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Summary5

Elementary cellular automata (ECA) are a set of simple binary programs in the form of truth6

tables called Wolfram codes that produce complex output when done repeatedly in parallel, and7

quaternions are frequently used to represent 3D space and its rotations in computer graphics.8

Both are well-studied subjects, this Java library puts them together in a new way. This project9

changes classical additive cellular automata into multiplicative automata (Wolfram, 2002, p.10

886) via permutations, hypercomplex numbers, and pointer arrays. Valid solutions extend the11

binary ECA to complex numbers, produce a vector field, make an algebraic polynomial, and12

generate some very interesting fractals.13

Statement of Need14

Very loosely analogous to De Morgan’s law in Boolean algebra, the main algorithm produces15

several multiplicative versions of any given standard additive binary Wolfram code up to 3216

bits and is written to support user supplied complex 1-D input at row 0 with choice of type17

of multiplication tables and partial product tables among other parameters. It produces an18

algebraic polynomial and complex vector field output for any given Wolfram code, and the19

hypercomplex 5-factor identity solution allows for the complex extension of any binary cellular20

automata. The Cayley-Dickson and Fano construction libraries may be of value to the open21

source community as well.22

There are other cellular automata implementations, Mathematica (Inc., n.d.), CellPyLib23

(Antunes, 2021), a JOSS Python project from three years ago, and others. This is not designed24

to replace those awesome general purpose utilities, it’s focused on the set of Wolfram code25

operations. The GUI is designed to show enough to conclude that the math works and give26

a rough idea of aggregate behavior over parameters and the algorithm code is designed to27

be able to split off and be plugged in somewhere else. There are useful things you can build28

on it directly or indirectly, like making Bloch spheres out layers of complex number output,29

Fourier analysis, 2D automata, a complex version of the prime number automata (Wolfram,30

2002, p. 640), Gray code and full group theory morphisms of multiplication tables and paths,31

and making N-D ellipses out of the paths through the multiplication tables, that are clear32

directions to go in but subject to a different set of decisions like application-specific tech debt33

and potential translation to C++ or Python and out of scope of this paper.34
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Functions35

Hypercomplex unit vector implementation36

37

The Cayley-Dickson (CD) and Fano support classes are discussed in greater detail in the38

readme and the documentation, they along with the Galois class provide sets of multiplication39

tables to be compared with cellular automata. The CD multiplication implementation40

permutes the steps of splitting and recombining hypercomplex numbers to increase the scope41

of the CD equation, (𝑎, 𝑏)𝑥(𝑐, 𝑑) = (𝑎𝑐 − 𝑑 ∗ 𝑏, 𝑑𝑎 + 𝑏𝑐∗), where * is the conjugate. It42

verifies itself by producing the vector product of two symmetric groups of its degree operating43

on the up/down recursion factoradics when interacting with other CD multiplications and is44

the permutations of the unit vector bit layers excluding the negative sign. The Fano library45

octonions produce a triplet that is a linear match to the CD octonions as triplets{0} when the46

up and down recursion factoradics are equal, and produce the triplet set of John Baez’s Fano47

plane as triplets{10}. (Baez, 2001).48

49

The main algorithm uses a set of permutations operating on cellular automata input, each50

permutation permuting the neighborhood, becoming a factor, with four kinds of multiplications.51

The multiplication tables are input as 2D but used as N-D, where N=numFactors.52
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53

54

Multiplications A, additive to multiplicative55

r = specific Wolfram code56

n = binary neighborhood = 1columnZero + 2columnOne+ 4columnTwo…2^(col-57

umn)columnCol, points to its value in r58

h = hypercomplex unit vector from binary59

H = inverse of h, binary value from hypercomplex unit vector60

p = a permutation of the neighborhood61

using hypercomplex multiplication, a valid permutation set produces:62

WolframCode(r, n) = WolframCode(r, H(h(p(n)) * h(p(n)) * h(p(n)) … numFactors), though63

n may or may not equal H(…)64

WolframCode(r, H(h(p(n)) * h(p(n)) * h(p(n)) … numFactors)) is a pointer array that always65

points to an equal value (0,1) within WolframCode(r, _)66

each h(p(n)) in a valid solution is a factor template in the multiplication table for all values of67
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its axis68

The first set of multiplications, column A, brute forces all possible sets of permutations on all69

possible binary neighborhoods of the Wolfram code. A permutation in the set rearranges the70

columns of the input neighborhood, these become a set of factors. A valid set of permutations71

is one that, for all possible input neighborhoods, the set of constructed factors using the72

permuted neighborhoods always multiplies out to a value that points to an equal value within73

the Wolfram code. The set of multiplication results is a pointer array that reproduces the74

original Wolfram code for every possible binary neighborhood.75

Identity solutions of 5 factors using all zero permutations exist for Wolfram codes up to 32 bits76

in this library using hypercomplex numbers, XOR and Galois addition and more bits require77

more factors in increments of four. Galois multiplication takes a mix of numbers of factors78

to get the identity multiplication result array according to their, there is a function in the79

GaloisField class that provides it. The factors constructed are a loose diagonal through the80

multidimensional multiplication table, starting at the origin and ending at the opposite corner81

while zig-zagging. The path lengths of each factor and the result are included in ValidSolution82

results.83

Permutations of 3 bit neighborhoods84

85

Flattened path through a six dimensional multiplication table86

Six factors, permutation set = {0,1,2,3,4,5}87

88

89

Multiplications B and C apply a valid solution from the first set of multiplications to any given90

individual neighborhood with binary, non-negative real, and complex values. Multiplication B is91

the Cartesian product of the permuted neighborhoods, using a closed partial product table to92

generate a polynomial. Multiplication C does the binary sum of complex neighborhood, then93

multiplies as complex. Both B and C take the n-th root of the result, with n = numColumns94
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and n = numFactors, respectively. Multiplications B and C both include a binary weighted95

sum of the neighborhood, same as the construction of the factors from A, though B and C96

use complex. B, as part of the normalization and C as the construction. Multiplication C is97

the permutation composition product. B, just before the normalization is a neighborhood of98

multiplication results, with each column of it being a unit vector coefficient. This multiplication99

result neighborhood is permuted by the inverse of the permutation composition product to100

properly order the output vector. There are a couple of normalization parameters and a hybrid101

multiplicative-additive output option that are discussed more in the documentation.102

Control Panel103

104

105

ECA 54, binary and non negative real106
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108

ECA 54, solution parameters, including polynomial109
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111

ECA 54, solution output, complex112
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