
DRAFT
Sigma: Uncertainty Propagation for C++1

Jonathan M. Waldrop 1¶ and Ryan M. Richard 1,2
2

1 Chemical and Biological Sciences, Ames National Laboratory, USA 2 Department of Chemistry,3

Iowa State University, USA ¶ Corresponding author4

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @baxmittens
• @YehorYudinIPP

Submitted: 17 October 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary5

Sigma is a header-only C++-17 library for uncertainty propagation, inspired by uncertainties6

(Lebigot, 2009) for Python and Measurements.jl (Giordano, 2016) for Julia. The library7

tracks the functional correlation between dependent and independent variables, ensuring that8

the uncertainty of the independent variables is properly considered in the calculation of the9

dependent variables’ uncertainties. It is intended as a near drop-in replacement for the standard10

floating point types (aside from uncertainty specification), and aims to be easily interoperable11

with the existing standard types.12

Statement of need13

In scientific analysis, values are often paired with the degree of uncertainty in the accuracy of14

that value. This uncertainty (or error) could be derived from a number of sources, including the15

level of accuracy provided by a measuring instrument, the statistical nature of the value being16

measured, or approximations made in the determination of the value. Often, this uncertainty is17

represented as the standard deviation of the value. When using these values as function inputs,18

they convey an uncertainty on the new results. Propagating the uncertainty by hand can be19

tedious, possibly prohibitively so in the case of calculations that require machine computation20

to be feasible. As such, it has been found prudent to automate the propagation of error as an21

extension of the calculations themselves (Giordano, 2016; Lebigot, 2009). To the best of our22

knowledge, there is no currently maintained C++ library to facilitate this kind of uncertainty23

propagation. As C++ is an important language in the development of scientific software and24

high-performance computing, Sigma has been developed in an attempt to fill this gap.25

Mathematics26

Assume 𝐹(𝐴) is a function of 𝐴, where 𝐴 is a set whose elements are some or all of the27

elements of the sequence of 𝑛 variables (𝑎𝑖)
𝑛
𝑖=1. These element are defined as 𝑎𝑖 = ̄𝑎𝑖 ± 𝜎𝑎𝑖

,28

where ̄𝑎𝑖 is the mean value of the variable and 𝜎𝑎𝑖
is called the uncertainty and is assumed to29

represent an error measure closely related to the standard deviation of a random variable. The30

linear uncertainty of 𝐹(𝐴) can be determined as31

𝜎𝐹 ≈
√√√√
⎷

𝑛
∑
𝑖=1

⎛⎜
⎝
(𝜕𝐹

𝜕𝑎𝑖
∣
𝑎𝑖=�̄�𝑖

𝜎𝑎𝑖
)

2

+ 2
𝑛
∑
𝑗=𝑖+1

⎛⎜
⎝
(𝜕𝐹
𝜕𝑎𝑖

)
𝑎𝑖=�̄�𝑖

(𝜕𝐹
𝜕𝑎𝑗

)
𝑎𝑗=�̄�𝑗

𝜎𝑎𝑖𝑎𝑗
⎞⎟
⎠

⎞⎟
⎠
.

Note that for any element 𝑎𝑖 that is not a member of 𝐴, 𝜕𝐹
𝜕𝑎𝑖

= 0 and those terms vanish in32

the summations. The term 𝜎𝑎𝑖𝑎𝑗
is the covariance of 𝑎𝑖 and 𝑎𝑗, defined as33

𝜎𝑎𝑖𝑎𝑗
= 𝐸[(𝑎𝑖 −𝐸[𝑎𝑖]) (𝑎𝑗 −𝐸[𝑎𝑗])],

Waldrop, & Richard. (2024). Sigma: Uncertainty Propagation for C++. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7404. https:
//doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0003-0442-193X
https://orcid.org/0000-0003-4235-5179
https://ror.org/041m9xr71
https://ror.org/04rswrd78
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/7404
https://github.com/QCUncertainty/sigma
https://doi.org/
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/baxmittens
https://github.com/YehorYudinIPP
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
where 𝐸[𝑎𝑖] is the expectation value of 𝑎𝑖. The covariances can be eliminated from the above34

equation if the uncertainties of the variables are independent from one another, which is a35

requirement imposed here. As such, the uncertainty of 𝐹(𝐴) when the members of 𝐴 are36

independent from one another is simply37

𝜎𝐹 ≈
√√√

⎷
∑
𝑎𝑖∈𝐴

(𝜕𝐹
𝜕𝑎𝑖

∣
𝑎𝑖=�̄�𝑖

𝜎𝑎𝑖
)

2

.

Next, we consider a set 𝐵 = {𝑥, 𝑦} where 𝑥 = 𝑥(𝑎𝑖, 𝑎𝑗) and 𝑦 = 𝑦(𝑎𝑗), i.e. the elements38

of 𝐵 are functions of some number of independent variables. As the values of 𝑥 and 𝑦 are39

dependent on the values of 𝑎𝑖 and 𝑎𝑗, they are said to be functionally correlated to the40

independent variables (Giordano, 2016) and their uncertainties are easily calculated from the41

previous equation. Given the function 𝐺(𝐵), the value of 𝜎𝐺 cannot be calculated from the42

previous equation as it does not account for the functional correlation of the elements of 𝐵.43

The uncertainty of 𝐺 can be properly determined by application of the chain rule to relate the44

independent variables to 𝐺 through their relationships with the dependent variables45

𝜎𝐺 ≈
√√√√

⎷
((𝜕𝐺

𝜕𝑥
𝜕𝑥
𝜕𝑎𝑖

)
𝑎𝑖=�̄�𝑖

𝜎𝑎𝑖
)

2

+⎛⎜
⎝
(𝜕𝐺
𝜕𝑥

𝜕𝑥
𝜕𝑎𝑗

+ 𝜕𝐺
𝜕𝑦

𝜕𝑦
𝜕𝑎𝑗

)
𝑎𝑗=�̄�𝑗

𝜎𝑎𝑗
⎞⎟
⎠

2

.

Usage46

Sigma is header-only, so it only needs to be findable by the dependent project to be used. The47

library is buildable with CMake (CMake, 2024), and utilizes the CMaize (Crandall et al., 2024)48

extension to handle configuration, dependency management, and building the tests and/or49

documentation. To use the library in a project, simply add #include <sigma/sigma.hpp> in50

an appropriate location within the project’s source.51

The primary component of Sigma is the Uncertain<T> class, templated on the floating point52

type used to represent the mean and uncertainty of the variable. Simple construction of an53

uncertain floating point value can be accomplished by passing the mean and a value for the54

uncertainty (such as a standard deviation):55

using numeric_t = double;

numeric_t a_mean{100.0};

numeric_t a_sd{1.0};

sigma::Uncertain<numeric_t> a{a_mean, a_sd};

std::cout << a << std::endl; // Prints: 100+/-1

The same can be accomplished in a less verbose way as sigma::Uncertain a{100.0, 1.0}.56

Sigma also provides the typedefs UFloat and UDouble (uncertain float and double, respec-57

tively) for convenience.58

Basic arithmetic with certain or uncertain values is accomplish trivially,59

sigma::Uncertain a{1.0, 0.1};

sigma::Uncertain b{2.0, 0.2};

auto c = a + 2.0 // 3.0+/-0.1

auto d = a * 2.0 // 2.0+/-0.2

auto e = a + b // 3.0+/-0.2236

auto f = a * b // 2.0+/-0.2828

The resulting variables here are functionally correlated to a and/or b, meaning the operation e60

- c would return an instance with the value 0 ± 0.2 as the contributions from a would exactly61

negate each other.62

Waldrop, & Richard. (2024). Sigma: Uncertainty Propagation for C++. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7404. https:
//doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
Sigma also implements many of the most common math functions found in the C++ standard63

library, such as those for trigonometry and rounding:64

sigma::Uncertain radians{0.785398, 0.1};

sigma::Uncertain degrees{45.0, 0.1};

auto to_degrees = sigma::degrees(radians); // 45.0000+/-5.7296

auto in_radians = sigma::radians(degrees); // 0.7854+/-0.0017

auto tangent = sigma::tan(radians) // 1.0000+/-0.2000

auto truncated = sigma::trunc({1.2, 0.1}) // 1.0+/-0.0

Sigma also has a limited degree of compatibility with the Eigen library (Eigen, 2024), allowing65

for matrix operations and a number of linear solvers. Additional functionality is possible,66

though not currently ensured.67

Acknowledgements68

This work was supported by the Ames National Laboratory’s Laboratory Directed Research69

and Development (LDRD) program. The Ames Laboratory is operated for the U.S. DOE by70

Iowa State University under contract # DE-AC02-07CH11358.71

References72

CMake. (2024). https://cmake.org/73

Crandall, Z., Windus, T. L., & Richard, R. M. (2024). CMaize: Simplifying inter-package74

modularity from the build up. The Journal of Chemical Physics, 160(9), 092502. https:75

//doi.org/10.1063/5.019638476

Eigen. (2024). https://eigen.tuxfamily.org/77

Giordano, M. (2016). Uncertainty propagation with functionally correlated quantities. ArXiv78

e-Prints. https://arxiv.org/abs/1610.0871679

Lebigot, E. O. (2009). Uncertainties: A python package for calculations with uncertainties. In80

GitHub repository. GitHub. https://github.com/lmfit/uncertainties81

Waldrop, & Richard. (2024). Sigma: Uncertainty Propagation for C++. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7404. https:
//doi.org/10.xxxxxx/draft.

3

https://cmake.org/
https://doi.org/10.1063/5.0196384
https://doi.org/10.1063/5.0196384
https://doi.org/10.1063/5.0196384
https://eigen.tuxfamily.org/
https://arxiv.org/abs/1610.08716
https://github.com/lmfit/uncertainties
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Mathematics
	Usage
	Acknowledgements
	References

