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Summary6

In a typical Bayesian inference problem, the data likelihood is not known. However, in7

recent years, machine learning methods for density estimation can allow for inference using8

an estimator of the data likelihood. This likelihood is created with neural networks that are9

trained on simulations - one of the many tools for simulation based inference (SBI, Cranmer10

et al. (2020)). In such analyses, density-estimation simulation-based inference methods can11

derive a posterior, which typically involves12

• simulating a set of data and model parameters {(𝜉,𝜋)0, ..., (𝜉,𝜋)𝑁},13

• obtaining a measurement �̂�,14

• compressing the simulations and the measurements - usually with a neural network or15

linear compression - to a set of summaries {(𝑥,𝜋)0, ..., (𝑥,𝜋)𝑁} and �̂�,16

• fitting an ensemble of normalising flow or similar density estimation algorithms (e.g. a17

Gaussian mixture model),18

• the optional optimisation of the parameters for the architecture and fitting hyperparame-19

ters of the algorithms,20

• sampling the ensemble posterior (using an MCMC sampler if the likelihood is fit directly)21

conditioned on the datavector to obtain parameter constraints on the parameters of a22

physical model, 𝜋.23

sbiax is a code for implementing each of these steps. The code allows for Neural Likeli-24

hood Estimation (Alsing et al., 2019; Papamakarios, 2019) and Neural Posterior Estimation25

(Greenberg et al., 2019).26

As shown in Homer et al. (2024), SBI is shown to successfully obtain the correct posterior27

widths and coverages given enough simulations which agree with the analytic solution - this28

code was used in the research for this publication.29

Statement of need30

Simulation-based inference (SBI) covers a broad class of statistical techniques such as Ap-31

proximate Bayesian Computation (ABC), Neural Ratio Estimation (NRE), Neural Likelihood32

Estimation (NLE) and Neural Posterior Estimation (NPE). These techniques can derive pos-33

terior distributions conditioned of noisy data vectors in a rigorous and efficient manner. In34

particular, density-estimation methods have emerged as a promising method, given their35

efficiency, using generative models to fit likelihoods or posteriors directly using simulations.36

In the field of cosmology, SBI is of particular interest due to complexity and non-linearity of37

models for the expectations of non-standard summary statistics of the large-scale structure, as38

well as the non-Gaussian noise distributions for these statistics. The assumptions required for39

the complex analytic modelling of these statistics as well as the increasing dimensionality of40
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data returned by spectroscopic and photometric galaxy surveys limits the amount of information41

that can be obtained on fundamental physical parameters. Therefore, the study and research42

into current and future statistical methods for Bayesian inference is of paramount importance43

for the field of cosmology.44

The software we present, sbiax, is designed to be used by machine learning and physics45

researchers for running Bayesian inferences using density-estimation SBI techniques. These46

models can be fit easily with multi-accelerator training and inference within the code. This47

code - written in jax (Bradbury et al., 2018) - allows for seemless integration of cutting edge48

generative models to SBI, including continuous normalising flows (Grathwohl et al., 2018),49

matched flows (Lipman et al., 2023), masked autoregressive flows (Papamakarios et al., 2018;50

Ward, 2024) and Gaussian mixture models - all of which are implemented in the code. The51

code features integration with the optuna (Akiba et al., 2019) hyperparameter optimisation52

framework which would be used to ensure consistent analyses, blackjax (Cabezas et al., 2024)53

for fast MCMC sampling and equinox (Kidger & Garcia, 2021) for neural network compression54

methods. The design of sbiax allows for new density estimation algorithms to be trained and55

sampled from.56

Density estimation with normalising flows57

The use of density-estimation in SBI has been accelerated by the advent of normalising58

flows. These models parameterise a change-of-variables 𝑦 = 𝑓𝜙(𝑥;𝜋) between a simple59

base distribution (e.g. a multivariate unit Gaussian 𝒢[𝑧|0, I]) and an unknown distribution60

𝑞(𝑥|𝜋) (from which we have simulated samples 𝑥). Naturally, this is of particular importance61

in inference problems in which the likelihood is not known. The change-of-variables is fit62

from data by training neural networks to model the transformation in order to maximise the63

log-likelihood of the simulated data 𝑥 conditioned on the parameters 𝜋 of a simulator model.64

The mapping is expressed as65

𝑦 = 𝑓𝜙(𝑥;𝜋),

where 𝜙 are the parameters of the neural network. The log-likelihood of the flow is expressed66

as67

log 𝑝𝜙(𝑥|𝜋) = log𝒢[𝑓𝜙(𝑥;𝜋)|0, 𝕀] + log ∣J𝑓𝜙(𝑥;𝜋)∣,

This density estimate is fit to a set of 𝑁 simulation-parameter pairs {(𝜉,𝜋)0, ..., (𝜉,𝜋)𝑁} by68

minimising a Monte-Carlo estimate of the KL-divergence69

⟨𝐷𝐾𝐿(𝑞||𝑝𝜙)⟩𝜋∼𝑝(𝜋) = ∫ d𝜋 𝑝(𝜋)∫ d𝑥 𝑞(𝑥|𝜋) log 𝑞(𝑥|𝜋)
𝑝𝜙(𝑥|𝜋)

,

= ∫ d𝜋∫ d𝑥 𝑝(𝜋,𝑥)[log 𝑞(𝑥|𝜋) − log 𝑝𝜙(𝑥|𝜋)],

≥ −∫ d𝜋∫ d𝑥 𝑝(𝜋,𝑥) log 𝑝𝜙(𝑥|𝜋),

≈ − 1
𝑁

𝑁
∑
𝑖=1

log 𝑝𝜙(𝑥𝑖|𝜋𝑖), (1)

where 𝑞(𝑥|𝜋) is the unknown likelihood from which the simulations 𝑥 are drawn. This applies70

similarly for an estimator of the posterior (instead of the likelihood as shown here) and is the71

basis of being able to estimate the likelihood or posterior directly when an analytic form is72
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not available. If the likelihood is fit from simulations, a prior is required and the posterior is73

sampled via an MCMC given some measurement. This is implemented within the code.74

An ensemble of density estimators (with parameters - e.g. the weights and biases of the75

networks - denoted by {𝜙0, ..., 𝜙𝐽}) has a likelihood which is written as76

𝑝ensemble(𝜉|𝜋) =
𝐽

∑
𝑗=1

𝛼𝑗𝑝𝜙𝑗
(�̂�|𝜋)

where77

𝛼𝑖 =
exp(𝑝𝜙𝑖

(�̂�|𝜋))
∑𝐽

𝑗=1 exp(𝑝𝜙𝑗
(�̂�|𝜋))

are the weights of each density estimator in the ensemble. This ensemble likelihood can be78

easily sampled with an MCMC sampler. In Figure 1 we show an example posterior from79

applying SBI, with our code, using two compression methods separately.80
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Figure 1: An example of posteriors derived with sbiax. We fit a ensemble of two continuous normalising
flows to a set of simulations of cosmic shear two-point functions. The expectation 𝜉[𝜋] is linearised with
respect to 𝜋 and a theoretical data covariance model Σ allows for easy sampling of many simulations
- an ideal test arena for SBI methods. We derive two posteriors, from separate experiments, where a
linear (red) or neural network compression (blue) is used. In black, the true analytic posterior is shown.
Note that for a finite set of simulations the blue posterior will not overlap completely with the black and
red posteriors - we explore this effect upon the posteriors from SBI methods, due to an unknown data
covariance, in Homer et al. (2024).
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