
DRAFT
pyRTC: An open-source Python solution for kHz1

real-time control of adaptive optics systems2

Jacob Taylor 1,2, Robin Swanson2,3, and Suresh Sivanandam1,2
3

1 David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St George St,4

Toronto, ON M5S 3H4, Canada 2 Dunlap Institute for Astronomy and Astrophysics, University of5

Toronto, 50 St George St, Toronto, ON M5S 3H4, Canada 3 Department of Computer Science,6

University of Toronto, 40 St George St, Toronto, ON M5S 2E4, Canada7

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @joseph-long
• @joao-aveiro
• @sefffal

Submitted: 01 February 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary8

Adaptive optics (AO) is a technology that rapidly detects and corrects optical aberrations to9

significantly improve the resolution of an optical system. AO has been applied to imaging10

problems in fields such as astronomy, ophthalmology, and microscopy, as well as various military11

and industrial applications. AO systems operate using a so-called ‘real-time controller’ (RTC),12

a term used by the community to describe software responsible for converting optical aberration13

measurements into corresponding corrections. In astronomical contexts, RTCs typically control14

100-1000 degrees of freedom at speeds between 500-2000 Hz.15

pyRTC is an open-source, community-driven Python package for real-time control of AO16

systems, built with the following core goals:17

• Customizable High-Performance AO Pipeline: Provide an efficient RTC pipeline with18

potential for full user customization.19

• Abstraction of Core AO System Components: Facilitate support for a broad range of20

AO system architectures.21

• Open Library of API Examples: Provide a library of examples for common hardware22

APIs used by the community to save time implementing basic hardware interactions.23

• Real-Time Monitoring and Interface Flexibility: Support real-time access to intermediate24

data products, text-based user interaction, and straightforward integration with user-built25

GUIs.26

• Cross-Platform Compatibility: Ensure broad usability across different operating systems.27

In this publication, we present a pre-alpha version of the pyRTC package to the community28

and invite them to try it out on their hardware, provide feedback, and contribute to the code29

base or hardware API library.30

Statement of Need31

Hardware providers for AO system components (cameras, deformable mirrors, etc…) currently32

provide API support for only three programming languages: C/C++, Python, and MATLAB.33

High-performance RTCs have been developed in C/C++ (e.g., CACAO [@CACAO], DAO,34

DARC[@DARC], HEART[@HEART]), while off-the-shelf MATLAB controllers are available for35

purchase. Off-the-shelf RTC solutions can be costly, and they lack customizability and36

transparency. The community-led C++ solutions, known for their performance, can be37

complex to understand and implement, leaving AO researchers with limited options: expensive38

RTCs, investing in software expertise for C++ solutions, or creating custom low-performance39

RTCs.40

pyRTC is an open-source RTC software for AO that aims to be the highest performance41

free AO control software available in Python, maintaining sufficient user-friendliness for the42

Taylor et al. (2024). pyRTC: An open-source Python solution for kHz real-time control of adaptive optics systems. Journal of Open Source
Software, 0(0), 6466. https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0002-6356-567X
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/6466
https://github.com/jacotay7/pyRTC
https://doi.org/
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/joseph-long
https://github.com/joao-aveiro
https://github.com/sefffal
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DR
AF
T

average AO researcher. pyRTC abstracts the variable hardware components in an AO system43

into high-level control objects and provides an architecture for combining those objects into a44

high-performance pipeline. Traditional performance limitations in Python, due to the Global45

Interpreter Lock (GIL), are circumvented by running each pipeline operation as an independent46

subprocess, communicating via shared memory and TCP sockets. This architecture allows for47

soft real-time monitoring of intermediate data products, efficient CPU usage, compatibility48

with custom GUIs, and the use of the Python interpreter as a simple RTC interface.49

While extreme AO applications may still require custom C++ solutions, pyRTC is envisioned50

for a wider range of applications, including:51

• Moderate performance adaptive optics applications (approximately 1 kHz speed for about52

100 modes).53

• Lab environments dependent on student labor.54

• Test systems for hardware/software at on-sky speeds.55

• Any neural network/AI-based controller built in Python.56

Features and Implementation57

pyRTC is structured in order to minimize the amount of additional coding required to integrate58

pyRTC into a new hardware environment. The way pyRTC accomplishes this is by defining59

abstract superclasses for AO components, namely:60

• Loop.py: Responsible for the AO integrator logic, relies on data products from the61

slopes process class.62

63

• ScienceCamera.py, Responsible for the PSF logic, connects to the PSF camera and64

produces data products for further processing65

• SlopesProcess.py, Responsible for the slopes computations, relies on data products from66

the WavefrontSensor class.67

• WavefrontCorrector.py, Responsible for the controlling the Deformable Mirror, receives68

commands from Loop class or elsewhere.69

• WavefrontSensor.py, Responsible for the WFS logic, connects to the WFS camera and70

produces data products for the SlopesProcess class.71

These superclasses are then overridden by the user defined hardware class which interfaces with72

the hardware’s API. We have provided examples in the pyRTC/hardware folder. Ideally, users73

will contribute their hardware examples and the repository will serve as a library of examples74

for new users to follow. For some of the components (e.g., SlopesProcess), users can choose75

to override the classes if they require specific computations or they can use the classes default76

functionality. We intend to expand the scope of the default functionality as new use cases77

emerge.78

Once the hardware classes have been established, a communication interface implemented in79

Pipeline.py allows the user to initialize their AO loop as either a set of independent processes80

which communicate via TCP (for performance, to get around the GIL), or within a single81

program (for simplicity). In either case, pyRTC has been written to be entirely initialized82

using a config YAML file. This includes the functions which will be included in the main RTC83

pipeline. Therefore, once the core hardware compatibility has been written, all of the real-time84

manipulation of the system is to be done via iPython interface, or via config file changes.85

Shared Memory and Live Viewing86

pyRTC is built using shared memory objects provided by the multiprocessing python package.87

Therefore, all data products shared between pyRTC components are available for soft real-time88

viewing and analysis. pyRTC comes with a real-time viewing script called pyRTCView.py which89

utilizes the pyQT5 package to produce a live feed of a specific shared memory object. For90

example, to view the images produced by the WavefrontSensor class run:91

Taylor et al. (2024). pyRTC: An open-source Python solution for kHz real-time control of adaptive optics systems. Journal of Open Source
Software, 0(0), 6466. https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DRAFT
python pyRTCView.py wfs92

We hope to expand this viewer into an example GUI in the future.93

94

Acknowledgements95

References96

Taylor et al. (2024). pyRTC: An open-source Python solution for kHz real-time control of adaptive optics systems. Journal of Open Source
Software, 0(0), 6466. https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	Features and Implementation
	Shared Memory and Live Viewing

	Acknowledgements
	References

