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Summary9

Plants interact with their (a)biotic environment through a range of specialised metabolites.10

They deal with pathogens and pest attack through constitutive or inducible production of11

specialised metabolites or other defence molecules (Erb & Kliebenstein, 2020; García-Olmedo12

et al., 1998). High-throughput “-omics” tools including (untargeted) metabolomics have been13

successfully implemented in plant biology (Dalio et al., 2021), but the accompanying resistance14

phenotyping often lacks in robustness (Song et al., 2021). Resistance is often not a binary15

trait, but quantitative in nature. To identify features such as defence metabolites involved in a16

resistance phenotype, we developed a pipeline that includes phenotypic analysis, preprocessing17

and visualisation of the metabolomics data, and feature prediction through a Machine Learning18

approach.19

Proliferation of an insect population is affected by various factors, including the chemical20

composition of the host, and/or the environment (Ma et al., 2022). In particular, host resistance21

via hampered larval development is noteworthy, because reducing the speed at which larvae22

reach the adult stage and produce offspring negatively affects pest-population development23

(Maharijaya et al., 2019; Muema et al., 2016; Vengateswari et al., 2022). However, evaluating24

larval development results in a complex dataset that is challenging to process. Developmental25

success is based on the number of larvae throughout various larval stages, as well as on the26

speed of development.27

To identify underlying mechanisms of resistance, the chemical or molecular composition of a28

plant can be investigated. Proteins and metabolites are commonly analysed through untargeted29

Mass-Spectrometry, yielding exhaustive profiles generally consisting of many thousands of30

unannotated features. Often such data displays sparsity, i.e. missing values between datasets,31

and a low sample-to-feature ratio, adding to the complexity of the analysis (Kortbeek et al.,32

2021; Liebal et al., 2020). Tree-based Machine-Learning algorithms (e.g., random forest) are33

suitable for the analysis of, and feature selection from, untargeted data (Liebal et al., 2020)34

computing the contribution of each feature in the phenotypic classification.35

PhenoFeatureFinder is designed to facilitate the different analyses mentioned above in one36

pipeline. It can be used for 1) evaluation and visualisation of pest performance over multiple37

stages and between groups (treatments, genotypes), 2) pre-processing of the omics data, and38

3) prediction of features that explain the phenotypic classification. To facilitate usability, each39

step in the pipeline can also be performed independently, hence has been assigned a class40

in the package (Figure 1). Also, although we focus on insect development and the selection41

of metabolic features causal to the observed phenotype, different input data with a similar42

structure could be used. PhenoFeatureFinder was developed initially for metabolomics data,43
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users can evaluate its fit applying other types of omics data.44

Figure 1: Overview of the package, consisting of three classes that can be used separately or as a
workflow. Class 1: analysing and visualising the phenotype, Class 2: preprocessing and visualising omics
datasets, and Class 3: feature selection through a Machine Learning approach.

Statement of need45

Class I: PhenotypeAnalysis46

A binary classification of plants into “resistant” or “susceptible” helps to extract relevant47

features especially when threshold effects or sparsity (presence/absence) effects are at play.48

Here we firstly assess performance over different developmental stages of larvae on different49

host plants. The number of individuals in each stage at a given time is recorded. When plotted,50

the cumulative data of these bioassays resemble a growth- or dose-response curve that can51

be used to manually assign a binary phenotype (e.g., resistant/non-resistant), a resistance52

classification used as input for FeatureSelection (Class 3).53

A package named drc is available in R for fitting dose-response curves (Ritz et al., 2015),54

offering an extensive and versatile set of functionalities. However, for the purposes described55

here drc poses some limitations, such as the options for custom pre-processing and analyses56

of multiple experimental groups simultaneously. Here we implemented pre-processing steps57

and aimed to decrease the amount of coding needed to obtain a fitted development curve.58

To account for missing data when individuals that reached the final developmental stage are59

removed from the experiment, we implemented an automated correction step. The count60

data can be transformed to cumulative data to analyse the maximum of individuals that reach61

each of the developmental stages. Next, the time to reach a specific stage can be compared62

between treatments by fitting a 3-parameter log-logistic curve (Muse et al., 2021; Seefeldt et63

al., 1995; Vliet & Ritz, 2013) to the cumulative data for each treatment, with the function:64

𝑓(𝑥) = 𝑚
1 + exp(𝑠 × (log(𝑥) − log(𝑒50)))

where 𝑥 is time, 𝑚 is the upper limit (or maximum of individuals that developed to the stage of65

interest), 𝑠 is the slope of the linear part of the curve and 𝑒50 is the EmT50 (the timepoint at66
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which 50% of the individuals have developed to the stage of interest). We added the possibility67

to compare performance between treatments by fitting a curve with the function:68

𝑓(𝑥) =
𝑎 × 𝑠

𝑚 × ( 𝑥
𝑚)𝑠−1

1 + ( 𝑥
𝑚)𝑠

Here, 𝑥 is time, 𝑎 the area under the curve, 𝑠 is the shape of the curve and 𝑚 the median69

time point. Both functions output a table with the model parameters, confidence intervals70

and the model fit, together with a plot displaying the observed data and the fitted model. For71

both functions it is possible to predict the potential maximum beyond the final experimental72

measurements.73

Class II: OmicsAnalysis74

Untargeted omics results in large datasets that tend to contain background noise and unreliable75

features. To clean the data, multiple filtering methods are implemented in the OmicsAnalysis76

class, including the removal of contaminants present in blank samples, filtering to decrease77

sparsity and other quality control steps. The structure of the data can subsequently be78

visualised with a PCA and an UpSet plot.79

Class III: FeatureSelection80

Combining the output of Classes 1 and 2, i.e. the binary phenotype classification and the81

tidied untargeted metabolomics, FeatureSelection is set up to predict features that can82

explain the phenotypic observation under study. This part of the pipeline was built as a83

wrapper around the Python libraries scikit-learn and TPOT (Olson et al., 2016; Pedregosa84

et al., 2011). The FeatureSelection wrapper is designed to select optimal pipelines for85

data preprocessing and identification of the most suitable Machine Learning model. One86

characteristic of metabolomics data is strongly correlated features (linear dependencies between87

variables) that make it difficult to extract individual feature importance. Therefore, this method88

implements a PCA as dimensionality reduction method before searching for the best fitting89

pipeline. Finally, the importance of the Principal Components and their most related features90

(high loadings) can be retrieved to select features with predicted importance to the phenotypic91

classification.92
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