
DR
AF
T

sbi reloaded: a toolkit for simulation-based inference1

workflows2

Jan Boelts1,2,3*¶, Michael Deistler1,2*¶, Manuel Gloeckler1,2, Álvaro3

Tejero-Cantero3,4, Jan-Matthis Lueckmann5, Guy Moss1,2, Peter Steinbach6,4

Thomas Moreau7, Fabio Muratore8, Julia Linhart7, Conor Durkan9, Julius5

Vetter1,2, Benjamin Kurt Miller10, Maternus Herold3,11,12, Abolfazl6

Ziaeemehr13, Matthijs Pals1,2, Theo Gruner14, Sebastian Bischoff1,2,15,7

Nastya Krouglova16,17, Richard Gao1,2, Janne K Lappalainen1,2, Balint8

Muscanyi1,2,18, Felix Pei19, Auguste Schulz1,2, Zinovia Stefanidi1,2, Pedro9

Rodrigues20, Cornelius Schröder1,2, Faried Abu Zaid3, Jonas Beck2,21,10

Jaivardhan Kapoor1,2, David S. Greenberg22,23, Pedro J. Gonçalves17,24, and11

Jakob H. Macke1,2,25¶12

1 Machine Learning in Science, University of Tübingen 2 Tübingen AI Center 3 TransferLab, appliedAI13

Institute for Europe 4 ML Colab, Cluster ML in Science, University of Tübingen 5 Google Research 614

Helmholtz-Zentrum Dresden-Rossendorf 7 Université Paris-Saclay, INRIA, CEA, Palaiseau, France 815

Robert Bosch GmbH 9 School of Informatics, University of Edinburgh 10 University of Amsterdam 1116

Research and Innovation Center, BMW Group 12 Institute for Applied Mathematics and Scientific17

Computing, University of the Bundeswehr Munich, Germany 13 Aix Marseille, INSERM, INS, France 1418

TU Darmstadt, hessian.AI, Germany 15 University Hospital Tübingen and M3 Research Center 1619

Faculty of Science, B-3000, KU Leuven, Belgium 17 VIB-Neuroelectronics Research Flanders (NERF)20

and imec, Belgium 18 Methods of Machine Learning, University of Tübingen 19 Neuroscience Institute,21

Carnegie Mellon University 20 Université Grenoble Alpes, INRIA, CNRS, Grenoble INP, LJK, France 2122

Hertie Institute for AI in Brain Health, University of Tübingen 22 Institute of Coastal Systems - Analysis23

and Modeling 23 Helmholtz AI 24 Departments of Computer Science Electrical Engineering, KU Leuven,24

Belgium 25 Department Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen ¶25

Corresponding author * These authors contributed equally.26

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor:

Submitted: 18 October 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Abstract27

Scientists and engineers use simulators to model empirically observed phenomena. However,28

tuning the parameters of a simulator to ensure its outputs match observed data presents a29

significant challenge. Simulation-based inference (SBI) addresses this by enabling Bayesian30

inference for simulators, identifying parameters that match observed data and align with31

prior knowledge. Unlike traditional Bayesian inference, SBI only needs access to simulations32

from the model and does not require evaluations of the likelihood-function. In addition, SBI33

algorithms do not require gradients through the simulator, allow for massive parallelization of34

simulations, and can perform inference for different observations without further simulations or35

training, thereby amortizing inference. Over the past years, we have developed, maintained,36

and extended sbi, a PyTorch-based package that implements Bayesian SBI algorithms based on37

neural networks. The sbi toolkit implements a wide range of inference methods, neural network38

architectures, sampling methods, and diagnostic tools. In addition, it provides well-tested39

default settings but also offers flexibility to fully customize every step of the simulation-based40

inference workflow. Taken together, the sbi toolkit enables scientists and engineers to apply41

state-of-the-art SBI methods to black-box simulators, opening up new possibilities for aligning42

simulations with empirically observed data.43
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Statement of need44

Bayesian inference is a principled approach for determining parameters consistent with empirical45

observations: Given a prior over parameters, a forward-model (defining the likelihood), and46

observations, it returns a posterior distribution. The posterior distribution captures the47

entire space of parameters that are compatible with the observations and the prior and it48

quantifies parameter uncertainty. When the forward-model is given by a stochastic simulator,49

Bayesian inference can be challenging: (1) the forward-model can be slow to evaluate, making50

algorithms that rely on sequential evaluations of the likelihood (such as Markov-Chain Monte-51

Carlo, MCMC) impractical, (2) the simulator can be non-differentiable, prohibiting the use of52

gradient-based MCMC or variational inference (VI) methods, and (3) likelihood-evaluations can53

be intractable, meaning that we can only generate samples from the model, but not evaluate54

their likelihoods.55

Recently, simulation-based inference (SBI) algorithms based on neural networks have been56

developed to overcome these limitations (Hermans et al., 2020; Papamakarios et al., 2019;57

Papamakarios & Murray, 2016). Unlike classical methods from Approximate Bayesian Compu-58

tation (ABC, Sisson et al. (2018)), these methods use neural networks to learn the relationship59

between parameters and simulation outputs. Neural SBI algorithms (1) allow for massive60

parallelization of simulations (in contrast with sequential evaluations in MCMC methods)61

(2) do not require gradients through the simulator, and (3) do not require evaluations of62

the likelihood but only samples from the simulator. Finally, many of these algorithms allow63

amortized inference, that is, after a large upfront cost of simulating data for the training phase,64

they can return the posterior distribution for any observation without requiring any further65

simulations or retraining.66

To aid in the effective application of these algorithms to a wide range of problems, we developed67

the sbi toolkit. sbi implements a variety of state-of-the-art SBI algorithms, offering both68

high-level interfaces, extensive documentation and tutorials for practitioners, as well as low-level69

interfaces for experienced users and SBI researchers (giving full control over simulations, the70

training loop, and the sampling procedure). Since the original release of the sbi package71

(Tejero-Cantero et al., 2020), the community of contributors has expanded significantly,72

resulting in a large number of improvements that have made sbi more flexible, performant,73

and reliable. sbi now supports a wider range of amortized and sequential inference methods,74

neural network architectures (including normalizing flows, flow- and score-matching, and75

various embedding network architectures), samplers (including MCMC, variational inference,76

importance sampling, and rejection sampling), diagnostic tools, visualization tools, and a77

comprehensive set of tutorials on how to use these features.78

The sbi package is already used extensively by the machine learning research community79

(Boelts et al., 2022; Deistler, Goncalves, et al., 2022; Dirmeier et al., 2023; Dyer et al., 2022b;80

Glöckler et al., 2022; Gloeckler et al., 2023, 2024; Hermans et al., 2022; Linhart et al., 2024;81

Muratore et al., 2022; Spurio Mancini et al., 2023; Wiqvist et al., 2021) but has also fostered82

the application of SBI in various fields of research (Avecilla et al., 2022; Bernaerts et al., 2023;83

Boelts et al., 2023; Bondarenko et al., 2023; Confavreux et al., 2023; Deistler, Macke, et al.,84

2022; Dingeldein et al., 2023; Dyer et al., 2022a; Gao et al., 2024; Groschner et al., 2022;85

Hahn & Melchior, 2022; Hashemi et al., 2023; Jin et al., 2023; Lemos et al., 2024; Lowet et86

al., 2023; Mishra-Sharma & Cranmer, 2022; Myers-Joseph et al., 2024; Rößler et al., 2023;87

Wang et al., 2024).88

Description89

sbi is a flexible and extensive toolkit for running simulation-based Bayesian inference workflows.90

sbi supports any kind of (offline) simulator and prior, a wide range of inference methods,91

neural networks, and samplers, as well as diagnostic methods and analysis tools (Figure 1).92
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Figure 1: Features of the sbi package. Components that were added since the initial release described
in Tejero-Cantero et al. (2020) are marked in red.

A significant challenge in making SBI algorithms accessible to a broader community lies in93

accommodating diverse and complex simulators, as well as varying degrees of flexibility in each94

step of the inference process. To address this, sbi provides pre-configured defaults for all95

inference methods, but also allows full customization of every step in the process (including96

simulation, training, sampling, diagnostics and analysis).97

Simulator & prior: The sbi toolkit requires only simulation parameters and simulated data98

as input, without needing direct access to the simulator itself. However, if the simulator can99

be provided as a Python callable, sbi can optionally parallelize running the simulations from100

a given prior using joblib (Varoquaux, 2008). Additionally, sbi can automatically handle101

failed simulations or missing values, it supports both discrete and continuous parameters and102

observations (or mixtures thereof) and it provides utilities to flexibly define priors.103

Methods: sbi implements a wide range of neural network-based SBI algorithms, among them104

Neural Posterior Estimation (NPE) with various conditional estimators, Neural Likelihood105

Estimation (NLE), and Neural Ratio Estimation (NRE). Each of these methods can be run106

either in an amortized mode, where the neural network is trained once on a set of pre-existing107

simulation results and then performs inference on any observation without further simulations108

or retraining, or in a sequential mode where inference is focused on one observation to improve109

simulation efficiency with active learning, running simulations with parameters likely to have110

resulted in the observation.111

Neural networks and training: sbi implements a wide variety of state-of-the-art conditional112

density estimators for NPE and NLE, including normalizing flows (Greenberg et al., 2019;113

Papamakarios et al., 2021) (via nflows (Durkan et al., 2019) and zuko (Rozet, 2023)), diffusion114

models (Geffner et al., 2023; Simons et al., 2023; Song et al., 2021), mixture density networks115

(Bishop, 1994), and flow matching (Lipman et al., 2023; Wildberger et al., 2023) (via zuko),116

as well as ensembles of any of these networks. sbi also implements a large set of embedding117

networks that can automatically learn summary statistics of (potentially) high-dimensional118

simulation outputs (including multi-layer-perceptrons, convolutional networks, and permutation119

invariant networks). The neural networks can be trained with a pre-configured training loop120

with established default values, but sbi also allows full access over the training loop when121

desired.122

Sampling: For NLE and NRE, sbi implements a large range of samplers, including MCMC (with123

chains vectorized across observations), variational inference, rejection sampling, or importance124

sampling, as well as wrappers to use MCMC samplers from Pyro and PyMC (Abril-Pla et al.,125

2023; Bingham et al., 2019). sbi can perform inference for single observations or for multiple126

i.i.d. observations, and can use importance sampling to correct for potential inaccuracies in127

the posterior if the likelihood is available.128

Diagnostics and analysis: The sbi toolkit also implements a large set of diagnostic tools,129

such as simulation-based calibration (SBC) (Talts et al., 2018), expected coverage (Deistler,130

Goncalves, et al., 2022; Hermans et al., 2022), local C2ST (Linhart et al., 2024), and TARP131

(Lemos et al., 2023). Additionally, sbi offers visualization tools for the posterior, including132

marginal and conditional corner plots to visualize high-dimensional distributions, calibration133
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plots, and wrappers for Arviz (Kumar et al., 2019) diagnostic plots.134

With sbi, our goal is to advance scientific discovery and computational engineering by making135

Bayesian inference accessible to a broad range of models, including those with inaccessible136

likelihoods, and to a broader range of users, including both machine learning researchers and137

domain-practitioners. We have created an open architecture and embraced community-driven138

development practices to encourage collaboration with other machine learning researchers and139

applied scientists to join us in this long-term vision.140

Related software141

Since the original release of the sbi package, several other packages that implement neural142

network-based SBI algorithms have emerged. The Probabilists (2024) package offers neural143

posterior and neural ratio estimation, primarily targeting SBI researchers with a low-level API144

and full flexibility over the training loop (Lampe stopped being maintained in July 2024).145

The BayesFlow package (Stefan T. Radev et al., 2023) focuses on a set of amortized SBI146

algorithms based on posterior and likelihood estimation that have been developed in the147

respective research labs (Stefan T. Radev et al., 2020). The swyft package (undark-lab, 2023)148

specializes in algorithms based on neural ratio estimation. The sbijax package (Dirmeier et149

al., 2024) implements a set of inference methods in JAX.150
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