/* * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_CLASSFILE_VERIFIER_HPP #define SHARE_CLASSFILE_VERIFIER_HPP #include "classfile/verificationType.hpp" #include "oops/klass.hpp" #include "oops/method.hpp" #include "runtime/handles.hpp" #include "utilities/exceptions.hpp" #include "utilities/growableArray.hpp" #include "utilities/resourceHash.hpp" // The verifier class class Verifier : AllStatic { public: enum { STACKMAP_ATTRIBUTE_MAJOR_VERSION = 50, INVOKEDYNAMIC_MAJOR_VERSION = 51, NO_RELAX_ACCESS_CTRL_CHECK_VERSION = 52, DYNAMICCONSTANT_MAJOR_VERSION = 55 }; // Verify the bytecodes for a class. static bool verify(InstanceKlass* klass, bool should_verify_class, TRAPS); static void log_end_verification(outputStream* st, const char* klassName, Symbol* exception_name, oop pending_exception); // Return false if the class is loaded by the bootstrap loader, // or if defineClass was called requesting skipping verification // -Xverify:all overrides this value static bool should_verify_for(oop class_loader, bool should_verify_class); // Relax certain access checks to enable some broken 1.1 apps to run on 1.2. static bool relax_access_for(oop class_loader); // Print output for class+resolve static void trace_class_resolution(Klass* resolve_class, InstanceKlass* verify_class); private: static bool is_eligible_for_verification(InstanceKlass* klass, bool should_verify_class); static Symbol* inference_verify( InstanceKlass* klass, char* msg, size_t msg_len, TRAPS); }; class RawBytecodeStream; class StackMapFrame; class StackMapTable; // Summary of verifier's memory usage: // StackMapTable is stack allocated. // StackMapFrame are resource allocated. There is only one ResourceMark // for each class verification, which is created at the top level. // There is one mutable StackMapFrame (current_frame) which is updated // by abstract bytecode interpretation. frame_in_exception_handler() returns // a frame that has a mutable one-item stack (ready for pushing the // catch type exception object). All the other StackMapFrame's // are immutable (including their locals and stack arrays) after // their constructions. // locals/stack arrays in StackMapFrame are resource allocated. // locals/stack arrays can be shared between StackMapFrame's, except // the mutable StackMapFrame (current_frame). // These macros are used similarly to CHECK macros but also check // the status of the verifier and return if that has an error. #define CHECK_VERIFY(verifier) \ CHECK); if ((verifier)->has_error()) return; ((void)0 #define CHECK_VERIFY_(verifier, result) \ CHECK_(result)); if ((verifier)->has_error()) return (result); ((void)0 class TypeOrigin { private: typedef enum { CF_LOCALS, // Comes from the current frame locals CF_STACK, // Comes from the current frame expression stack SM_LOCALS, // Comes from stackmap locals SM_STACK, // Comes from stackmap expression stack CONST_POOL, // Comes from the constant pool SIG, // Comes from method signature IMPLICIT, // Comes implicitly from code or context BAD_INDEX, // No type, but the index is bad FRAME_ONLY, // No type, context just contains the frame NONE } Origin; Origin _origin; int _index; // local, stack, or constant pool index StackMapFrame* _frame; // source frame if CF or SM VerificationType _type; // The actual type TypeOrigin( Origin origin, int index, StackMapFrame* frame, VerificationType type) : _origin(origin), _index(index), _frame(frame), _type(type) {} public: TypeOrigin() : _origin(NONE), _index(0), _frame(nullptr) {} static TypeOrigin null(); static TypeOrigin local(int index, StackMapFrame* frame); static TypeOrigin stack(int index, StackMapFrame* frame); static TypeOrigin sm_local(int index, StackMapFrame* frame); static TypeOrigin sm_stack(int index, StackMapFrame* frame); static TypeOrigin cp(int index, VerificationType vt); static TypeOrigin signature(VerificationType vt); static TypeOrigin bad_index(int index); static TypeOrigin implicit(VerificationType t); static TypeOrigin frame(StackMapFrame* frame); void reset_frame(); void details(outputStream* ss) const; void print_frame(outputStream* ss) const; const StackMapFrame* frame() const { return _frame; } bool is_valid() const { return _origin != NONE; } int index() const { return _index; } #ifdef ASSERT void print_on(outputStream* str) const; #endif }; class ErrorContext { private: typedef enum { INVALID_BYTECODE, // There was a problem with the bytecode WRONG_TYPE, // Type value was not as expected FLAGS_MISMATCH, // Frame flags are not assignable BAD_CP_INDEX, // Invalid constant pool index BAD_LOCAL_INDEX, // Invalid local index LOCALS_SIZE_MISMATCH, // Frames have differing local counts STACK_SIZE_MISMATCH, // Frames have different stack sizes STACK_OVERFLOW, // Attempt to push onto a full expression stack STACK_UNDERFLOW, // Attempt to pop and empty expression stack MISSING_STACKMAP, // No stackmap for this location and there should be BAD_STACKMAP, // Format error in stackmap NO_FAULT, // No error UNKNOWN } FaultType; int _bci; FaultType _fault; TypeOrigin _type; TypeOrigin _expected; ErrorContext(int bci, FaultType fault) : _bci(bci), _fault(fault) {} ErrorContext(int bci, FaultType fault, TypeOrigin type) : _bci(bci), _fault(fault), _type(type) {} ErrorContext(int bci, FaultType fault, TypeOrigin type, TypeOrigin exp) : _bci(bci), _fault(fault), _type(type), _expected(exp) {} public: ErrorContext() : _bci(-1), _fault(NO_FAULT) {} static ErrorContext bad_code(int bci) { return ErrorContext(bci, INVALID_BYTECODE); } static ErrorContext bad_type(int bci, TypeOrigin type) { return ErrorContext(bci, WRONG_TYPE, type); } static ErrorContext bad_type(int bci, TypeOrigin type, TypeOrigin exp) { return ErrorContext(bci, WRONG_TYPE, type, exp); } static ErrorContext bad_flags(int bci, StackMapFrame* frame) { return ErrorContext(bci, FLAGS_MISMATCH, TypeOrigin::frame(frame)); } static ErrorContext bad_flags(int bci, StackMapFrame* cur, StackMapFrame* sm) { return ErrorContext(bci, FLAGS_MISMATCH, TypeOrigin::frame(cur), TypeOrigin::frame(sm)); } static ErrorContext bad_cp_index(int bci, int index) { return ErrorContext(bci, BAD_CP_INDEX, TypeOrigin::bad_index(index)); } static ErrorContext bad_local_index(int bci, int index) { return ErrorContext(bci, BAD_LOCAL_INDEX, TypeOrigin::bad_index(index)); } static ErrorContext locals_size_mismatch( int bci, StackMapFrame* frame0, StackMapFrame* frame1) { return ErrorContext(bci, LOCALS_SIZE_MISMATCH, TypeOrigin::frame(frame0), TypeOrigin::frame(frame1)); } static ErrorContext stack_size_mismatch( int bci, StackMapFrame* frame0, StackMapFrame* frame1) { return ErrorContext(bci, STACK_SIZE_MISMATCH, TypeOrigin::frame(frame0), TypeOrigin::frame(frame1)); } static ErrorContext stack_overflow(int bci, StackMapFrame* frame) { return ErrorContext(bci, STACK_OVERFLOW, TypeOrigin::frame(frame)); } static ErrorContext stack_underflow(int bci, StackMapFrame* frame) { return ErrorContext(bci, STACK_UNDERFLOW, TypeOrigin::frame(frame)); } static ErrorContext missing_stackmap(int bci) { return ErrorContext(bci, MISSING_STACKMAP); } static ErrorContext bad_stackmap(int index, StackMapFrame* frame) { return ErrorContext(0, BAD_STACKMAP, TypeOrigin::frame(frame)); } bool is_valid() const { return _fault != NO_FAULT; } int bci() const { return _bci; } void reset_frames() { _type.reset_frame(); _expected.reset_frame(); } void details(outputStream* ss, const Method* method) const; #ifdef ASSERT void print_on(outputStream* str) const { str->print("error_context(%d, %d,", _bci, _fault); _type.print_on(str); str->print(","); _expected.print_on(str); str->print(")"); } #endif private: void location_details(outputStream* ss, const Method* method) const; void reason_details(outputStream* ss) const; void frame_details(outputStream* ss) const; void bytecode_details(outputStream* ss, const Method* method) const; void handler_details(outputStream* ss, const Method* method) const; void stackmap_details(outputStream* ss, const Method* method) const; }; class sig_as_verification_types : public ResourceObj { private: int _num_args; // Number of arguments, not including return type. GrowableArray* _sig_verif_types; public: sig_as_verification_types(GrowableArray* sig_verif_types) : _num_args(0), _sig_verif_types(sig_verif_types) { } int num_args() const { return _num_args; } void set_num_args(int num_args) { _num_args = num_args; } GrowableArray* sig_verif_types() { return _sig_verif_types; } void set_sig_verif_types(GrowableArray* sig_verif_types) { _sig_verif_types = sig_verif_types; } }; // This hashtable is indexed by the Utf8 constant pool indexes pointed to // by constant pool (Interface)Method_refs' NameAndType signature entries. typedef ResourceHashtable method_signatures_table_type; // A new instance of this class is created for each class being verified class ClassVerifier : public StackObj { private: Thread* _thread; Symbol* _previous_symbol; // cache of the previously looked up symbol GrowableArray* _symbols; // keep a list of symbols created Symbol* _exception_type; char* _message; method_signatures_table_type _method_signatures_table; ErrorContext _error_context; // contains information about an error void verify_method(const methodHandle& method, TRAPS); char* generate_code_data(const methodHandle& m, u4 code_length, TRAPS); void verify_exception_handler_table(u4 code_length, char* code_data, int& min, int& max, TRAPS); void verify_local_variable_table(u4 code_length, char* code_data, TRAPS); VerificationType cp_ref_index_to_type( int index, const constantPoolHandle& cp, TRAPS) { return cp_index_to_type(cp->uncached_klass_ref_index_at(index), cp, THREAD); } bool is_protected_access( InstanceKlass* this_class, Klass* target_class, Symbol* field_name, Symbol* field_sig, bool is_method); void verify_cp_index(int bci, const constantPoolHandle& cp, u2 index, TRAPS); void verify_cp_type(int bci, u2 index, const constantPoolHandle& cp, unsigned int types, TRAPS); void verify_cp_class_type(int bci, u2 index, const constantPoolHandle& cp, TRAPS); u2 verify_stackmap_table( u2 stackmap_index, int bci, StackMapFrame* current_frame, StackMapTable* stackmap_table, bool no_control_flow, TRAPS); void verify_exception_handler_targets( int bci, bool this_uninit, StackMapFrame* current_frame, StackMapTable* stackmap_table, TRAPS); void verify_ldc( int opcode, u2 index, StackMapFrame *current_frame, const constantPoolHandle& cp, int bci, TRAPS); void verify_switch( RawBytecodeStream* bcs, u4 code_length, char* code_data, StackMapFrame* current_frame, StackMapTable* stackmap_table, TRAPS); void verify_field_instructions( RawBytecodeStream* bcs, StackMapFrame* current_frame, const constantPoolHandle& cp, bool allow_arrays, TRAPS); void verify_invoke_init( RawBytecodeStream* bcs, u2 ref_index, VerificationType ref_class_type, StackMapFrame* current_frame, u4 code_length, bool in_try_block, bool* this_uninit, const constantPoolHandle& cp, StackMapTable* stackmap_table, TRAPS); // Used by ends_in_athrow() to push all handlers that contain bci onto the // handler_stack, if the handler has not already been pushed on the stack. void push_handlers(ExceptionTable* exhandlers, GrowableArray* handler_list, GrowableArray* handler_stack, u4 bci); // Returns true if all paths starting with start_bc_offset end in athrow // bytecode or loop. bool ends_in_athrow(u4 start_bc_offset); void verify_invoke_instructions( RawBytecodeStream* bcs, u4 code_length, StackMapFrame* current_frame, bool in_try_block, bool* this_uninit, VerificationType return_type, const constantPoolHandle& cp, StackMapTable* stackmap_table, TRAPS); VerificationType get_newarray_type(u2 index, int bci, TRAPS); void verify_anewarray(int bci, u2 index, const constantPoolHandle& cp, StackMapFrame* current_frame, TRAPS); void verify_return_value( VerificationType return_type, VerificationType type, int bci, StackMapFrame* current_frame, TRAPS); void verify_iload (int index, StackMapFrame* current_frame, TRAPS); void verify_lload (int index, StackMapFrame* current_frame, TRAPS); void verify_fload (int index, StackMapFrame* current_frame, TRAPS); void verify_dload (int index, StackMapFrame* current_frame, TRAPS); void verify_aload (int index, StackMapFrame* current_frame, TRAPS); void verify_istore(int index, StackMapFrame* current_frame, TRAPS); void verify_lstore(int index, StackMapFrame* current_frame, TRAPS); void verify_fstore(int index, StackMapFrame* current_frame, TRAPS); void verify_dstore(int index, StackMapFrame* current_frame, TRAPS); void verify_astore(int index, StackMapFrame* current_frame, TRAPS); void verify_iinc (int index, StackMapFrame* current_frame, TRAPS); bool name_in_supers(Symbol* ref_name, InstanceKlass* current); VerificationType object_type() const; InstanceKlass* _klass; // the class being verified methodHandle _method; // current method being verified VerificationType _this_type; // the verification type of the current class // Some recursive calls from the verifier to the name resolver // can cause the current class to be re-verified and rewritten. // If this happens, the original verification should not continue, // because constant pool indexes will have changed. // The rewriter is preceded by the verifier. If the verifier throws // an error, rewriting is prevented. Also, rewriting always precedes // bytecode execution or compilation. Thus, is_rewritten implies // that a class has been verified and prepared for execution. bool was_recursively_verified() { return _klass->is_rewritten(); } bool is_same_or_direct_interface(InstanceKlass* klass, VerificationType klass_type, VerificationType ref_class_type); public: enum { BYTECODE_OFFSET = 1, NEW_OFFSET = 2 }; // constructor ClassVerifier(JavaThread* current, InstanceKlass* klass); // destructor ~ClassVerifier(); Thread* thread() { return _thread; } const methodHandle& method() { return _method; } InstanceKlass* current_class() const { return _klass; } VerificationType current_type() const { return _this_type; } // Verifies the class. If a verify or class file format error occurs, // the '_exception_name' symbols will set to the exception name and // the message_buffer will be filled in with the exception message. void verify_class(TRAPS); // Translates method signature entries into verificationTypes and saves them // in the growable array. void translate_signature(Symbol* const method_sig, sig_as_verification_types* sig_verif_types); // Initializes a sig_as_verification_types entry and puts it in the hash table. void create_method_sig_entry(sig_as_verification_types* sig_verif_types, int sig_index); // Return status modes Symbol* result() const { return _exception_type; } bool has_error() const { return result() != nullptr; } char* exception_message() { stringStream ss; ss.print("%s", _message); _error_context.details(&ss, _method()); return ss.as_string(); } // Called when verify or class format errors are encountered. // May throw an exception based upon the mode. void verify_error(ErrorContext ctx, const char* fmt, ...) ATTRIBUTE_PRINTF(3, 4); void class_format_error(const char* fmt, ...) ATTRIBUTE_PRINTF(2, 3); Klass* load_class(Symbol* name, TRAPS); method_signatures_table_type* method_signatures_table() { return &_method_signatures_table; } int change_sig_to_verificationType( SignatureStream* sig_type, VerificationType* inference_type); VerificationType cp_index_to_type(int index, const constantPoolHandle& cp, TRAPS) { return VerificationType::reference_type(cp->klass_name_at(index)); } // Keep a list of temporary symbols created during verification because // their reference counts need to be decremented when the verifier object // goes out of scope. Since these symbols escape the scope in which they're // created, we can't use a TempNewSymbol. Symbol* create_temporary_symbol(const char *s, int length); Symbol* create_temporary_symbol(Symbol* s) { if (s == _previous_symbol) { return s; } if (!s->is_permanent()) { s->increment_refcount(); if (_symbols == nullptr) { _symbols = new GrowableArray(50, 0, nullptr); } _symbols->push(s); } _previous_symbol = s; return s; } TypeOrigin ref_ctx(const char* str); }; inline int ClassVerifier::change_sig_to_verificationType( SignatureStream* sig_type, VerificationType* inference_type) { BasicType bt = sig_type->type(); switch (bt) { case T_OBJECT: case T_ARRAY: { Symbol* name = sig_type->as_symbol(); // Create another symbol to save as signature stream unreferences this symbol. Symbol* name_copy = create_temporary_symbol(name); assert(name_copy == name, "symbols don't match"); *inference_type = VerificationType::reference_type(name_copy); return 1; } case T_LONG: *inference_type = VerificationType::long_type(); *++inference_type = VerificationType::long2_type(); return 2; case T_DOUBLE: *inference_type = VerificationType::double_type(); *++inference_type = VerificationType::double2_type(); return 2; case T_INT: case T_BOOLEAN: case T_BYTE: case T_CHAR: case T_SHORT: *inference_type = VerificationType::integer_type(); return 1; case T_FLOAT: *inference_type = VerificationType::float_type(); return 1; default: ShouldNotReachHere(); return 1; } } #endif // SHARE_CLASSFILE_VERIFIER_HPP