#include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include using namespace cv; using namespace std; static void help(char ** argv) { cout << endl << "This program demonstrated the use of the discrete Fourier transform (DFT). " << endl << "The dft of an image is taken and it's power spectrum is displayed." << endl << endl << "Usage:" << endl << argv[0] << " [image_name -- default lena.jpg]" << endl << endl; } int main(int argc, char ** argv) { help(argv); const char* filename = argc >=2 ? argv[1] : "lena.jpg"; Mat I = imread( samples::findFile( filename ), IMREAD_GRAYSCALE); if( I.empty()){ cout << "Error opening image" << endl; return EXIT_FAILURE; } //! [expand] Mat padded; //expand input image to optimal size int m = getOptimalDFTSize( I.rows ); int n = getOptimalDFTSize( I.cols ); // on the border add zero values copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0)); //! [expand] //! [complex_and_real] Mat planes[] = {Mat_(padded), Mat::zeros(padded.size(), CV_32F)}; Mat complexI; merge(planes, 2, complexI); // Add to the expanded another plane with zeros //! [complex_and_real] //! [dft] dft(complexI, complexI); // this way the result may fit in the source matrix //! [dft] // compute the magnitude and switch to logarithmic scale // => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2)) //! [magnitude] split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I)) magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude Mat magI = planes[0]; //! [magnitude] //! [log] magI += Scalar::all(1); // switch to logarithmic scale log(magI, magI); //! [log] //! [crop_rearrange] // crop the spectrum, if it has an odd number of rows or columns magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2)); // rearrange the quadrants of Fourier image so that the origin is at the image center int cx = magI.cols/2; int cy = magI.rows/2; Mat q0(magI, Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant Mat q1(magI, Rect(cx, 0, cx, cy)); // Top-Right Mat q2(magI, Rect(0, cy, cx, cy)); // Bottom-Left Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right Mat tmp; // swap quadrants (Top-Left with Bottom-Right) q0.copyTo(tmp); q3.copyTo(q0); tmp.copyTo(q3); q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left) q2.copyTo(q1); tmp.copyTo(q2); //! [crop_rearrange] //! [normalize] normalize(magI, magI, 0, 1, NORM_MINMAX); // Transform the matrix with float values into a // viewable image form (float between values 0 and 1). //! [normalize] imshow("Input Image" , I ); // Show the result imshow("spectrum magnitude", magI); waitKey(); return EXIT_SUCCESS; }