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Summary5

The deformation of the Earth’s crust and upper mantle spans widely different length scales,6

from extreme localization within fault zones, to broadly distributed viscoelastic strain in the7

asthenosphere. The Unicycle software, which stands for Unified Cycle of Earthquakes, provides8

an efficient representation of these deformation mechanisms by combining surface and volume9

elements. Numerical simulations of seismic cycles in a viscoelastic half-space are conducted10

using the integral method whereby the elastic interactions are computed semi-analytically using11

closed-form expressions of Green’s functions (Barbot et al., 2017; Barbot, 2018). The method12

only requires meshing of the regions that undergo thermo-dynamically irreversible deformation,13

resulting in relatively small meshes that can be assembled easily. In strictly brittle models, the14

technique simplifies to the boundary integral method.15

The approach accommodates complex structural settings with faults discretized with rectangle16

or triangle surface elements and ductile domains meshed with cuboid or tetrahedron volume17

elements. Forward models of seismic cycles with viscoelastic relaxation are obtained using18

the fifth-order Runge-Kutta method with adaptive time steps. The calculation is particularly19

efficient, requiring just a few matrix-vector multiplication per time step, which is parallelized20

for a distributed-memory architecture.21

Crustal dynamics is computed based on a physical model of rate- and state-dependent friction22

(Barbot, 2019) and a nonlinear rheology for transient creep and steady-state creep of bulk23

rocks (Masuti et al., 2016; Masuti & Barbot, 2021). Applications range from two-dimensional24

models of the lithosphere-asthenosphere system (Barbot, 2020; Lambert & Barbot, 2016; Q.25

Shi et al., 2020) to three-dimensional models of faults interacting with a ductile asthenosphere26

(P. Shi et al., 2022).27

Statement of need28

Unicycle is a series of Fortran90 standalone numerical modeling tools for simulations of29

crustal dynamics in a two-dimensional or three-dimensional half-space. The input file allows30

complex frictional, rheological, and structural settings and the automatic exploration of the31

parameter space. The simulation requires the initial time-consuming calculation of large32

matrices that capture the stress interactions among surface and volume elements. This matrix33

can be automatically saved and re-used in subsequent calculations that use different material34

properties but the same geometry. Meshing of the brittle faults and ductile regions is relatively35

straightforward and can be done with standard tools. The simulation output is provided in36

ASCII tables and netcdf binary files compatible with the General Mapping Tools version 5 and37

above (Wessel et al., 2019). Additional output files enable three-dimensional visualization with38

the Paraview software (Ahrens et al., 2005).39

Unicycle is designed for scientists conducting research in lithosphere dynamics. Applications40
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include fault dynamics, e.g., the initiation, propagation, and arrest of ruptures, lower-crustal41

and asthenosphere dymamics with nonlinear rheology, e.g., power-law constitutive laws with42

transient creep, and the mechanical coupling between localized and distributed deformation in43

various tectonic environments. Successful simulation benchmarks for fault dynamics based on44

comparison with other software can be found in Jiang et al. (2022).45
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