdjJ26ndZkp+4E7NSJiByGQ92ELj2bHjmF6gCShOoAkoTqAFL02Df1ySmD\nQ52IyEbYqTsYO3U7rclO3QnYqRMROQyHugldejY9cgrVASQJ1QEkCdUBpOixb+qTUwaHOhGRjbBT\ndzB26nZak526E7BTJyJyGA51E7r0bHrkFKoDSBKqA0gSqgNI0WPf1CenDA51IiIbYafuYOzU7bQm\nO3UnYKdOROQwHOomdOnZ9MgpVAeQJFQHkCRUB5Cix76pT04ZHOpERDbCTt3B2KnbaU126k7ATp2I\nyGE41E3o0rPpkVOoDiBJqA4gSagOIEWPfVOfnDI41ImIbISduoOxU7fTmuzUnYCdOhGRw3Com9Cl\nZ9Mjp1AdQJJQHUCSUB1Aih77pj45ZXCoExHZCDt1B2Onbqc12ak7gczsTBzLAh6PBykpKUhISEBS\nUhLq6urQ1dWF1atX45NPPoHH48HRo0eRmpo6lmWIiEjSmOqXuLg4CCFw4cIF1NXVAQACgQDy8vLQ\n2NiI3NxcBAKBiARVQZeeTY+cQnUASUJ1AElCdQApeuyb+uSUMeZO/f5fBY4fP47S0lIAQGlpKY4d\nOzbWJYiISNKYOvVp06ZhwoQJSEhIwE9+8hP86Ec/QlpaGq5duwYgOPAnTpwY2g4tyk49JrBTt9Oa\n7NSdIOqd+pkzZzBlyhRcvXoVeXl5yMzMHBIgODiIiMgKYxrqU6ZMAQA88sgjeOKJJ1BXVweXy4WO\njg5MnjwZ7e3tSE9PH/a6ZWVl8Hg8AIDU1FT4fD74/X4AX/ZbqrcHzouVPCNtv/LKK6O6/b40sO2P\n4nY9gM0WrvfV7YHzZC4/8HEk1keYz49le7jbM5rrDbd9b8tkf7v/WAp3eVXb9fX12Lx5c8zkGdgW\nQqCqqgoAQvMynFHXL7du3UJfXx+Sk5Px2WefIT8/Hy+++CJOnTqFSZMmoby8HIFAAN3d3UOeLNWl\nfhFChG7oWDbanNbWLwLBoRDrVYjA4B8GVqw5GgKDc8Zm/WL3Y8hqMrNz1EO9qakJTzzxBADg7t27\n+MEPfoBt27ahq6sLRUVFuHz58ogvadRlqNsdO3U7rRmbQ50iK6pDfSw41GMDh7qd1uRQdwK+odcY\n6fLaVT1yCtUBJAnVASQJ1QGk6LFv6pNTBoc6EZGNsH5xMNYvdlqT9YsTsH4hInIYDnUTuvRseuQU\nqgNIEqoDSBKqA0jRY9/UJ6cMDnUiIhthp+5g7NTttCY7dSeI+nu/UGSlpEzEzZvXwl+QiGgErF9M\nWN2zBQe6MYpT7SivZyVh8XqjJVQHkCRUB5CiS1etS04ZHOpERDbCTj2GWN9xO6Frdsqa7NSdgK9T\nJyJyGA51E/r0bEJ1AAlCdQBJQnUASUJ1ACm6HEO65JTBoU5EZCPs1GMIO3Wuqc96AJAE4K6lKyYn\np+HGjS5L14wlfJ06EUXRXVj9g+TmTf6fx+GwfjGhT88mVAeQIFQHkCRUB5AkVAeQJFQHkKLPsR4e\nhzoRkY2wU48h7NS5pj7rqVvTybODr1MnInIYDnUT+vRsQnUACUJ1AElCdQBJQnUASUJ1ACn6HOvh\ncagTEdkIO/UYwk6da+qznro1nTw7+Dr1MeB7mxORjli/jCA40Ef7PuWjPY2WGMN1rSJUB5AkVAeQ\nJFQHkCRUB5DCTp2IiGISO/UROOP/73TC9+iUNZ3wPQbXjPXZEU3s1InIZhLvPeCyjm5vIhaV+qWm\npgaZmZmYOXMmXnrppWgsYRGhOoAkoTqABKE6gCShOoAkoTqAJBHhrzfwJmKRPo38/JluL5iI+FDv\n6+vDpk2bUFNTg4aGBhw+fBgXL16M9DIWqVcdQJIOOXXICDBnpDGn1SJev9TV1WHGjBnweDwAgO9/\n//uorq7GnDlzRvX1Xn55L1544ZcRTBheYmLCvY+6LV139HTIqUNGgDkjjTmtFvGh3traiqlTp4a2\n3W43/vnPf476633yyRV8/vkWAJsikE5OSspSAP+zbD0iokiJ+FCP9JMYCQnx+L//O4yHHqqL6Nc1\n88UXjfc+arZszbFpVh1AQrPqAJKaVQeQ1Kw6gKRm1QEkNasOEDERH+oZGRloaWkJbbe0tMDtdg+6\nzPTp0x94+N++raKXP3TvZKXR/lAcbU4rX0kwkFHF/17zIGtG6j6P9vd5f85YvV0jfQxF6/scOafV\nr7gZyfTp08NeJuKvU7979y5mz56Nt99+G1/72tewcOFCHD58eNSdOhERyYv4I/XExET89re/RUFB\nAfr6+rBhwwYOdCIiiyj5i1IiIooOpe/9smfPHsTHx6OrKzb/Wuv5559HVlYWfD4fcnNzBz1XEEt+\n/vOfY86cOcjKysL3vvc9XL9+XXWkYf35z3/G3LlzkZCQgPPnz6uOM4QOfzS3fv16uFwuzJ8/X3UU\nUy0tLVi8eDHmzp2LefPmobKyUnWkIW7fvo2cnBz4fD54vV5s27ZNdSRTfX19yM7ORmFhofkFDUUu\nX75sFBQUGB6Px/jf//6nKoapGzduhD6urKw0NmzYoDDNyE6ePGn09fUZhmEY5eXlRnl5ueJEw7t4\n8aLx0UcfGX6/33jvvfdUxxnk7t27xvTp042mpiajt7fXyMrKMhoaGlTHGuJvf/ubcf78eWPevHmq\no5hqb283Lly4YBiGYdy8edOYNWtWTN6en332mWEYhnHnzh0jJyfHeOeddxQnGtmePXuMkpISo7Cw\n0PRyyh6pb9myBb/61a9ULS8lOTk59HFPTw8efvhhhWlGlpeXh/j44F2Zk5ODK1euKE40vMzMTMya\nNUt1jGF99Y/mkpKSQn80F2sWLVqEtLQ01THCmjx5Mnw+HwBg/PjxmDNnDtra2hSnGmrcuHEAgN7e\nXvT19WHixImKEw3vypUrOHHiBJ566qnY/I+nq6ur4Xa7sWDBAhXLP5Bf/OIX+PrXv45Dhw5h69at\nquOEdfDgQXznO99RHUM7w/3RXGtrq8JE9tHc3IwLFy4gJydHdZQh+vv74fP54HK5sHjxYni9XtWR\nhvXMM8/g17/+dejBm5movUtjXl4eOjo6hpy/a9cuVFRU4OTJk6Hzwv3kiaaRcu7evRuFhYXYtWsX\ndu3ahUAggGeeeQZ//OMfFaQMnxMI3rYPPfQQSkpKrI4XIpMzFsXK65DtpqenB08++ST27duH8ePH\nq44zRHx8POrr63H9+nUUFBRACAG/36861iB/+ctfkJ6ejuzsbKn/zCNqQ/2tt94a9vx//etfaGpq\nQlZWFoDgrxWPPvoo6urqkJ6eHq04Ixop5/1KSkqUPgIOl7OqqgonTpzA22+/bVGi4cnenrFG5o/m\n6MHcuXMHq1atwpo1a7By5UrVcUxNmDABy5cvx7vvvhtzQ/0f//gHjh8/jhMnTuD27du4ceMG1q1b\nhz/96U/DX8GSht9ELD9R2tjYGPq4srLSWLNmjcI0I3vzzTcNr9drXL16VXUUKX6/33j33XdVxxjk\nzp07xrRp04ympibjiy++iNknSg3DMJqammL+idL+/n5j7dq1xubNm1VHGdHVq1eNa9euGYZhGLdu\n3TIWLVpknDp1SnEqc0II47vf/a7pZZT/d3ax/Gvvtm3bMH/+fPh8PgghsGfPHtWRhvXTn/4UPT09\nyMvLQ3Z2NjZu3Kg60rDeeOMNTJ06FWfPnsXy5cuxbNky1ZFCvvpHc16vF6tXr47JP5orLi7G448/\njsbGRkydOlVZHRjOmTNn8Nprr6G2thbZ2dnIzs5GTU2N6liDtLe349vf/jZ8Ph9ycnJQWFiI3Nxc\n1bHCCjcz+cdHREQ2ovyROhERRQ6HOhGRjXCoExHZCIc6EZGNcKgTEdkIhzoRkY1wqBMR2QiHOhGR\njfw/loF7B4Zf1t0AAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "With `prettyplotlib.hist`, we make the outlines of the rectangles white, remove the top and right axis lines, thin out the remaining axis lines, and change the blacks from regular black to a light grey (#262626)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import prettyplotlib as ppl\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "np.random.seed(12)\n", "\n", "fig, ax = plt.subplots(1)\n", "\n", "ppl.hist(ax, np.random.randn(1000))\n", "fig.savefig('hist_prettyplotlib_default.png')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFEBJREFUeJzt3X9MVff9x/HXucC+iV+61qbj6u5luXbg4Cpyb9pA00ii\nw6txTkJng4NpScWsqdkWa7OpLEvYEgvdZjrpRmIWu7GYgu4PhSxKqE3pjIu7awt/rNcU/ri2/J6O\nYkudA7nn+0fzvakF7qVwudd++nz8Beeec8/7YvL0cO45F8u2bVsAACM4Uj0AACBxiDoAGISoA4BB\niDoAGISoA4BBiDoAGCRm1G/duqXi4mL5fD55vV4dPnxYkjQ2NqZAIKDVq1dr8+bNGh8fj25TX1+v\n3Nxc5eXlqbOzc2mnBwDcwYp3nfrNmze1bNky3b59W+vXr9evf/1rtbe364EHHtBPfvITPf/883r/\n/ffV0NCgUCikqqoq/eMf/9Dg4KA2bdqk3t5eORz8QgAAyRC3tsuWLZMkTU5Oanp6WsuXL1d7e7uq\nq6slSdXV1Tp79qwkqa2tTZWVlcrIyJDH41FOTo6CweASjg8A+KS4UY9EIvL5fHI6ndq4caPWrFmj\n0dFROZ1OSZLT6dTo6KgkaWhoSG63O7qt2+3W4ODgEo0OAPi09HgrOBwO9fT06MaNG9qyZYtee+21\nOx63LEuWZc25fazHAACJNe+T3ffee6+2bdumN998U06nUyMjI5Kk4eFhZWVlSZJcLpf6+/uj2wwM\nDMjlcs14rq6urkWODQCYTcyoX79+PXply3/+8x+98sor8vv9KisrU3NzsySpublZ5eXlkqSysjK1\ntrZqcnJS4XBYfX19KioqmvG8RB0AlkbM0y/Dw8Oqrq5WJBJRJBLR7t27VVpaKr/fr4qKCp04cUIe\nj0enT5+WJHm9XlVUVMjr9So9PV1NTU2cfgGAJIp7SeNSqKurU11dXbJ3CwDG4wJyADAIUQcAgxB1\nADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAI\nUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1GG86EvlC7BOQpPRUDwAstTSHQ09dfDmp\n+zxeUpXU/QH/jyN1ADAIUQcAgxB1ADAIUQcAg8SMen9/vzZu3Kg1a9Zo7dq1amxslCTV1dXJ7XbL\n7/fL7/fr/Pnz0W3q6+uVm5urvLw8dXZ2Lu30AIA7xLz6JSMjQy+88IJ8Pp8mJib00EMPKRAIyLIs\nHThwQAcOHLhj/VAopFOnTikUCmlwcFCbNm1Sb2+vHA5+IQCAZIhZ2xUrVsjn80mSMjMzlZ+fr8HB\nQUmSbdsz1m9ra1NlZaUyMjLk8XiUk5OjYDC4BGMDAGYz70Poq1evqru7W4888ogk6cUXX1RhYaFq\namo0Pj4uSRoaGpLb7Y5u43a7o/8JAACW3ryiPjExoccff1zHjh1TZmamnn76aYXDYfX09GjlypV6\n9tln59zWsqyEDQsAiC1u1KemprRjxw7t2rVL5eXlkqSsrCxZliXLsrR3797oKRaXy6X+/v7otgMD\nA3K5XEs0OgDg02JG3bZt1dTUyOv1av/+/dHlw8PD0a/PnDmjgoICSVJZWZlaW1s1OTmpcDisvr4+\nFRUVLdHoAIBPi3n1y6VLl3Ty5EmtW7dOfr9fkvTcc8+ppaVFPT09sixLq1at0vHjxyVJXq9XFRUV\n8nq9Sk9PV1NTE6dfACCJYkZ9/fr1iszyaXNbt26dc5va2lrV1tYufjIAwGfGBeQAYBCiDgAGIeoA\nYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCi\nDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAG\nIepIqulIJNUjJEWyX+cX5eeK+NJjPdjf368nnnhC//rXv2RZlr7//e/rRz/6kcbGxrRz5069++67\n8ng8On36tO677z5JUn19vV566SWlpaWpsbFRmzdvTsoLwedDmsOhpy6+nNR9Hi+pSur+pOS/zlS8\nRtydYh6pZ2Rk6IUXXtDbb7+ty5cv63e/+52uXLmihoYGBQIB9fb2qrS0VA0NDZKkUCikU6dOKRQK\nqaOjQ/v27VOEIwgASJqYUV+xYoV8Pp8kKTMzU/n5+RocHFR7e7uqq6slSdXV1Tp79qwkqa2tTZWV\nlcrIyJDH41FOTo6CweASvwQAwP+b9zn1q1evqru7W8XFxRodHZXT6ZQkOZ1OjY6OSpKGhobkdruj\n27jdbg0ODiZ4ZADAXOYV9YmJCe3YsUPHjh3TPffcc8djlmXJsqw5t431GAAgseJGfWpqSjt27NDu\n3btVXl4u6eOj85GREUnS8PCwsrKyJEkul0v9/f3RbQcGBuRyuZZibgDALGJG3bZt1dTUyOv1av/+\n/dHlZWVlam5uliQ1NzdHY19WVqbW1lZNTk4qHA6rr69PRUVFSzg+AOCTYl7SeOnSJZ08eVLr1q2T\n3++X9PEli4cOHVJFRYVOnDgRvaRRkrxeryoqKuT1epWenq6mpiZOvwBAEsWM+vr16+e8JPHChQuz\nLq+trVVtbe3iJwMAfGbcUQoABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHq\nAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQ\nog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGCQuFHfs2ePnE6nCgoKosvq6urkdrvl9/vl9/t1/vz5\n6GP19fXKzc1VXl6eOjs7l2ZqAMCs4kb9ySefVEdHxx3LLMvSgQMH1N3dre7ubm3dulWSFAqFdOrU\nKYVCIXV0dGjfvn2KRCJLMzkAYIa4US8pKdHy5ctnLLdte8aytrY2VVZWKiMjQx6PRzk5OQoGg4mZ\nFAAQ14LPqb/44osqLCxUTU2NxsfHJUlDQ0Nyu93RddxutwYHBxc/JQBgXhYU9aefflrhcFg9PT1a\nuXKlnn322TnXtSxrwcMBAD6bBUU9KytLlmXJsizt3bs3eorF5XKpv78/ut7AwIBcLldiJgUAxLWg\nqA8PD0e/PnPmTPTKmLKyMrW2tmpyclLhcFh9fX0qKipKzKQAgLjS461QWVmp119/XdevX1d2drZ+\n/vOfq6urSz09PbIsS6tWrdLx48clSV6vVxUVFfJ6vUpPT1dTUxOnXwAgieJGvaWlZcayPXv2zLl+\nbW2tamtrFzcVAGBBuKMUAAxC1AHAIEQdAAxC1AHAIEQdAAxC1AHAIEQdAAxC1L/ApvlYZMA4cW8+\ngrnSHA49dfHlpO7zeElVUvcHfNFwpA4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQ\nog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABiHqAGAQog4ABokb9T179sjp\ndKqgoCC6bGxsTIFAQKtXr9bmzZs1Pj4efay+vl65ubnKy8tTZ2fn0kwNAJhV3Kg/+eST6ujouGNZ\nQ0ODAoGAent7VVpaqoaGBklSKBTSqVOnFAqF1NHRoX379inCX6wHgKSJG/WSkhItX778jmXt7e2q\nrq6WJFVXV+vs2bOSpLa2NlVWViojI0Mej0c5OTkKBoNLMDaAT5pOwcFTKvaJ+NIXstHo6KicTqck\nyel0anR0VJI0NDSkRx55JLqe2+3W4OBgAsYEEEuaw6GnLr6c1H0eL6lK6v4wP4t+o9SyLFmWFfNx\nAEByLCjqTqdTIyMjkqTh4WFlZWVJklwul/r7+6PrDQwMyOVyJWBMAMB8LCjqZWVlam5uliQ1Nzer\nvLw8ury1tVWTk5MKh8Pq6+tTUVFR4qYFAMQU95x6ZWWlXn/9dV2/fl3Z2dn6xS9+oUOHDqmiokIn\nTpyQx+PR6dOnJUler1cVFRXyer1KT09XU1MTp18AIIniRr2lpWXW5RcuXJh1eW1trWpraxc3FQBg\nQbijFAAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBE\nHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAM\nQtQBwCBEHQAMQtQBwCDpi9nY4/Hoy1/+stLS0pSRkaFgMKixsTHt3LlT7777rjwej06fPq377rsv\nUfMCAGJY1JG6ZVnq6upSd3e3gsGgJKmhoUGBQEC9vb0qLS1VQ0NDQgYFAMS36NMvtm3f8X17e7uq\nq6slSdXV1Tp79uxidwEAmKdFH6lv2rRJDz/8sH7/+99LkkZHR+V0OiVJTqdTo6Oji58SADAvizqn\nfunSJa1cuVLXrl1TIBBQXl7eHY9bliXLshY1IABg/hZ1pL5y5UpJ0le+8hU99thjCgaDcjqdGhkZ\nkSQNDw8rKytr8VMCAOZlwVG/efOmPvzwQ0nSRx99pM7OThUUFKisrEzNzc2SpObmZpWXlydmUgBA\nXAs+/TI6OqrHHntMknT79m1973vf0+bNm/Xwww+roqJCJ06ciF7SCABIjgVHfdWqVerp6Zmx/P77\n79eFCxcWNRQAYGG4oxQADELUAcAgRB0ADELUAcAgRB0ADELUAcAgRB0ADELU7yLTkUiqRwDwObeo\nD/RCYqU5HHrq4stJ29/xkqqk7QtAcnCkDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAFiQVl+By2W98\nXNIIYEGSfQmuxGW488GROgAYhKgDgEGIOgAYhKgDgEGIOgAYhKgDgEGIOgAYhKjPgZscAHwecfPR\nHLixAsDnEUfqAGAQog4ABiHqAD43+BCx+JbknHpHR4f279+v6elp7d27VwcPHlyK3QD4guG9rvgS\nfqQ+PT2tH/zgB+ro6FAoFFJLS4uuXLmS6N0AAGaR8CP1YDConJwceTweSdJ3v/tdtbW1KT8/f0HP\nF4lENC07gRPGZ0lKd6QldZ8AkAgJj/rg4KCys7Oj37vdbv39739f8PNFZOvce2+ra/idRIw3LwcL\nN2vFsnuTtj8ASJSER92yrMQ+nyw96nxQ3uUrEvq8sdz/P/+btH0BQCJZtm0n9NzG5cuXVVdXp46O\nDklSfX29HA7HHW+W/uY3v9H4+HgidwsAxtuwYYM2bNgQc52ER/327dv6xje+oVdffVVf/epXVVRU\npJaWlgWfUwcAzF/CT7+kp6frt7/9rbZs2aLp6WnV1NQQdABIkoQfqQMAUield5QePXpUDodDY2Nj\nqRxjTj/72c9UWFgon8+n0tJS9ff3p3qkWf34xz9Wfn6+CgsL9Z3vfEc3btxI9Uiz+vOf/6w1a9Yo\nLS1Nb731VqrHmaGjo0N5eXnKzc3V888/n+pxZrVnzx45nU4VFBSkepSY+vv7tXHjRq1Zs0Zr165V\nY2Njqkea4datWyouLpbP55PX69Xhw4dTPVJM09PT8vv92r59e+wV7RR577337C1bttgej8f+97//\nnaoxYvrggw+iXzc2Nto1NTUpnGZunZ2d9vT0tG3btn3w4EH74MGDKZ5odleuXLHfeecde8OGDfab\nb76Z6nHucPv2bfvrX/+6HQ6H7cnJSbuwsNAOhUKpHmuGv/71r/Zbb71lr127NtWjxDQ8PGx3d3fb\ntm3bH374ob169eq78uf50Ucf2bZt21NTU3ZxcbF98eLFFE80t6NHj9pVVVX29u3bY66XsiP1AwcO\n6Je//GWqdj8v99xzT/TriYkJPfDAAymcZm6BQEAOx8f/lMXFxRoYGEjxRLPLy8vT6tWrUz3GrD55\n01xGRkb0prm7TUlJiZYvX57qMeJasWKFfD6fJCkzM1P5+fkaGhpK8VQzLVu2TJI0OTmp6elp3X//\n/SmeaHYDAwM6d+6c9u7dKzvOGfOURL2trU1ut1vr1q1Lxe4/k5/+9Kf62te+pubmZh06dCjV48T1\n0ksv6Vvf+laqx/jcme2mucHBwRROZI6rV6+qu7tbxcXFqR5lhkgkIp/PJ6fTqY0bN8rr9aZ6pFk9\n88wz+tWvfhU9eItlyf5IRiAQ0MjIyIzlR44cUX19vTo7O6PL4v3Ps5TmmvO5557T9u3bdeTIER05\nckQNDQ165pln9Ic//CEFU8afU/r4Z/ulL31JVVWp+wCi+cx5N0r0TXP42MTEhB5//HEdO3ZMmZmZ\nqR5nBofDoZ6eHt24cUNbtmxRV1dX3OvAk+0vf/mLsrKy5Pf71dXVFXf9JYv6K6+8Muvyf/7znwqH\nwyosLJT08a8VDz30kILBoLKyspZqnDnNNeenVVVVpfQION6cf/zjH3Xu3Dm9+uqrSZpodvP9ed5t\nXC7XHW+E9/f3y+12p3Ciz7+pqSnt2LFDu3btUnl5earHienee+/Vtm3b9MYbb9x1Uf/b3/6m9vZ2\nnTt3Trdu3dIHH3ygJ554Qn/6059m3yApZ/hjuJvfKO3t7Y1+3djYaO/atSuF08zt/Pnzttfrta9d\nu5bqUeZlw4YN9htvvJHqMe4wNTVlP/jgg3Y4HLb/+9//3rVvlNq2bYfD4bv+jdJIJGLv3r3b3r9/\nf6pHmdO1a9fs999/37Zt275586ZdUlJiX7hwIcVTxdbV1WV/+9vfjrlOyv9Ixt38a+/hw4dVUFAg\nn8+nrq4uHT16NNUjzeqHP/yhJiYmFAgE5Pf7tW/fvlSPNKszZ84oOztbly9f1rZt27R169ZUjxT1\nyZvmvF6vdu7ceVfeNFdZWalHH31Uvb29ys7OTtnpwHguXbqkkydP6rXXXpPf75ff749+dMjdYnh4\nWN/85jfl8/lUXFys7du3q7S0NNVjxRWvmdx8BAAGSfmROgAgcYg6ABiEqAOAQYg6ABiEqAOAQYg6\nABiEqAOAQYg6ABjk/wBSvEtIO3QhhQAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "And you can add a grid over the $y$-axis if you like. It's \"erasing\" some of the figure, but it's actually adding information, since it shows the tick lines!" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import prettyplotlib as ppl\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "np.random.seed(12)\n", "\n", "fig, ax = plt.subplots(1)\n", "\n", "# 'y' for the 'y' axis. Could also add a grid over the 'x' axis.\n", "ppl.hist(ax, np.random.randn(1000), grid='y')\n", "fig.savefig('hist_prettyplotlib_grid.png')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFNRJREFUeJzt3X9MVff9x/HX5ceW+NW1Nh0Xdy/22qGDq8i9aQNNI4kO\n0TiF0NngYFpSMWtqtsXSbCpLN7bEQreZTrqRmIVuLKb+2B8KMUqoTemMi2NtIel6TfEPrHD5MR3F\njjoHcs/3D9ObOuBeCpd78NPn4y889xw+b2j65HA4BxyWZVkCABghwe4BAACxQ9QBwCBEHQAMQtQB\nwCBEHQAMQtQBwCARo37r1i3l5ubK5/PJ6/Vq//79kqShoSEVFBRoxYoV2rBhg4aHh8PH1NTUaPny\n5crIyFBra+vcTg8AuIsj2n3qN2/e1IIFC3T79m2tWbNGv/71r9Xc3KwHH3xQP/7xj/XSSy/po48+\nUm1trQKBgMrKyvT3v/9dwWBQ69evV1dXlxIS+IYAAOIham0XLFggSRodHdX4+LgWL16s5uZmlZeX\nS5LKy8t16tQpSVJTU5NKS0uVnJwsj8ej9PR0tbe3z+H4AIDPihr1UCgkn88np9OpdevWaeXKlRoc\nHJTT6ZQkOZ1ODQ4OSpL6+vrkdrvDx7rdbgWDwTkaHQDwv5Ki7ZCQkKDOzk7duHFDGzdu1JtvvnnX\n6w6HQw6HY8rjI70GAIitaV/svu+++7R582a98847cjqdGhgYkCT19/crJSVFkuRyudTT0xM+pre3\nVy6Xa8L7amtrm+XYAIDJRIz69evXw3e2/Oc//9Hrr78uv9+voqIiNTY2SpIaGxtVXFwsSSoqKtKx\nY8c0Ojqq7u5uXb58WTk5ORPeL1EHgLkR8fJLf3+/ysvLFQqFFAqFtGPHDuXn58vv96ukpEQNDQ3y\neDw6ceKEJMnr9aqkpERer1dJSUmqr6/n8gsAxFHUWxrnQnV1taqrq+O9LAAYjxvIAcAgRB0ADELU\nAcAgRB0ADELUAcAgRB0ADELUAcAgRB0ADELUAcAgRB0ADELUAcAgRB0ADELUAcAgRB0ADELUAcAg\nRB0ADELUAcAgRB0ADELUAcAgRB0ADELUAcAgRB0ADELUYbzxUOgLsSYgSUl2DwDMtcSEBD1z/rW4\nrnk4ryyu6wGf4kwdAAxC1AHAIEQdAAxC1AHAIBGj3tPTo3Xr1mnlypVatWqV6urqJEnV1dVyu93y\n+/3y+/06e/Zs+JiamhotX75cGRkZam1tndvpAQB3iXj3S3Jysl5++WX5fD6NjIzokUceUUFBgRwO\nhyorK1VZWXnX/oFAQMePH1cgEFAwGNT69evV1dWlhAS+IQCAeIhY29TUVPl8PknSwoULlZmZqWAw\nKEmyLGvC/k1NTSotLVVycrI8Ho/S09PV3t4+B2MDACYz7VPoK1euqKOjQ4899pgk6ZVXXlF2drYq\nKio0PDwsSerr65Pb7Q4f43a7w18EAABzb1pRHxkZ0ZNPPqlDhw5p4cKFevbZZ9Xd3a3Ozk4tWbJE\nzz///JTHOhyOmA0LAIgs6hOlY2Nj2rp1q7Zv367i4mJJUkpKSvj1Xbt2qbCwUJLkcrnU09MTfq23\nt1culyvWMwOf25alWXaPAMRFxKhblqWKigp5vV7t2bMnvL2/v19LliyRJJ08eVJZWXf+hykqKlJZ\nWZkqKysVDAZ1+fJl5eTkzOH4wPScvvpeXNcrfIgvIrBHxKhfuHBBR44c0erVq+X3+yVJL774oo4e\nParOzk45HA4tW7ZMhw8fliR5vV6VlJTI6/UqKSlJ9fX1XH4BgDiKGPU1a9YoNMlvm9u0adOUx1RV\nVamqqmr2kwEAPjduIAcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAI\nUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUQcA\ngxB1ADAIUQcAgxB1ADAIUQcAgxB1ADAIUUdcjYdCdo8QF/H+OL8on1dElxTpxZ6eHj311FP65z//\nKYfDoe9973v64Q9/qKGhIW3btk0ffvihPB6PTpw4ofvvv1+SVFNTo1dffVWJiYmqq6vThg0b4vKB\n4N6QmJCgZ86/Ftc1D+eVxXU9Kf4fpx0fI+aniGfqycnJevnll/X+++/r4sWL+t3vfqdLly6ptrZW\nBQUF6urqUn5+vmprayVJgUBAx48fVyAQUEtLi3bv3q0QZxAAEDcRo56amiqfzydJWrhwoTIzMxUM\nBtXc3Kzy8nJJUnl5uU6dOiVJampqUmlpqZKTk+XxeJSenq729vY5/hAAAJ+a9jX1K1euqKOjQ7m5\nuRocHJTT6ZQkOZ1ODQ4OSpL6+vrkdrvDx7jdbgWDwRiPDACYSsRr6p8aGRnR1q1bdejQIS1atOiu\n1xwOhxwOx5THRnoNX0xblmaxJjBHokZ9bGxMW7du1Y4dO1RcXCzpztn5wMCAUlNT1d/fr5SUFEmS\ny+VST09P+Nje3l65XK45Gh33qtNX34vreoUPZRm/ZuFDfAHBHREvv1iWpYqKCnm9Xu3Zsye8vaio\nSI2NjZKkxsbGcOyLiop07NgxjY6Oqru7W5cvX1ZOTs4cjg8A+KyIZ+oXLlzQkSNHtHr1avn9fkl3\nblnct2+fSkpK1NDQEL6lUZK8Xq9KSkrk9XqVlJSk+vp6Lr8AQBxFjPqaNWumvCXx3Llzk26vqqpS\nVVXV7CcDAHxuPFEKAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKIO\nAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKIOAAYh\n6gBgEKIOAAYh6gBgEKIOAAYh6gBgkKhR37lzp5xOp7KyssLbqqur5Xa75ff75ff7dfbs2fBrNTU1\nWr58uTIyMtTa2jo3UwMAJhU16k8//bRaWlru2uZwOFRZWamOjg51dHRo06ZNkqRAIKDjx48rEAio\npaVFu3fvVigUmpvJAQATRI16Xl6eFi9ePGG7ZVkTtjU1Nam0tFTJycnyeDxKT09Xe3t7bCYFAEQ1\n42vqr7zyirKzs1VRUaHh4WFJUl9fn9xud3gft9utYDA4+ykBANOSNJODnn32Wf30pz+VJL3wwgt6\n/vnn1dDQMOm+Dodj5tPBSFuWZkXfiTWBGZlR1FNSUsJv79q1S4WFhZIkl8ulnp6e8Gu9vb1yuVyz\nHBGmOX31vbiuV/hQlvFrFj7EFxDcMaPLL/39/eG3T548Gb4zpqioSMeOHdPo6Ki6u7t1+fJl5eTk\nxGZSAEBUUc/US0tL9dZbb+n69etKS0vTz3/+c7W1tamzs1MOh0PLli3T4cOHJUler1clJSXyer1K\nSkpSfX09l18AII6iRv3o0aMTtu3cuXPK/auqqlRVVTW7qQAAM8ITpQBgEKIOAAYh6gBgEKIOAAYh\n6gBgEKIOAAYh6gBgEKL+BTbOr0UGjDOj3/0CMyQmJOiZ86/Fdc3DeWVxXQ/4ouFMHQAMQtQBwCBE\nHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAM\nQtQBwCBEHQAMQtQBwCBEHQAMEjXqO3fulNPpVFZWVnjb0NCQCgoKtGLFCm3YsEHDw8Ph12pqarR8\n+XJlZGSotbV1bqYGAEwqatSffvpptbS03LWttrZWBQUF6urqUn5+vmprayVJgUBAx48fVyAQUEtL\ni3bv3q0Qf7EeAOImatTz8vK0ePHiu7Y1NzervLxcklReXq5Tp05JkpqamlRaWqrk5GR5PB6lp6er\nvb19DsYG8FnjNpw82bEmokuayUGDg4NyOp2SJKfTqcHBQUlSX1+fHnvssfB+brdbwWAwBmMCiCQx\nIUHPnH8trmseziuL63qYnhlF/bMcDoccDkfE1zF/bVmaFX0n1rwn1rTjY8T8M6OoO51ODQwMKDU1\nVf39/UpJSZEkuVwu9fT0hPfr7e2Vy+WKzaSYE6evvhfX9QofymJNA9b7dE3MPzO6pbGoqEiNjY2S\npMbGRhUXF4e3Hzt2TKOjo+ru7tbly5eVk5MTu2kBABFFPVMvLS3VW2+9pevXrystLU2/+MUvtG/f\nPpWUlKihoUEej0cnTpyQJHm9XpWUlMjr9SopKUn19fVcfgGAOIoa9aNHj066/dy5c5Nur6qqUlVV\n1eymAgDMCE+UAoBBiDoAGISoA4BBiDoAGISoA4BBiDoAGISoA4BBiDoAGISoA4BBiDoAGISoA4BB\niDoAGISoA4BBiDoAGISoA4BBiDoAGISoA4BBiDoAGISoA4BBiDoAGISoA4BBiDoAGISoA4BBiDoA\nGISoA4BBiDoAGISoA4BBiDoAGCRpNgd7PB595StfUWJiopKTk9Xe3q6hoSFt27ZNH374oTwej06c\nOKH7778/VvMCACKY1Zm6w+FQW1ubOjo61N7eLkmqra1VQUGBurq6lJ+fr9ra2pgMCgCIbtaXXyzL\nuuvfzc3NKi8vlySVl5fr1KlTs10CADBNsz5TX79+vR599FH9/ve/lyQNDg7K6XRKkpxOpwYHB2c/\nJQBgWmZ1Tf3ChQtasmSJrl27poKCAmVkZNz1usPhkMPhmNWAAIDpm1XUlyxZIkn66le/qieeeELt\n7e1yOp0aGBhQamqq+vv7lZKSEpNBMTe2LM1iTUPWtONjxPwz46jfvHlT4+PjWrRokT755BO1trbq\nZz/7mYqKitTY2Ki9e/eqsbFRxcXFsZwXMXb66ntxXa/woSzWNGC9T9fE/DPjqA8ODuqJJ56QJN2+\nfVvf/e53tWHDBj366KMqKSlRQ0ND+JZGAEB8zDjqy5YtU2dn54TtDzzwgM6dOzeroQAAM8MTpQBg\nEKIOAAYh6gBgEKIOAAYh6gBgEKIOAAYh6gBgEKI+j4yHQnaPAOAeN6vf/YLYSkxI0DPnX4vbeofz\nyuK2FoD44EwdAAxC1AHAIEQdAAxC1AHAIEQdAAxC1AHMiB234HLbb3Tc0ghgRuJ9C67EbbjTwZk6\nABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqE+BhxwA3It4+GgKPFgB4F7EmToAGISoA4BB\niDqAewa/RCy6Obmm3tLSoj179mh8fFy7du3S3r1752IZAF8w/KwrupifqY+Pj+v73/++WlpaFAgE\ndPToUV26dCnWywAAJhHzM/X29nalp6fL4/FIkr7zne+oqalJmZmZM3p/oVBI47JiOGF0DklJCYlx\nXRMAYiHmUQ8Gg0pLSwv/2+12629/+9uM319Ils5cfV9t/R/EYrxp2Zu9QakL7ovbegAQKzGPusPh\niO37k0OPOx+Wd3FqTN9vJA98+f/ithYAxJLDsqyYXtu4ePGiqqur1dLSIkmqqalRQkLCXT8s/c1v\nfqPh4eFYLgsAxlu7dq3Wrl0bcZ+YR/327dv6xje+oTfeeENf+9rXlJOTo6NHj874mjoAYPpifvkl\nKSlJv/3tb7Vx40aNj4+roqKCoANAnMT8TB0AYB9bnyg9ePCgEhISNDQ0ZOcYU3rhhReUnZ0tn8+n\n/Px89fT02D3SpH70ox8pMzNT2dnZ+va3v60bN27YPdKk/vznP2vlypVKTEzUu+++a/c4E7S0tCgj\nI0PLly/XSy+9ZPc4k9q5c6ecTqeysrLsHiWinp4erVu3TitXrtSqVatUV1dn90gT3Lp1S7m5ufL5\nfPJ6vdq/f7/dI0U0Pj4uv9+vwsLCyDtaNrl69aq1ceNGy+PxWP/617/sGiOijz/+OPx2XV2dVVFR\nYeM0U2ttbbXGx8cty7KsvXv3Wnv37rV5osldunTJ+uCDD6y1a9da77zzjt3j3OX27dvW17/+dau7\nu9saHR21srOzrUAgYPdYE/zlL3+x3n33XWvVqlV2jxJRf3+/1dHRYVmWZf373/+2VqxYMS8/n598\n8ollWZY1NjZm5ebmWufPn7d5oqkdPHjQKisrswoLCyPuZ9uZemVlpX75y1/atfy0LFq0KPz2yMiI\nHnzwQRunmVpBQYESEu78p8zNzVVvb6/NE00uIyNDK1assHuMSX32obnk5OTwQ3PzTV5enhYvXmz3\nGFGlpqbK5/NJkhYuXKjMzEz19fXZPNVECxYskCSNjo5qfHxcDzzwgM0TTa63t1dnzpzRrl27ZEW5\nYm5L1JuamuR2u7V69Wo7lv9cfvKTn2jp0qVqbGzUvn377B4nqldffVXf+ta37B7jnjPZQ3PBYNDG\nicxx5coVdXR0KDc31+5RJgiFQvL5fHI6nVq3bp28Xq/dI03queee069+9avwyVskc/ZHMgoKCjQw\nMDBh+4EDB1RTU6PW1tbwtmhfeebSVHO++OKLKiws1IEDB3TgwAHV1tbqueee0x/+8Acbpow+p3Tn\nc/ulL31JZWX2/QKi6cw5H8X6oTncMTIyoieffFKHDh3SwoUL7R5ngoSEBHV2durGjRvauHGj2tra\not4HHm+nT59WSkqK/H6/2traou4/Z1F//fXXJ93+j3/8Q93d3crOzpZ059uKRx55RO3t7UpJSZmr\ncaY01Zz/q6yszNYz4Ghz/vGPf9SZM2f0xhtvxGmiyU338znfuFyuu34Q3tPTI7fbbeNE976xsTFt\n3bpV27dvV3Fxsd3jRHTfffdp8+bNevvtt+dd1P/617+qublZZ86c0a1bt/Txxx/rqaee0p/+9KfJ\nD4jLFf4I5vMPSru6usJv19XVWdu3b7dxmqmdPXvW8nq91rVr1+weZVrWrl1rvf3223aPcZexsTHr\n4Ycftrq7u63//ve/8/YHpZZlWd3d3fP+B6WhUMjasWOHtWfPHrtHmdK1a9esjz76yLIsy7p586aV\nl5dnnTt3zuapImtra7O2bNkScR/b/0jGfP62d//+/crKypLP51NbW5sOHjxo90iT+sEPfqCRkREV\nFBTI7/dr9+7ddo80qZMnTyotLU0XL17U5s2btWnTJrtHCvvsQ3Ner1fbtm2blw/NlZaW6vHHH1dX\nV5fS0tJsuxwYzYULF3TkyBG9+eab8vv98vv94V8dMl/09/frm9/8pnw+n3Jzc1VYWKj8/Hy7x4oq\nWjN5+AgADGL7mToAIHaIOgAYhKgDgEGIOgAYhKgDgEGIOgAYhKgDgEGIOgAY5P8BRvSGTh78bMcA\nAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }