
DRAFT
movement_primitives: Imitation Learning of Cartesian1

Motion with Movement Primitives2

Alexander Fabisch 1
3

1 Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI GmbH), Bremen,4

Germany5

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Yasmin Mzayek
Reviewers:

• @ishaanamahajan
• @gautam-sharma1

Submitted: 22 March 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary6

Movement primitives are a common representation of movements in robotics (Maeda et al.,7

2017) for imitation learning, reinforcement learning, and black-box optimization of behaviors.8

There are many types and variations. The Python library movement_primitives focuses on9

imitation learning, generalization, and adaptation of movement primitives in Cartesian space.10

It implements dynamical movement primitives, probabilistic movement primitives, as well as11

Cartesian and dual Cartesian movement primitives with coupling terms to constrain relative12

movements in bimanual manipulation. They are implemented in Cython to speed up online13

execution and batch processing in an offline setting. In addition, the library provides tools for14

data analysis and movement evaluation.15

Statement of Need16

Movement primitives are a common group of policy representations in robotics. Although17

movement primitives are limited in their capacity to represent behavior that takes into account18

complex sensor data during execution in comparison to general function approximators such19

as neural networks, several instances (e.g., dynamical movement primitives) have proven to20

be a reliable and effective tool in robot learning. A reliable tool deserves a similarly reliable21

implementation. However, there are only a few actively maintained, documented, and easy to22

use implementations. One of these is movement_primitives, which we present in this article.23

Movement Primitives24

Dynamical Movement Primitives (DMPs) are the most prominent example of movement25

primitives (Ijspeert et al., 2002, 2013). From a high-level perspective (Fabisch & Metzen,26

2014), a DMP is a policy27

𝑥𝑡+1 = 𝜋𝑤,𝑣(𝑥𝑡, 𝑡),

where 𝑥𝑡 is the state of an agent (position, velocity, and acceleration) at time 𝑡, 𝑤 are the28

weights (parameters) that define the shape of the movement, and 𝑣 are meta-parameters. The29

exact definition of the meta-parameters 𝑣 depends on the DMP type, but most types allow30

to set the initial state 𝑥0, the final state 𝑔, and the duration of the movement 𝜏. A DMP31

generates a trajectory in state space so that a controller that translates states 𝑥𝑡, 𝑥𝑡+1 to32

control commands is required.33

DMPs have been used for imitation learning, in which one demonstration is enough to learn34

a DMP. DMPs can also be used in a reinforcement learning setting, in which the weights of35

the DMP or the meta-parameters can be learned. Saveriano et al. (2023) provide a survey of36

DMPs and how they can be used.37

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0003-2824-7956
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/6695
https://github.com/dfki-ric/movement_primitives/
https://doi.org/
https://orcid.org/0000-0003-2904-2530
https://github.com/ishaanamahajan
https://github.com/gautam-sharma1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
In the movement_primitives library, we implement several types that are important for Cartesian38

movement generation: an extension that includes the final velocity as a meta-parameter (Mülling39

et al., 2013), DMPs for Cartesian poses in three dimensions with unit quaternions (Ude et40

al., 2014), and DMPs that define bimanual movements by introducing a coupling term that41

controls the relative motion of two arms (Gams et al., 2013).42

Another type of movement primitives implemented in this library are Probabilistic Movement43

Primitives (ProMPs) (Paraschos et al., 2013) that capture the distribution of multiple demon-44

strations. Their probabilistic formulation allows to modify movements by conditioning, for45

instance, on viapoints.46

Implementations of Movement Primitives47

The movement_primitives library is a reimplementation and extension of the movement48

primitive features of BOLeRo (Fabisch et al., 2020). BOLeRo is a C++/Python framework for49

behavior learning and optimization. However, the focus is very broad and more on reinforcement50

learning and behavior parameter optimization than on imitation learning.51

Another similar library is dmpbbo (Stulp & Raiola, 2019), which has a general DMP imple-52

mentation and additional components to optimize the parameters of DMPs in reinforcement53

learning settings. The library is designed to train DMPs in Python and execute them in C++.54

Both implementations are not well-suited for imitation learning because additional tooling55

for data analysis and deployment is required. Switching between C++ and Python is also56

not convenient for various reasons: building and installing these packages is complicated,57

continuous integration is hard to set up, code maintenance is complicated, and it does not58

integrate easily with the Python scientific ecosystem.59

There are more implementations listed by Saveriano et al. (2023) (available at https://git-60

lab.com/dmp-codes-collection/third-party-dmp). A lot of these are examplary Matlab scripts61

and not maintained anymore, or only implementations of specific papers. Other libraries62

do not support Cartesian movement primitives, which are only available in BOLeRo and63

movement_primitives. The latter also supports bimanual movements through dual Cartesian64

DMPs.65

Design and Features66

The main contributions of movement_primitives are (1) a fast Python-only library for movement67

primitives, and (2) robust implementations of several types of movement primitives (see Table 1).68

Our focus is on Cartesian movement primitives that are used to control one or two robotic arms69

and offer exemplary implementations of coupling terms for Cartesian (bimanual) DMPs. These70

can be used for obstacle avoidance and to constrain dual arm motions to relative positions71

and/or orientations.72

Table 1: Overview of implemented movement primitives.

Class Description Publication
DMP Standard DMP Ijspeert et al. (2013)
DMP Smooth spatial scaling Pastor et al. (2009)
DMPWithFinalVelocity Allows final velocity Mülling et al. (2013)
CartesianDMP DMP of Cartesian poses Ude et al. (2014)
DualCartesianDMP DMP of two Cartesian poses Gams et al. (2013)
ProMP Standard ProMP Paraschos et al. (2013)

Furthermore, movement_primitives supports the whole imitation learning pipeline, including73

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DRAFT
data analysis through plotting and visualization (based on pytransform3d (Fabisch, 2019) and74

Open3D (Zhou et al., 2018)), data preprocessing for imitation learning, good integration with75

the scientific ecosystem in Python, simulation of learned movement primitives (in PyBullet76

(Coumans & Bai, 2016--2021)), export to permanent data formats (pickle, JSON, YAML), and77

analysis of kinematic feasibility. Although it has several dependencies and requires compilation78

because of its Cython (Dalcin et al., 2011) components, it is possible to simply install it with79

pip from PyPI.80

Example: Rotating a Compact Solar Panel with a Humanoid81

Figure 1 and Figure 2 show a humanoid robot rotating an object with two hands. The movement82

is generated by a dual Cartesian DMP trained on a demonstrated rotation movement. The83

width of the object is known. Hence, it can easily be adapted for similar objects with a different84

size through a coupling term defined by (Gams et al., 2013).85

Figure 1: RH5 Manus (Boukheddimi et al., 2022) rotating a compact solar panel.

Figure 2: Visualization of similar rotation trajectory with another humanoid robot.

A similar task has been solved by Mronga & Kirchner (2021) with two Kuka iiwa arms. They86

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft


DRAFT
record a dataset for different panel sizes via kinesthetic teaching and use Gaussian mixture87

regression to represent the distribution of solutions and condition it on the object width to88

generalize. This is easier with ProMPs: for each demonstration, we compute ProMP weights,89

concatenate them with the task parameters over which we want to generalize, and learn a90

Gaussian mixture model, which we can condition on task parameters to generate ProMPs that91

define trajectory distributions to solve these tasks (Figure 3 and Figure 4).92

Figure 3: Mean trajectories for conditional ProMPs and panel widths 30/40/50 cm.

Figure 4: At each step, the position distribution defined by the conditioned ProMP is indicated by an
equiprobable ellipsoid. The arms are at the mean start position for width 50 cm.

Benchmark of DMP Implementations93

Since execution speed of DMPs is relevant in robotics, we compare several DMP implementa-94

tions from dmpbbo and movement_primitives. For this purpose, we create a minimum jerk95

trajectory of 𝑁 dimensions that moves from 0 ∈ ℝ𝑁 to 1 ∈ ℝ𝑁 in one second, train a DMP96

on it, and execute the DMP step by step. We use 𝑀 weights per dimension, and step through97

the DMP with Δ𝑡 = 0.001𝑠. The concept of dmpbbo is to train in Python and run DMPs98

in C++. We still analyze the Python version and the C++ version of dmpbbo as well as99

movement_primitives with various implementations of the integration (Euler integration with100

ℎ = 0.1 ⋅ Δ𝑡 and RK4 integration, both in Python and Cython). The default integration101

method of dmpbbo is RK4. Results for varying configurations of 𝑁 and 𝑀 are summarized102

in Figure 5, Figure 6 and Table 2. While the number of weights per dimension and the103

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.xxxxxx/draft


DRAFT
number of dimensions have a considerable influence on the runtime of dmpbbo, the influence104

on the runtime of movement_primitives is negligible because NumPy (Harris et al., 2020)105

vectorization is used. More specifically, computing all steps of a DMP with 1 s duration106

at 1 kHz (Δ𝑡 = 0.001𝑠) with 𝑁 = 50 dimensions and 𝑀 = 60 weights per dimension107

takes 0.0822 ± 0.0015𝑠 with the movement_primitives library and RK4 integration in Cython,108

which means 8.51% of the DMP’s runtime is spent on computing steps. This allows online109

adaptation of the trajectory. dmpbbo’s C++ implementation is the best candidate for a low110

number of dimensions and weights per dimension. In this domain it outperforms all other111

implementations by a considerable margin. However, it scales linearly with these numbers.112

Hence, it is considerably slower for 𝑁 = 50 and 𝑀 = 60 than any RK4 implementation of113

movement_primitives. The Python version of dmpbbo is not able to run some configurations114

in real time. For example, 𝑁 = 6,𝑀 = 30 needs 5.9292 ± 0.0955𝑠 to compute.115

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time [s]

movement_primitives (euler-cython)

movement_primitives (euler)

movement_primitives (rk4-cython)

movement_primitives (rk4)

dmpbbo (C++)

Im
pl

em
en

ta
tio

n

Execution of DMP (15 dimensions)

Weights per dimension
10
30
60

Figure 5: Benchmark of execution speed for various DMP implementations and configurations. Each bar
shows an average over 100 stepwise executions of a DMP. Varying number of weights per dimension 𝑀,
number of dimensions 𝑁 = 6.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time [s]

movement_primitives (euler-cython)

movement_primitives (euler)

movement_primitives (rk4-cython)

movement_primitives (rk4)

dmpbbo (C++)

Im
pl

em
en

ta
tio

n

Execution of DMP (60 weights per dimension)

Dimensions
3
6
15
50

Figure 6: Benchmark of execution speed for various DMP implementations and configurations. Each bar
shows an average over 100 stepwise executions of a DMP. Varying number of dimensions 𝑁, number of
weights per dimension 𝑀 = 30.

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

5

https://doi.org/10.xxxxxx/draft


DRAFT
Table 2: Benchmark results for DMP execution. Best performance per setup in bold.

Library Implementation 𝑁 𝑀 Time 𝜇 ± 𝜎 [s]
dmpbbo C++ 3 10 0.0027 ± 0.0001

30 0.0077 ± 0.0001
60 0.0144 ± 0.0004

6 10 0.0049 ± 0.0001
30 0.0146 ± 0.0002
60 0.0300 ± 0.0052

15 10 0.0129 ± 0.0028
30 0.0376 ± 0.0059
60 0.0729 ± 0.0103

50 10 0.0401 ± 0.0068
30 0.1236 ± 0.0174
60 0.2405 ± 0.0308

dmpbbo Python 3 10 0.8137 ± 0.0164
30 1.6986 ± 0.0319
60 3.0244 ± 0.0454

6 10 1.3946 ± 0.0228
30 3.1676 ± 0.0746
60 5.9292 ± 0.0955

15 10 3.2079 ± 0.0593
30 7.4972 ± 0.1366
60 14.2590 ± 0.2811

50 10 9.7134 ± 0.0448
30 24.6018 ± 2.0579
60 47.4420 ± 2.0075

movement_primitives euler-cython 3 10 0.1946 ± 0.0019
30 0.2223 ± 0.0070
60 0.2234 ± 0.0031

6 10 0.1912 ± 0.0033
30 0.2301 ± 0.0043
60 0.2306 ± 0.0060

15 10 0.2117 ± 0.0067
30 0.2334 ± 0.0041
60 0.2310 ± 0.0013

50 10 0.2260 ± 0.0009
30 0.2547 ± 0.0273
60 0.2529 ± 0.0044

movement_primitives rk4-cython 3 10 0.0447 ± 0.0006
30 0.0737 ± 0.0018
60 0.0760 ± 0.0003

6 10 0.0471 ± 0.0036
30 0.0733 ± 0.0003
60 0.0761 ± 0.0003

15 10 0.0468 ± 0.0022
30 0.0754 ± 0.0005
60 0.0776 ± 0.0002

50 10 0.0752 ± 0.0002
30 0.0794 ± 0.0063
60 0.0822 ± 0.0015

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

6

https://doi.org/10.xxxxxx/draft


DRAFT
Conclusion116

Although movement primitives are a popular tool in robot learning, there is a lack of well117

maintained implementations in particular for bimanual and Cartesian movements. move-118

ment_primitives provides a well-tested, robust implementation of various movement primitives119

with the goal of generating Cartesian robot movements. It integrates well with the existing120

Python scientific ecosystem.121

Acknowledgements122

This work was supported by a grant of the German Federal Ministry of Economic Affairs and123

Energy (BMWi, FKZ 50 RA 1701) and by the European Commission under the Horizon 2020124

framework program for Research and Innovation (project acronym: APRIL, project number:125

870142).126

References127

Boukheddimi, M., Kumar, S., Peters, H., Mronga, D., Budhiraja, R., & Kirchner, F. (2022).128

Introducing RH5 manus: A powerful humanoid upper body design for dynamic movements.129

2022 International Conference on Robotics and Automation (ICRA), 01–07. https://doi.130

org/10.1109/ICRA46639.2022.9811843131

Coumans, E., & Bai, Y. (2016--2021). PyBullet, a python module for physics simulation for132

games, robotics and machine learning. http://pybullet.org.133

Dalcin, L., Bradshaw, R., Smith, K., Citro, C., Behnel, S., & Seljebotn, D. (2011). Cython:134

The best of both worlds. Computing in Science & Engineering, 13(02), 31–39. https:135

//doi.org/10.1109/MCSE.2010.118136

Fabisch, A. (2019). pytransform3d: 3D transformations for python. Journal of Open Source137

Software, 4(33), 1159. https://doi.org/10.21105/joss.01159138

Fabisch, A., Langosz, M., & Kirchner, F. (2020). BOLeRo: Behavior optimization and139

learning for robots. International Journal of Advanced Robotic Systems, 17(3). https:140

//doi.org/10.1177/1729881420913741141

Fabisch, A., & Metzen, J. H. (2014). Active contextual policy search. Journal of Machine142

Learning Research, 15(97), 3371–3399. http://jmlr.org/papers/v15/fabisch14a.html143

Gams, A., Nemec, B., Zlajpah, L., Wächter, M., Ijspeert, A., Asfour, T., & Ude, A. (2013).144

Modulation of motor primitives using force feedback: Interaction with the environment145

and bimanual tasks. 2013 IEEE/RSJ International Conference on Intelligent Robots and146

Systems, 5629–5635. https://doi.org/10.1109/IROS.2013.6697172147

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,148

Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,149

M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,150

T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:151

//doi.org/10.1038/s41586-020-2649-2152

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical153

movement primitives: Learning attractor models for motor behaviors. Neural Computation,154

25(2), 328–373. https://doi.org/10.1162/NECO_a_00393155

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical156

systems in humanoid robots. Proceedings 2002 IEEE International Conference on Robotics157

and Automation, 2, 1398–1403. https://doi.org/10.1109/ROBOT.2002.1014739158

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

7

https://doi.org/10.1109/ICRA46639.2022.9811843
https://doi.org/10.1109/ICRA46639.2022.9811843
https://doi.org/10.1109/ICRA46639.2022.9811843
http://pybullet.org
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.21105/joss.01159
https://doi.org/10.1177/1729881420913741
https://doi.org/10.1177/1729881420913741
https://doi.org/10.1177/1729881420913741
http://jmlr.org/papers/v15/fabisch14a.html
https://doi.org/10.1109/IROS.2013.6697172
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1109/ROBOT.2002.1014739
https://doi.org/10.xxxxxx/draft


DRAFT
Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., & Peters, J. (2017).159

Probabilistic movement primitives for coordination of multiple human–robot collaborative160

tasks. Autonomous Robots, 41, 593–612. https://doi.org/10.1007/s10514-016-9556-2161

Mronga, D., & Kirchner, F. (2021). Learning context-adaptive task constraints for robotic162

manipulation. Robotics and Autonomous Systems, 141, 103779. https://doi.org/10.1016/163

j.robot.2021.103779164

Mülling, K., Kober, J., Kroemer, O., & Peters, J. (2013). Learning to select and generalize165

striking movements in robot table tennis. The International Journal of Robotics Research,166

32(3), 263–279. https://doi.org/10.1177/0278364912472380167

Paraschos, A., Daniel, C., Peters, J. R., & Neumann, G. (2013). Probabilistic move-168

ment primitives. In C. J. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q.169

Weinberger (Eds.), Advances in neural information processing systems (Vol. 26).170

Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2013/file/171

e53a0a2978c28872a4505bdb51db06dc-Paper.pdf172

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization173

of motor skills by learning from demonstration. 2009 IEEE International Conference on174

Robotics and Automation, 763–768. https://doi.org/10.1109/ROBOT.2009.5152385175

Saveriano, M., Abu-Dakka, F. J., Kramberger, A., & Peternel, L. (2023). Dynamic movement176

primitives in robotics: A tutorial survey. The International Journal of Robotics Research,177

02783649231201196. https://doi.org/10.1177/02783649231201196178

Stulp, F., & Raiola, G. (2019). DmpBbo: A versatile python/c++ library for function179

approximation, dynamical movement primitives, and black-box optimization. Journal of180

Open Source Software, 4(37), 1225. https://doi.org/10.21105/joss.01225181

Ude, A., Nemec, B., Petrić, T., & Morimoto, J. (2014). Orientation in cartesian space dynamic182

movement primitives. 2014 IEEE International Conference on Robotics and Automation183

(ICRA), 2997–3004. https://doi.org/10.1109/ICRA.2014.6907291184

Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A modern library for 3D data processing.185

arXiv:1801.09847.186

Fabisch. (2024). movement_primitives: Imitation Learning of Cartesian Motion with Movement Primitives. Journal of Open Source Software, 0(0),
6695. https://doi.org/10.xxxxxx/draft.

8

https://doi.org/10.1007/s10514-016-9556-2
https://doi.org/10.1016/j.robot.2021.103779
https://doi.org/10.1016/j.robot.2021.103779
https://doi.org/10.1016/j.robot.2021.103779
https://doi.org/10.1177/0278364912472380
https://proceedings.neurips.cc/paper_files/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1177/02783649231201196
https://doi.org/10.21105/joss.01225
https://doi.org/10.1109/ICRA.2014.6907291
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	Movement Primitives
	Implementations of Movement Primitives
	Design and Features
	Example: Rotating a Compact Solar Panel with a Humanoid
	Benchmark of DMP Implementations
	Conclusion
	Acknowledgements
	References

