
DRAFT
DiffOpt: Parallel optimization of Jax models1

Alan N. Pearl 1, Gillian D. Beltz-Mohrmann 1, and Andrew P. Hearin 1
2

1 HEP Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA3

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor:

Submitted: 15 October 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary4

diffopt is a Python package which facilitates in the optimization of data-parallelized, differ-5

entiable models using the Jax (Bradbury et al., 2018) framework. It is composed of three6

subpackages, multigrad, kdescent, and multiswarm. Leveraging MPI (Message Passing7

Interface), multigrad efficiently sums and propagates gradients of custom-defined summary8

statistics across processors and computing nodes. kdescent utilizes mini-batched kernel9

density estimates to perform stochastic gradient descent to fit a full model distribution to10

an N-dimensional training dataset. A massively parallelizable implementation of particle11

swarm optimization (PSO) is provided by multiswarm, enabling global optimization of even12

high-dimensional, non-convex loss surfaces. Our simple yet flexible design makes these meth-13

ods applicable to a wide variety of problems requiring solutions scalable to large amounts14

of data through both gradient- and non-gradient-based optimization techniques. Visit our15

documentation page to learn the usage.16

Statement of Need17

In and beyond the field of cosmology, parameterized models can describe complex systems,18

provided that the parameters have been tuned adequately to fit the model to observational19

data. Fitting capabilities can be increased dramatically by gradient-based techniques, partic-20

ularly in high-dimensional parameter spaces. Existing gradient descent tools in Jax do not21

inherently support data-parallelism with MPI, creating a speed and memory bottleneck for22

such computations.23

multigrad addresses this need by providing an easy-to-use interface for implementing data-24

parallelized models. It handles the MPI reductions as well as the mathematical complexities25

involved in propagating chain rules required to compute the gradient of the loss, which26

is a function of parallelized summary statistics, which are in turn functions of the model27

parameters. At the same time, it is very flexible in that it allows users to define their own28

functions to compute their summary statistics and loss. As a result, this package can enable29

scalability through parallelization to the optimization routine of nearly any big-data model.30

kdescent and multiswarm each provide powerful fitting tools which are fully compatible with31

the parallelization framework laid out by multigrad.32

Method33

multigrad34

multigrad allows the user to implement a loss term, which is a function of summary statistics,35

which are functions of parameters, 𝐿(⃗𝑦(⃗𝑥)) where the summary statistics are summed over36

multiple MPI-linked processes: ⃗𝑦 = ∑𝑖 ⃗𝑦(𝑖) where 𝑖 is the index of each process. In this37

section, we will derive the gradient of the loss ∇⃗𝐿 with respect to the parameters and as a38

sum of terms that each process can compute independently.39

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 0(0), 7356. https://doi.org/10.xxxxxx/draft. 1

https://orcid.org/0000-0001-9820-9619
https://orcid.org/0000-0002-4392-8920
https://orcid.org/0000-0003-2219-6852
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/7356
https://github.com/AlanPearl/diffopt
https://doi.org/
https://creativecommons.org/licenses/by/4.0/
https://diffopt.readthedocs.io
https://doi.org/10.xxxxxx/draft

DRAFT
We will begin from the definition of the multivariate chain rule,40

𝜕𝐿
𝜕𝑥𝑗

= ∑
𝑘

𝜕𝐿
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑥𝑗

where 𝜕𝑦𝑘 = ∑𝑖 𝜕𝑦𝑘(𝑖). By pulling out the MPI summation over 𝑖,41

𝜕𝐿
𝜕𝑥𝑗

= ∑
𝑖

∑
𝑘

𝜕𝐿
𝜕𝑦𝑘

𝜕𝑦𝑘(𝑖)
𝜕𝑥𝑗

and by rewriting this as vector-matrix multiplication,42

⃗∇𝑥𝐿 = ∑
𝑖
(⃗∇𝑦𝐿)𝑇𝐽(𝑖)

we can clearly identify that each process has to perform a vector-Jacobian product (VJP),43

where 𝐽(𝑖) is the Jacobian matrix such that 𝐽𝑘𝑗(𝑖) =
𝜕𝑦𝑘(𝑖)
𝜕𝑥𝑗

. Fortunately, this is a computation44

that Jax can perform very efficiently, without the need to explicitly calculate the full Jacobian45

matrix by making use of the jax.vjp feature, saving us orders of magnitude of time and46

memory requirements.47

kdescent48

Mini-batching techniques often compute the loss function with only a small subset of the49

training data taken into account. In kdescent, the density of the full training dataset is50

measured around a “mini-batched” sample of kernel centers, which are drawn from points in51

the training data. With each iteration of stochastic gradient descent, a new sample of (20 by52

default) kernels is selected at positions ⃗𝜇𝑘 for each kernel 𝑘.53

Using the compare_kde_counts method, the “true” and “model” counts are each computed54

around each kernel using the same equation below, where 𝑥𝑖 is the 𝑖th point in the training55

data or model data, respectively:56

𝑁𝑘 = ∑
𝑖

𝒩(⃗𝑥𝑖 | ⃗𝜇𝑘, Σ)

where 𝒩 is the multivariate-normal distribution with mean ⃗𝜇𝑘 and covariance matrix Σ (where57

the covariance is calculated using Scott’s rule for kernel density estimation of the training58

dataset; Scott (1992)). It is then up to the user to define their own loss function comparing59

the counts of 𝑁𝑘,truth to 𝑁𝑘,model. Note that these are extrinsic quantities (as is necessary to60

be parallelizable through multigrad) which can be reduced to intrinsic quantities for PDF-level61

comparisons by simply dividing by the total number of training and model data, respectively.62

The analogous compare_fourier_counts method can provide additional loss terms relating to63

differences in the empirical characteristic function (ECF; Cramer (1954)). It is evaluated at a64

random sample of (20 by default) fourier-space positions, ⃗𝑥̃𝑘, for both the “true” and “model”65

fourier counts:66

𝑁̃𝑘 = ∑
𝑖

exp(𝑖 ⃗𝑥̃𝑘 ⋅ ⃗𝑥𝑖).

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 0(0), 7356. https://doi.org/10.xxxxxx/draft. 2

https://jax.readthedocs.io/en/latest/_autosummary/jax.vjp.html
https://doi.org/10.xxxxxx/draft

DRAFT
multiswarm67

Particle swarm optimization (PSO; Kennedy & Eberhart (1995)) is a highly exploratory fitting68

algorithm in which a set of (100 by default) particles are initialized with randomized velocities69

and positions with Latin-Hypercube spacing over the loss function’s parameter space. Each70

particle has an inertial weight (𝑤𝐼 = 1 by default), a cognitive weight, (𝑤𝐶 = 0.21 by default),71

and a social weight, (𝑤𝑆 = 0.07 by default). The default parameters have been hand-tuned72

to optimize parameter exploration performed by 100 particles before converging over roughly73

100 time steps in a 4D Ackley loss function demonstrated in our documentation.74

Within each PSO iteration: (1) Each particle’s position is updated according to its current75

velocity 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖. (2) Positions and velocities are then reflected accordingly across any76

axes in which they have left the boundaries, if applicable. (3) Finally, the particle’s velocity77

is slightly pulled in the direction of its personal best 𝑥PB and global best 𝑥GB loss found,78

according to the following equation:79

𝑣𝑖+1 = 𝑤𝐼𝑣𝑖 +𝑤𝐶(𝑥PB − 𝑥𝑖+1) + 𝑤𝑆(𝑥GB − 𝑥𝑖+1)

The multiswarm implementation of PSO allows users to conveniently distribute the loss function80

computations performed by each particle across MPI ranks. Particles are evenly distributed81

across all ranks by default, but users needing further control can provide a custom MPI82

communicator object, and/or specify the ranks_per_particle argument to manually control83

intra-particle parallelization.84

Science Use Case85

diffopt was developed to aid in parameter optimization for high-dimensional differentiable86

models applied to large datasets. It has enabled the scaling to cosmological volumes of a87

differentiable forward modeling pipeline which predicts galaxy properties based on a simulated88

dark matter density field (Diffmah: Hearin et al. (2021); Diffstar: Alarcon et al. (2023);89

DSPS: Hearin et al. (2023)). Ongoing research is currently utilizing diffopt to optimize the90

parameters of this pipeline to reproduce observed galaxy properties (e.g. Beltz-Mohrmann et91

al. in prep.). More broadly, diffopt has useful applications for any scientific research that92

focuses on fitting high-dimensional models to large datasets and would benefit from computing93

parameter gradients in parallel.94

Acknowledgements95

This work was supported in part by the OpenUniverse effort, which is funded by NASA under96

JPL Contract Task 70-711320, ‘Maximizing Science Exploitation of Simulated Cosmological97

Survey Data Across Surveys’, and by the DOE contract DE-AC02-06CH11357. We gratefully98

acknowledge the HPC resources operated by the Laboratory Computing Resource Center at99

Argonne National Laboratory.100

References101

Alarcon, A., Hearin, A. P., Becker, M. R., & Chaves-Montero, J. (2023). Diffstar: a102

fully parametric physical model for galaxy assembly history. 518(1), 562–584. https:103

//doi.org/10.1093/mnras/stac3118104

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,105

Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable106

transformations of Python+NumPy programs (Version 0.3.13). http://github.com/google/107

jax108

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 0(0), 7356. https://doi.org/10.xxxxxx/draft. 3

https://diffopt.readthedocs.io/en/latest/multiswarm/intro.html
https://doi.org/10.1093/mnras/stac3118
https://doi.org/10.1093/mnras/stac3118
https://doi.org/10.1093/mnras/stac3118
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.xxxxxx/draft

DRAFT
Cramer, H. (1954). Mathematical methods of statistics. Princeton Univ. Press. https:109

//cds.cern.ch/record/107581110

Hearin, A. P., Chaves-Montero, J., Alarcon, A., Becker, M. R., & Benson, A. (2023). DSPS:111

Differentiable stellar population synthesis. 521(2), 1741–1756. https://doi.org/10.1093/112

mnras/stad456113

Hearin, A. P., Chaves-Montero, J., Becker, M. R., & Alarcon, A. (2021). A Differentiable114

Model of the Assembly of Individual and Populations of Dark Matter Halos. The Open115

Journal of Astrophysics, 4(1), 7. https://doi.org/10.21105/astro.2105.05859116

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95117

- International Conference on Neural Networks, 4, 1942–1948 vol.4. https://doi.org/10.118

1109/ICNN.1995.488968119

Scott, D. W. (1992). Multivariate Density Estimation.120

Pearl et al. (2024). DiffOpt: Parallel optimization of Jax models. Journal of Open Source Software, 0(0), 7356. https://doi.org/10.xxxxxx/draft. 4

https://cds.cern.ch/record/107581
https://cds.cern.ch/record/107581
https://cds.cern.ch/record/107581
https://doi.org/10.1093/mnras/stad456
https://doi.org/10.1093/mnras/stad456
https://doi.org/10.1093/mnras/stad456
https://doi.org/10.21105/astro.2105.05859
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	Method
	multigrad
	kdescent
	multiswarm

	Science Use Case
	Acknowledgements
	References

