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Summary6

Machine learning (ML) is now ubiquitous in all scientific fields, but there remains a significant7

challenge to understanding and explaining model performance (Angelov et al., 2021; Zhang et8

al., 2021). Therefore, there is increasing interest in applying methods from other scientific9

disciplines (e.g. physics and biology) to improve the performance and explainability of machine10

learning algorithms (Hassabis et al., 2017; Karniadakis et al., 2021). One methodology that has11

proved useful to understand machine learning performance is the energy landscape framework12

from chemical physics (Wales, 2003).13

The energy landscape framework is a set of algorithms that map the topography of continuous14

surfaces by their stationary points. The topography is encoded as a weighted graph (Noé15

& Fischer, 2008) and in application to potential energy surfaces all physical properties of16

a system can be extracted from this graph (Swinburne & Wales, 2020). Examples of the17

methodology applied to potential energy surfaces explain physical phenomena for proteins18

(Röder et al., 2019), small molecules (Matysik et al., 2021), atomic clusters (Csányi et al.,19

2023) and crystalline solids (Pracht et al., 2023).20

Since the energy landscape framework is applicable to any given continuous surface, the21

methodology can also be applied to a wide range of machine learning algorithms through22

the corresponding loss function surface. Fitting of a machine learning model usually aims to23

locate low-valued or diverse solutions, and an understanding of the solution space topography24

explains model reproducibility and performance. Leveraging the energy landscape framework25

the performance and reliability of neural networks (Niroomand et al., 2022), Gaussian processes26

(Niroomand et al., 2023) and clustering algorithms (Dicks & Wales, 2022, 2023; Wu et al.,27

2023) has been explored. Moreover, it has been used to explain the effect of dataset roughness28

on ML model performance (Dicks et al., 2024). A tutorial review of different applications is29

given in Niroomand et al. (2024).30

Statement of need31

The topsearch Python package provides a rapid prototyping software for application of the32

energy landscape framework. It contains the functionality to be used for both potential energy33

surfaces and the loss function surfaces of varied machine learning models.34

There is limited software for explicitly analysing the topography of loss function surfaces. These35

surfaces are considered implicitly when optimising an ML model through local minimisation,36

but none attempt to capture global topographical features of the parameter space. There37

is significantly more software for analysing potential energy surfaces, the majority of which38

approximate topographical features indirectly. Popular examples that aim to explore diverse39

regions of the surface through enhanced sampling are PyEMMA (Scherer et al., 2015) and40
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large molecular simulation suites such as LAMMPS (Thompson et al., 2022), GROMACS41

(Abraham et al., 2015), and AMBER (Case et al., 2023) the simulations of which can be42

simplified using PLUMED (Tribello et al., 2014). Explicit location of topographical features,43

such as stationary points, is more common in quantum chemistry and can be performed by44

software such as VTST (Henkelman, 2018), PASTA (Kundu et al., 2018), PyMCD (Lee et45

al., 2023) and ORCA (Neese et al., 2020). The explicit computation of topography using the46

energy landscape framework has several advantages for application to machine learning and47

none of the above software contains all the required functionality.48

Current leading tools for applying the energy landscape framework are the suite of FORTRAN49

programs: GMIN (D. J. Wales, 2024a) OPTIM (D. J. Wales, 2024b) and PATHSAMPLE (D. J.50

Wales, 2024c). This software implements almost all functionality described within the energy51

landscape literature and, being written in a compiled language, is highly performant. Whilst a52

clear choice for production work where performance is critical, it is not without limitations53

for rapid prototyping. The user requires a detailed understanding of, and to pass information54

between, three large distinct pieces of software. There is a Python wrapper, pylfl (Niroomand,55

2023), which simplifies their use, but does not remove the limitation of multiple programs that56

all require a detailed understanding. Furthermore, the software suite contains limited support57

for machine learning models, and addition of new models is challenging and time-consuming58

due to a lack of implementations of ML libraries in FORTRAN. Therefore, there is a need for a59

single software that performs the energy landscape framework for both ML and physics, which60

integrates seamlessly with ML libraries, thus enabling rapid prototyping in this domain.61

topsearch replaces the functionality of the FORTRAN software suite in a single software62

package, reducing the need for data transfer and subsequent parameterisation and setup. The63

package, written entirely in Python, contains additional novel functionality for machine learning,64

and due to the prevalence of Python in machine learning further new models can be included65

quickly and easily. Furthermore, the implementation is significantly shorter, containing less66

than a hundredth of the lines of code; enabling faster developer onboarding.67

Applications68

The Github repository (https://github.com/IBM/topography-searcher) contains examples for69

varied applications, which are listed in turn below.70

• example_function - This folder contains examples for mapping the surface topography71

of an arbitrary function. The examples provide an introduction to the methodology, and72

illustrate the major code functionality. Application to two-dimensional functions allows73

direct visualisation of the surfaces, which makes clear the topographical analysis.74

• dataset_roughness - Illustration of the novel code application to quantify dataset75

roughness (Dicks et al., 2024). This analysis can uniquely explain and predict ML76

regression performance both globally and locally, even in the absence of training data.77

Atomic and molecular systems require significant additional functionality. However, the78

examples illustrate that the scripts remain remarkably similar.79

• atomic - An example that performs exploration of the potential energy surface of a small80

atomic cluster.81

• molecular - These examples illustrate how to explore the potential energy surfaces of82

small molecules using quantum chemistry.83

This list of examples does not form an exhaustive set of use cases. Previous applications of84

this methodology, which will also be possible using topsearch, are protein and nucleic acids85

potential energy surfaces and Gaussian process, neural network and clustering loss function86

surfaces. Moreover, there are many additional machine learning models that could be analysed,87

and the Python implementation allows for their rapid inclusion.88
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Conclusions89

The topsearch Python package fulfils the need for a rapid prototyping and analysis tool for90

the energy landscape framework that can be applied to both physics and machine learning91

models. This software is significantly more lightweight than existing solutions; a large reduction92

in code and integration in a single piece of software ensures the Python implementation is93

significantly easier to develop. Moreover, the package provides a simpler interface for accessing94

the functionality, and in tandem with detailed examples, results in a shallower learning curve95

for use within diverse applications. Lastly, the software is unique in the amount of machine96

learning models that can be explored and and can easily be extended with existing Python97

implementations. Our aim is that this software package will aid diverse researchers from98

computer science to chemistry by providing a simple solution for application of the energy99

landscape framework.100
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