
DR
AF
T

Python-based Lagrange analytical mechanics course1

Víctor A. Bettachini 1,2, Mariano A. Real 3,4, and Edgardo Palazzo 5
2

1 Universidad Nacional de La Matanza - UNLaM, Buenos Aires, Argentina. 2 Instituto Geográfico Nacional3

- IGN, Buenos Aires, Argentina. 3 Instituto Nacional de Tecnología Industrial - INTI, Buenos Aires,4

Argentina. 4 INCALIN, Universidad de San Martín - UNSAM, Buenos Aires, Argentina. 5 Universidad5

Tecnológica Nacional - UTN, Buenos Aires, Argentina.6

DOI: 10.xxxxxx/draft

Software

• Review
• Repository
• Archive

Submitted: 03 September 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary7

We present a code-based undergraduate course on analytical mechanics for engineering8

students with little to no prior programming knowledge. This 16-week flipped classroom9

(?) course provides skills to calculate dynamics and strains of simple mechanical devices,10

modelled as rigid bodies by solving Euler-Lagrange equations. Each example and practice11

exercise is solved using computer-based analytical and numerical calculations focusing12

students’ attention on physics modelling and not on repetitive mathematical tasks. This13

approach also aims to improve creativity, the students have to solve problems by trial and14

error (Hoffmann et al., 2021).15

The course addresses specific regional issues faced by third-year Latin American students16

(mid-career), that by then have learned how to solve ordinary differential equations.17

Theory and examples exercises, along with the Python code that solves them are presented18

in Jupyter notebooks run online to avoid installation and hardware requirement issues.19

Currently, the material is available in a GitHub repository in Spanish and has only been20

partially translated into English.21

Statement of need22

Latin American public universities face two simultaneous constrains: tight budgets and the23

need to accommodate their classes’ schedules to day-working students (Vallejo et al., 2022).24

These cash-stripped universities seldom avail computing resources for courses that are not25

directly related to computer science or programming. Also, as undergraduate programs on26

engineering at Latin American universities are usually longer than the three-year bachelor’s27

degrees at their Anglo-Saxon counterparts, it is quite common for students to already be28

part of the labour market while studying. As a result, they have tight schedules and are29

often unable to attend to university during daytime hours.30

The course presented addresses those issues by providing a free, online, and asynchronous31

learning environment allowing students to study at their own pace through the flipped32

classroom approach (Moraros et al., 2015). In advance to weekly meetings, students are33

required to study the theory and examples provided in the notebooks, as well as to initiate34

solving the accompanying exercises. During those evening meetings, whether online or in35

person, students are encouraged to ask questions and discuss the problems they could not36

solve with the teaching staff.37

Basis for the syllabus38

Traditionally, systems addressed in analytical mechanics courses are kept as simple as39

possible, to limit the extent of the mathematical work required. So, modelling of multiple40

machine parts is seldom undertaken, as that would lead to a level of complexity sometimes41

Bettachini et al. (2024). Python-based Lagrange analytical mechanics course. Journal of Open Source Education, 0(0), 256. https://doi.org/10.
xxxxxx/draft.

1

https://orcid.org/0000-0001-7485-8884
https://orcid.org/0000-0003-3022-7516
https://orcid.org/0009-0006-8783-8261
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/jose-reviews/issues/256
https://github.com/unlam/ComputationalAnalyticalMechanics/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DR
AF
T

untenable for students and teaching staff working on the blackboard or paper. This course42

aims to avoid this pitfall by taking advantage of the relative simple syntax of modern43

programming languages to tackle mathematical problems. In this way it is possible to44

rapidly introduce life-like problems avoiding oversimplifications to the students.45

The required modelling as well as algebraic and calculus operations to generate the46

Euler-Lagrange differential equations are performed using physics.mechanics, the symbolic47

dynamics sub-package of the SymPy library (Meurer et al., 2017). Its code was ported48

from the PyDy library, a replacement of Autolev (Levinson & Kane, 1990),a commercial49

software that instrumentalised the Kane’s method (Kane & Levinson, 1985). As stated in50

the online textbook for the Multibody Dynamics course at TU Delft, a successor to the one51

PyDy was developed for, this method avoids accounting for non-conservative forces with52

Lagrange’s multipliers, but it requires modelling forces in the system (Jason K. Moore,53

2024). Our choice was instead to make students model systems solely by their energy,54

a more traditional approach, in order to immerse them into a radically different way of55

solving mechanical problems in their first contact with analytical mechanics. We think56

that when facing problems requiring a more efficient method, they will be able to apply57

such other less abstract methods.58

Although physics.mechanics provides functionality for deriving equations of motion using59

Lagrange’s method, this course aims for the student to follow the standard mathematical60

notation and procedures, as they would have done on paper. The idea is to ensure that61

students can verify each step of the process and only later rely on functions built around62

these steps, avoiding any black box.63

We would like to emphasise that the course is not about teaching programming, nor about64

high-performance modelling of mechanical systems. The aim of employing the computer is65

to free-up students from the repetitive nature of the calculations, so they can focus on the66

physical aspects of the problems. The deliberate decision that everything get solved by67

code, even the earliest examples, aims to reinforce the advice given to students to avoid68

solving the initial problem sets on paper. Some students did so at earlier editions of the69

course, only to got stuck later while solving more complex problems without the computer70

help. By slight modifications over the Python code presented by the teaching staff, students71

build their own library of solutions to address mechanical modelling challenges. Once the72

students generate the Euler-Lagrange equations, their numerical solutions are obtained73

using the Scipy library (Virtanen et al., 2020), and plotted using Matplotlib (Hunter, 2007)74

to better understand the physical implications of the solutions.75

Overview, Content, and Structure76

Full course material is available in a GitHub repository in Spanish, with an ongoing77

translation to English. The first twelve folders contain the course material, each one corre-78

sponding to a unit: 1. Course methodology, Newtonian physics and Sympy introduction.79

2. Degrees of freedom, generalized coordinates and energy. 3. Euler-Lagrange mechanics,80

Euler-Lagrange equations. 4. Constraints as a function of coordinates. 5. Numerical81

solving of Euler-Lagrange equations. 6. Constraint reactions and Lagrange multipliers.82

7. Non-conservative forces in the Euler-Lagrange framework. 8. Rigid-body and inertia83

tensor. 9. Rigid-body, Euler equations. 10. Oscillations in single degree of freedom (SDoF)84

systems, forced oscillations and discrete systems. 11. Oscillations multiple degrees of85

freedom (MDoF) systems. Normal modes of discrete systems.86

Each folder contains Jupyter notebooks with the required theory for the unit subject87

alongside the code that solves example exercises. The students only need to modify88

that code to solve the exercises proposed at the accompanying problem sets. It is worth89

mentioning that many problems are modifications of problems presented in the course90

bibiography, and that they are cited, to help the students follow possible issues and to91

induce them to further use the textbooks. The problem sets are provided in PDF format92

Bettachini et al. (2024). Python-based Lagrange analytical mechanics course. Journal of Open Source Education, 0(0), 256. https://doi.org/10.
xxxxxx/draft.

2

https://docs.sympy.org/latest/modules/physics/mechanics/
https://www.pydy.org/history.html
https://moorepants.github.io/me41055
https://docs.sympy.org/latest/modules/physics/mechanics/lagrange.html
https://github.com/bettachini/MecanicaAnaliticaComputacional
https://github.com/unlam/ComputationalAnalyticalMechanics
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DR
AF
T

alongside their LaTeX source and figure files, allowing their customisation. The number of93

exercises in each problem set, while still being illustrative of the variety of the unit subject94

applications, is kept small in order to make their solving mandatory on a weekly basis.95

Those of units 8, 9 and 11 are exceptions, requiring two weeks each, as they deal with96

subjects that had shown to be somewhat more demanding to students.97

Two further weeks complete a 16-week schedule. These are reserved not only for the98

students to submit overdue exercises but, mainly, to perform an oral presentation on how99

they solved a final project. Its aim is to calculate torques and forces that the motors of a100

simplified factory robotic arm should apply to make it perform a sequence of movements.101

As it requires the student to master the skills acquired during the first nine units, its102

statement is presented at the second week for that unit. This arrangement gives enough103

time for the students to consult on its difficulties and prepare the presentation. The oral104

examination is intended to gauge the students’ learning, not only on the physics and105

computational skill required to solve this kind of problems, but also on how to provide a106

well planned oral presentation.107

Implementation108

The Google Colaboratory service allows students to read and execute Jupyter notebooks,109

as it currently demands no payment and can be accessed from any internet browser.110

At UNLaM, the university where the course is taught, SageMaker StudioLab, GitHub111

Codespaces, Cocalc or indeed Kaggle had also been tested for this purpose. Nevertheless,112

Colab, as it is commonly known, is currently used because it provides a useful feature113

for students to pose questions via side-notes to each cell of the notebooks. Teaching staff114

can reply them individually, and students can re-reply, thus providing an asynchronous115

interaction channel in between the weekly synchronic meetings.116

Students are required to submit their solution to the complete course’s problem sets. MS117

Teams is used to assign and keep track of student’s work, but any LMS, such as the open118

source Moodle, can fulfil this task. Teaching staff check the submissions and, if required,119

returns them with comments to correct them. This way, students are encouraged to solve120

all exercises, as they are mandatory to pass the course, and to ask for help when they are121

stuck.122

Conclusions123

The mechanical engineering programme is relatively new at UNLaM, so the number of124

students per class is still low, around eight, thus allowing personalised tracking of student’s125

progress. Larger audiences will provide a challenge, probably requiring to include new126

teaching assistants as well as introducing automatic grading, to somewhat keep the current127

methodology.128

For the time being, feedback from students consistently indicates a high level of satisfaction129

with this course, especially with its code-driven aspect. Additionally, students express130

interest in the final examination as it provides an opportunity to apply both their presen-131

tation skills and the knowledge acquired throughout the course. In relation to the flipped132

classroom model, students acknowledge that it requires a grater effort, but a majority of133

them agree that it is a positive and beneficial implementation. This is in line with previous134

research on the flipped classroom model for advances mechanical engineering courses (?).135

The authors are confident that the methodology employed in this course offers greater136

practical utility to students in subsequent subjects and their professional lives, surpassing137

the benefits of a traditional course.138

Bettachini et al. (2024). Python-based Lagrange analytical mechanics course. Journal of Open Source Education, 0(0), 256. https://doi.org/10.
xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DR
AF
T

Aknowledgments139

The authors would like to thank DIIT-UNLaM for its support and grant C2-ING-109140

(2023-2024). Probablemente Edgardo quiera sumar algo acá de UTN?# References141

Hoffmann, A. F., Vigh, C., & Fernández-Liporace, M. (2021). Creatividad y enfoques142

de aprendizaje en estudiantes universitarios: Creativity and learning approaches in143

college students. Psicogente, 24(46), 1–17. https://doi.org/10.17081/psico.24.46.4492144

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &145

Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55146

Jason K. Moore. (2024). Learn multibody dynamics (0.2.dev0+f440663 ed.). https:147

//moorepants.github.io/learn-multibody-dynamics/index.html148

Kane, T. R., & Levinson, D. A. (1985). Dynamics, theory and applications. McGraw Hill.149

ISBN: 978-0-07-037846-9150

Levinson, D. A., & Kane, T. R. (1990). AUTOLEV — a new approach to multibody151

dynamics. In W. Schiehlen (Ed.), Multibody systems handbook (pp. 81–102). Springer.152

https://doi.org/10.1007/978-3-642-50995-7_7153

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,154

A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,155

R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., … Scopatz, A.156

(2017). SymPy: Symbolic computing in python. PeerJ Computer Science, 3, e103.157

https://doi.org/10.7717/peerj-cs.103158

Moraros, J., Islam, A., Yu, S., Banow, R., & Schindelka, B. (2015). Flipping for success:159

Evaluating the effectiveness of a novel teaching approach in a graduate level setting.160

BMC Medical Education, 15(1), 1–10. https://doi.org/10.1186/s12909-015-0317-2161

Vallejo, W., Díaz-Uribe, C., & Fajardo, C. (2022). Google colab and virtual simulations:162

Practical e-learning tools to support the teaching of thermodynamics and to introduce163

coding to students. ACS Omega, 7 (8), 7421–7429. https://doi.org/10.1021/acsomega.164

2c00362165

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,166

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,167

M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,168

Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for169

Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.170

1038/s41592-019-0686-2171

Bettachini et al. (2024). Python-based Lagrange analytical mechanics course. Journal of Open Source Education, 0(0), 256. https://doi.org/10.
xxxxxx/draft.

4

https://doi.org/10.17081/psico.24.46.4492
https://doi.org/10.1109/MCSE.2007.55
https://moorepants.github.io/learn-multibody-dynamics/index.html
https://moorepants.github.io/learn-multibody-dynamics/index.html
https://moorepants.github.io/learn-multibody-dynamics/index.html
https://ecommons.cornell.edu/items/1f0e5629-0caa-4be2-8384-8869eb9e4fac
https://doi.org/10.1007/978-3-642-50995-7_7
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1186/s12909-015-0317-2
https://doi.org/10.1021/acsomega.2c00362
https://doi.org/10.1021/acsomega.2c00362
https://doi.org/10.1021/acsomega.2c00362
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Basis for the syllabus
	Overview, Content, and Structure
	Implementation
	Conclusions

	Aknowledgments

