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Summary8

The decarbonization of energy systems worldwide requires a transformation of their design9

and operation across all sectors, that is, the residential and commercial, industrial, and10

transportation sectors. Energy system models are frequently employed for assessing these11

changes, providing scenarios on potential future system design and on how new technologies12

and a modified infrastructure will meet future energy demands. Thus, they support investment13

decisions and policy-making. The Python-based Framework for Integrated Energy System14

Assessment (ETHOS.FINE) is a software package that provides a toolbox for modeling, analyting15

and evaluating such energy systems using mathematical optimization. ETHOS.FINE is part of16

the Energy Transformation paTHway Optimization Suite (ETHOS)1, a collection of modeling17

tools developed by the Institute of Energy and Climate Research - Techno-Economic System18

Analysis (IEK-3) at Forschungszentrum Jülich. ETHOS offers a holistic view on energy systems at19

arbitrary scales providing tools for geospatial renewable potential analyses, time series simulation20

tools for residential and industrial sector, discrete choice models for the transportation sector,21

modeling of global energy supply routes, and local infrastructure assessments, among others.22

The ETHOS model suite is, e.g., used for analyzing the energy transition of Germany (Stolten23

et al., 2022).24

ETHOS.FINE is not limited to a single instance of energy system. Instead, it can be freely25

adapted to consider multiple commodities, regions, time steps and investment periods. The26

optimization objective is to minimize the total annual cost of the system and is subject to27

technical and environmental constraints. The generic object-oriented implementation allows for28

arbitrary spatial scales and numbers of regions – from the local level, e.g., individual buildings,29

to the regional one, e.g., districts or industrial sites, to the national and international levels.30

Furthermore, the spatial technological resolution can be aggregated by built-in aggregation31

methods that are described in Patil et al. (2022) for reducing model size and complexity.32

This also applies to the model’s temporal resolution. Apart from using the full temporal resolu-33

tion defined by the input data, integrated time series aggregation methods utilizing the built-in34

Python package tsam2 allow for reducing the model’s complexity and its computation time35

(M. Hoffmann et al., 2022) while still enabling the flexibility of seasonal storage technologies,36

despite the reduced model complexity (Kotzur et al., 2018). In addition, ETHOS.FINE enables37

the investigation of transformation pathways by considering multiple investment periods in a38

perfect foresight approach, as well as the stochastic optimization for a single year optimization39

with multiple sets of input parameters (e.g., changing energy demand forecasts or weather40

conditions) to find more robust energy system designs.41

1ETHOS - Energy Transformation paTHway Optimization Suite, https://www.fz-juelich.de/en/iek/iek-
3/expertise/model-services

2tsam - Time Series Aggregation Module, https://github.com/FZJ-IEK3-VSA/tsam,
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Methodology42

ETHOS.FINE comprises seven main classes: the EnergySystemModel class can be seen as the43

model’s container, collecting all relevant input data for its setup. All technologies to be44

considered are added to this container. The Component class contains the variables and45

constraints common to all system components, e.g., capacity limits and limitations to the46

operation of technologies. The five classes of Source, Sink, Conversion, Transmission, and47

Storage provide the functionalities to model energy generation and consumption, conversion48

processes, energy storage for later usage, and energy transfer between regions. Each class49

introduces a specific set of constraints that is added to the optimization program. Supplementary50

subclasses offer additional component features, e.g., the option to model partial load behavior51

and ramping constraints for power plants. The described structure is depicted in Figure 1.52

Figure 1: Structure of the main classes in ETHOS.FINE. Additional model classes contain the definition of
the specific variables, sets and constraints for each class to set up the optimization model.

The energy system model can be set up as a linear program (LP), or as a mixed integer linear53

program (MILP), depending on the chosen representation of the added components. The54

optimization program is a Pyomo3 instance to enable a flexible solver choice, i.e., ETHOS.FINE55

optimize energy systems using both, commercial and open source solvers. A description of56

the variables, constraints and the objective function is given in Welder (2022). Depending on57

the spatial and temporal resolution of the modeled system, the input parameters are primarily58

given as Pandas.DataFrames4 with regions and time steps serving as indices and columns.59

The model output yields detailed information on the required investments in each region for60

the installation and operation of the chosen components, as well as the temporally-resolved61

operation of every component. This also includes the charging and discharging of storage62

components and commodity flows between regions via transmission components. In addition,63

the framework also provides plotting options for spatially- and temporally-resolved results.64

Model input and output can be saved to netCDF files to support reproducibility.65

Statement of need66

Groissböck (2019) presents an overview of open source energy system optimization tools and67

lists their respective integrated functionalities. The author demonstrates their competitiveness68

against commercial software and outlines hitherto unimplemented functionalities of the described69

tools. ETHOS.FINE provides a unique generic model setup with a high level of freedom for70

3Pyomo, Pyoton Optimization Modeling Language, https://pyomo.org/,
4Pandas, Python Data Analysis Library, https://pandas.pydata.org/,
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model developers. Beyond energy system models, its generic implementation enables the71

modeling of all kinds of optimization issues, such as material flows and resource consumption72

or conversion as part of life-cycle analysis. The software exhibits many of the features described73

by Groissböck (2019) and is under constant development with five major releases in the last74

five years. Its code is openly accessible on Github which allows for contributions and feedback75

from a wider modeling community. The use cases described in the next section demonstrate76

the broad range of analyses that can be conducted with the tool.77

ETHOS.FINE is designed to be used by researchers, students, and for teaching purposes in the78

field of energy systems modeling. In particular, its exceptional capabilities with respect to79

complexity reduction (Kotzur et al., 2021) using spatial (Patil et al., 2022) and temporal80

aggregation (M. Hoffmann et al., 2020, 2021, 2022; M. A. C. Hoffmann, 2023), as well as81

heuristics to deal with MILPs (Kannengießer et al., 2019; Singh et al., 2022) open up a wide82

field of applications from small- to global-scale energy system models. For newcomers who are83

not familiar with programming, it also has the flexibility to set up models by means of Excel84

files.85

Examples for previous usage86

ETHOS.FINE has been used in various studies for energy systems analyses on different scales,87

leveraging its capability to dynamically adapt to computational complexity. Initial applications88

can be found in Welder et al. (2018) and Welder et al. (2019): The authors analyzed hydrogen89

electricity reconversion pathways in a multi-regional energy system model implemented in90

ETHOS.FINE for the northern part of Germany. Groß (2023) later used the framework to model91

the future energy system of Germany with a high spatial resolution and thereby to investigate92

the need for new infrastructure. D. G. Caglayan et al. (2019) set up an ETHOS.FINE model93

of the European energy system, and analyzed the influence of varying weather years on the94

cost-optimal system design based on 100% renewable energy source usage. Their findings95

are also used to determine a robust variable renewable energy sources-based system design,96

ensuring supply security for a wide range of weather years (D. Caglayan et al., 2021). Knosala97

et al. (2021) assessed hydrogen technologies in residential buildings in a multi-commodity98

single-building model. The building model from this work was also used for a sensitivity analysis99

of energy carrier costs for the application of hydrogen in residential buildings (Knosala et100

al., 2022). Spiller et al. (2022) analyzed carbon emission reduction potentials for hotels on101

energetically self-sufficient islands. More recently, Weinand et al. (2023) used the framework102

to assess the Rhine Rift Valley with respect to its potential for lithium extraction from deep103

geothermal plants. Meanwhile, Jacob et al. (2023) investigated the potential of Carnot104

batteries in the German electricity system. Busch et al. (2023) analyzed the role of liquid105

hydrogen, likewise on a national scale, whereas Franzmann et al. (2023) looked at the green106

hydrogen cost potentials for global trade. These examples illustrate the manifold application107

cases that can be tackled by ETHOS.FINE.108
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