
DRAFT
HySoP: Hybrid Simulation with Particles1

Jean-Matthieu Etancelin 1*¶, Jean-Baptiste Keck 3*, Franck Perignon3*,2

Chloé Mimeau 2*, Nicolas Grima 1*, Christophe Picard 3*, and3

Georges-Henri Cottet3*4

1 Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau, France. 2 Laboratoire M2N,5

EA7340, CNAM, 2 rue Conté, Paris 75003, France. 3 Laboratoire Jean Kuntzmann, Grenoble INP,6

Université Grenobles Alpes and CNRS, Grenoble, France. ¶ Corresponding author * These authors7

contributed equally.8

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor:

Submitted: 14 November 2024
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary9

During the past decades, a tremendous development has been dedicated to the design of10

numerical methods to simulate fluid flows. The most famous methods, such as finite difference,11

finite volume, finite element or spectral/pseudo-spectral methods deal with primitive variables in12

a purely Eulerian frameworks and have been extensively studied both from consistency/stability13

point of view as well as numerical diffusivity and dissipation characterization.14

In parallel, particle approaches have met a large development recently in the context of15

incompressible flows and distinguish themselves from the approches mentioned above by their16

intuitive and natural description of the fluid flow as well as their low numerical dissipation,17

their stability and the shortcut the non-linearities related to the advection phenomenon. Many18

efforts have been devoted to overcoming the main intrinsic difficulties of purely Lagrangian19

particle methods, mostly relying on the treatment of the boundary conditions and the distortion20

of particle distribution. These efforts led in particular to the design of semi-Lagrangian21

approaches, also known as Remeshed Particle Method (RPM), where the particles discretizing22

the flow are regularly remeshed on a Cartesian grid, thus capitalizing the strengths of both the23

Eulerian and Lagrangian approaches (Mimeau & Mortazavi, 2021). The present numerical tool24

HySoP (Hybrid Simulation with Particles) is a Python package dedicated to high performance25

numerical simulations of fluid-related problems based on semi-Lagrangian particle methods26

targeting distributed hybrid architectures using MPI+OpenCL.27

Statement of need28

The library HySoP (Hybrid Simulation with Particles) has been developed for hybrid architectures29

providing multiple compute devices including CPUs and GPUs. The high level functionalities and30

the user interface are mainly written in Python using the object oriented programming model.31

The choice of Python language finds justification in light of the large software integration32

benefits it can provide. Moreover, the object oriented programming model offers a flexible33

framework to implement scientific libraries when compared to the imperative programming34

model. It is also a good choice for the users as the Python language is easy to use for beginners35

and/or students while experienced programmers can pick it up very quickly. The provided36

numerical solvers are mostly implemented using compiled languages such as Fortran or OpenCL37

for performance reasons. Indeed, many scientific libraries already provide Python interfaces38

with complied languages so that they can be directly used in Python without needing the39

users to implement their own wrapper. It is also possible for the user to implement another40

version of the provided numerical algorithms or to add any new custom operators in HySoP by41

using directly Python. The present code is organized such that rapid prototyping is possible42

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

1

https://orcid.org/0000-0003-2718-819X
https://orcid.org/0000-0002-1398-6687
https://orcid.org/0000-0002-2383-0520
https://orcid.org/0000-0002-1607-8975
https://orcid.org/0000-0002-7024-9130
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/7483
https://gricad-gitlab.univ-grenoble-alpes.fr/particle_methods/hysop
https://doi.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
in Python namespace followed by computational performances either using dedicated Python43

advanced capabilities or using the OpenCL backend provided. It also allows to easily implement44

routines that compute simulation statistics during runtime, relieving most of the user post-45

processing efforts and enabling live simulation monitoring. With all these characteristics, HySoP46

strives to follow the original library mantra, that is to propose a non-architecture-specific,47

performance-portable and easily reusable numerical code. Finally, it is important to note that48

HySoP is a scientific research software that is continuously evolving.49

Most advanced open source related to remeshed vortex methods similar to HySoP are OpenFPM50

and Murphy. Both are parallel and accelerated libraries. OpenFPM (Incardona et al., 2019) is an51

open-source C++ framework for parallel particles-only and hybrid particle-mesh codes. Murhpy52

(Gillis & Rees, 2022) is a multiresolution adaptive grid framework for numerical simulations on53

3D block-structured collocated grids with distributed computational architectures.54

Governing equations and semi-Lagrangian framework55

In a general point of view, the HySoP library is used to solve continuous systems of the following56

form:57
𝑑
𝑑𝑡

∫
Ω

Q(𝑥, 𝑡) 𝑑x = ∫
Ω

F(𝑥, 𝑡,Q,∇Q, ...) 𝑑x (1)

where Q denotes the vector of variables and F the source term. More precisely, the present58

library originally lies on the so-called Vortex Methods, which belong to particle (also called59

Lagrangian) methods. Lagrangian methods differ from Eulerian ones by the fact that the60

variables Q are discretized on a set of particles that follow the dynamic of the system and are61

displaced with respect to the flow velocity u. Regarding Vortex Methods, they are used to62

specifically solve incompressible Navier-Stokes equations in their velocity-vorticity formulation:63

𝜕𝜔
𝜕𝑡

+ (u ⋅ ∇)𝜔 = (𝜔 ⋅ ∇)u + 1
𝑅𝑒

Δ𝜔 +∇× f𝑒𝑥𝑡 (2)

Δu = −∇× 𝜔 (3)

The only quantity 𝑄 carried by the particles is the vorticity field 𝜔, defined in a 3D-Cartesian64

coordinates system as:65

𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) ∶= ∇ × u = (𝜕𝑦𝑢𝑧 − 𝜕𝑧𝑢𝑦 , 𝜕𝑧𝑢𝑥 − 𝜕𝑥𝑢𝑧 , 𝜕𝑥𝑢𝑦 − 𝜕𝑦𝑢𝑥) (4)

In the above system of governing equations, the first one corresponds to the momentum66

equation with :67

• (u ⋅ ∇)𝜔 : the advection term68

• (𝜔 ⋅ ∇)u : the stretching term (that vanishes in 2D).69

•
1
𝑅𝑒

Δ𝜔 : the diffusion term with 𝑅𝑒 the Reynolds number.70

• ∇× f𝑒𝑥𝑡 : the external forcing term that depends on the problem being solved71

The second equation, Δu = −∇× 𝜔, is the Poisson equation allowing to recover the velocity72

u from the vorticity 𝜔. This equation is derived from the incompressibility condition ∇ ⋅u = 073

and the definition of the vorticity field 𝜔 ∶= ∇ × u.74

For a more complete description of the family of models handled by the library, one should75

rather talk about the resolution of a system of continuous equations consisting of Navier-Stokes76

equations coupled with 𝑛 scalar advection-diffusion equations:77

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
𝜕𝜔
𝜕𝑡

+ (u ⋅ ∇)𝜔 = (𝜔 ⋅ ∇)u + 1
𝑅𝑒

Δ𝜔 +∇× f𝑒𝑥𝑡 (5)

𝜕𝜃𝑖
𝜕𝑡

+ (u ⋅ ∇)𝜃𝑖 = 𝜅𝑖Δ𝜃𝑖 for 𝑖 ∈ {1,⋯ , 𝑛} (6)

Δu = −∇× 𝜔 (7)

where 𝜅𝑖 is the constant diffusivity of the scalar 𝜃𝑖. In this case, the quantities Q carried by78

the particles are the vorticity field 𝜔 and the scalar fields 𝜃𝑖.79

In HySoP, these models are not solved by using a pure Lagrangian approach but rather a80

semi-Lagrangian method called “remeshed Vortex method” or “remeshed particle method”.81

Both the momentum equation and the scalar equations can be viewed, at least partially, as82

advection-diffusion equations, one for the vorticity 𝜔 and the other for the scalars 𝜃𝑖. Those83

two types of equations can be split into transport and diffusion terms, by relying on so-called84

operator splitting methods. The idea behind the present numerical method is to split the85

equations such that each subproblem can be solved by using a dedicated solver based on the86

most appropriate numerical scheme and by employing a space discretization that is regular87

enough to be handled by accelerators (GPUs).88

Semi-lagrangian (remeshed) particle methods allow to solve advection problems in a Lagrangian89

way, that is to say directly on particles. In other words the advection of the momentum90

equation and the scalar advection91

𝜕𝜔
𝜕𝑡

+ (u ⋅ ∇)𝜔 = 0, 𝜕𝜃𝑖
𝜕𝑡

+ (u ⋅ ∇)𝜃𝑖 = 0

are treated in a Lagrangian way, on each numerical particles 𝑝, by solving the following sets of92

ODEs:93

⎧{
⎨{⎩

𝑑x𝑝(𝑡)
𝑑𝑡 = u(x𝑝(𝑡), 𝑡)

𝑑𝜔𝑝(𝑡)
𝑑𝑡 = 0

𝑑𝜃𝑖𝑝(𝑡)
𝑑𝑡 = 0

94

where the resolution of the first equation updates the numerical particles locations x𝑝(𝑡) after95

advection.96

Such Lagrangian treatment of the advection equations offers a natural approach, close to97

the physics, it provides flexible resolution of the non-linear transport problem and ensures98

stability and low numerical diffusion. It also presents an interesting advantage in terms of99

computational issues since the Lagrangian advection scheme imposes a CFL stability constraint100

which is less restrictive than in a Eulerian framework: the Lagrangian CFL condition is indeed101

based on the velocity gradients and not on a grid size Δ𝑥, thus allowing the use of larger time102

steps and also adaptive time steps (Δ𝑡(𝑡)).103

In order to avoid the distortion of the convected fields, the vorticity and scalar values carried104

by each particle are distributed (after the advection step) on the neighboring points of an105

underlying Cartesian mesh. This step is called the “remeshing”. It is done by using remeshing106

kernels, which are piece-wise polynomial functions, that satisfy desired conservation properties.107

The vorticity at a node 𝑖 of the mesh is thus obtained from the vorticity carried by the108

neighboring particles 𝑝 with weights given by the remeshing kernel Λ:109

𝜔𝑛+1
𝑖 (𝑥) = ∑

𝑝
𝜔𝑛

𝑝 (𝑥)Λ(
𝑥𝑛+1
𝑝 − 𝑥𝑖

Δ𝑥
) (8)

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DR
AF
T

In HySoP, the remeshing kernels are denoted Λ𝑚,𝑟 where 𝑟 corresponds to their regularity 𝒞𝑟
110

and 𝑚 is the number of preserving moments (cf Figure 1)111

-2 -1 0 1 2

Λ4,2

particles

grid

α(y)
β(y)

ɣ(y) δ(y)

y

xi

xp

xixi-1 xi+1 xi+2

-3 3

xi-2 xi+3

ε(y)
ζ (y)

Figure 1: One-dimensional representation of the computation of the remeshing weights using the Λ4,2
kernel, defined on a 1D-6 points support.

Through the projection of the particles on an underlying grid (processed after each advection112

step) and thank to the operator splitting method, the remeshing process allows the use of113

eulerian solvers for the treatment of the other operators (ie. stretching, diffusion, external114

forcing and the Poisson equation). In particular the HySoP library uses Cartesian grids since115

they are compatible with a wide variety of numerical methods such as finite difference methods116

(FD) and spectral methods (Fast Fourier Transforms).117

In conclusion, the HySoP library is particularly adapted for problems dominated by transport118

phenomena. However, the operator splitting method on which the library is built allows to119

handle a wider diversity of problems.120

Features of the software121

Preliminary description of the software conception122

HySoP has been designed on the basis of an uncoupling between the mathematical specifications123

of the problem to solve and the numerical methods and algorithms. The purpose is to let124

the user describing only the higher level specifications, in formulation quite close to the125

mathematical formalism:126

• problem parameters;127

• domain where are set the equations;128

• variables defined on domain;129

• operators linking the variables;130

• overall discretisation for the cartesian grid.131

Lower level of specifications such as numerical methods, algorithms, computing architectures132

and parallelism layout are seen as optional. Thanks to this design, the lower level features can133

be changed or upgraded without any changes in user code. We rely also on object oriented134

programming for the modularity its provide. The availability of several discrete approximations135

of the same mathematical operator and numerical method is possible and intensively used in136

HySoP. Finally, HySoP is easily extendable by creating new elements either by inheritance or137

overriding of existing elements.138

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

4

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
Detailed conception139

User

Define the problem

Discretize the problem

Solve the problem

Define
Domain

Define
Fields and Variables

Define
Operators

Initialize
Fields and Variables

Insert ordered
list of Operators

Define
Num. methods

Time stepping setup

Define discretization
(meshes and topologies)

Figure 2: Use case diagram

From the user point of view, the main usecase will decompose into the three main steps (cf140

Figure 2):141

1. Problem description: as mathematical PDE formalism using domain, variables and142

operators;143

2. Problem initialisation: after describing the numerical methods with their parameters,144

the user may specify the main cartesian grid resolution, the mesh decomposition for145

parallel simulations, and the compute backend. The ordering of the different operators146

is enforced by the HySoP user interface. Finally the user must describe how to initialise147

the variables of the problem. To summarize, from the library point of view, at the end148

of this step, all memory allocations (user an internal use) are performed and all the149

computations and communication layout is known.150

3. Problem solving: after defining a few more parameters for time dependant problems151

(i.e. time steps), the computations can start applying the operators in order.152

Following the same color code as that of Figure 2, the simplified diagram of HySop is given153

in Figure 3, illustrating the interaction of the decoupled entities “Domain, Discretizations,154

Variables, Operators, Numerics and Tools, Problem”.155

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

5

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
Domain

dimension
origin
length
boundaries (B.C.)

a

Discretizations

domain
discretization (res, ghosts, BC)
mesh
MPI topology

Variables

Fields
associated domain
nb components
formula

discretize fields

topology
local res
global res

compute local
and global coords

m

a

a

a

m

Operators

implementation
variables
methods

a

discretize
setup
apply

m

Numerics & Tools

Numerics

FFT
interpolation
ODE solvers
stencil (Finite Differences)

Tools

wrappers, utils, profiler, …

Simu & Problem

Simulation
Tstart
Tend
max iter
time step
restart

a

advance time m

Problem
numerical method
 for discretization
simu manager

a

Insert operators
build problem
initialize_fields
solve problem
finalize

m

Topologies

IO

hdf5/ASCII formats

Backends

Fortran

OpenCL

Python

Meshes

Figure 3: Simplified HySoP package diagram and most significant classes (the yellow “a” dots correspond
to the main classes attributes and the pink “m” dots to the main classes methods)

Programming languages and external dependencies156

Python has been selected as the main programming language of the software. This decision157

has been make regarding several features such as enabling a high degree of flexibility thanks to158

the ability to express either imperative, object or functional programming paradigm. As an159

interpreted language, there is no (few) compilation overhead. Python code are easily extendable160

using the modules provided by an extremely active and wide community of developers.161

The main drawback of this choice is related to performances. This is rapidly overcome using162

the well known module numpy. It provides a wide range of tools for scientific computations163

based on multidimensional arrays. HySoP is clearly concerned as the discretisations rely on164

cartesian grids. A second level of performance improvement is provided using external libraries165

or codes whose performances have been carefully studied. For instance, HySoP is using the166

fast fourier transform library fftw. HySoP is also using the f2py python module to use an167

internal implementation in Fortran of the semi-Lagrangian method initially developped by168

(Lagaert et al., 2014). Finally a last performance improvement is achieved using just-in-time169

compiling using either numba or OpenCL. The former is a python module enabling a translation170

of python code into compiled code at runtime. The latter is an API and a programming171

language to operate on multicore and heterogeneous architectures. Contrary to numba, we172

generate explicitly the OpenCL code from formal representation of the instructions deduced173

from the numerical methods. Additionnaly, micro-benchmarks are performed at initialisation174

time to setup some code optimisations.175

The Figure 4 summarizes the above explanations by showing the interaction of the backends176

with the base Python layer. We currently do not support the proprietary language CUDA for177

NVIDIA graphics cards. However, thanks to our software achitecture, it would not be very178

difficult to add a new backend. The remaining difficulty is the inter-operability with other179

existing backends.180

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

6

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
hysop Fortran library

(f2hysop.so)
numpy C

API
C++
(JIT)

OpenCL
(JIT)

Hysop
Python User Interface

Fortran Python OpenCL

f2py pyOpenCL

hysop Fortran
sources

hysop OpenCL source
Sources

Binaries
and librairies

External Python
Packages

Backends

User
Interface

U
se

r A
PI

hysop OpenCL codegenerator

numpy

numba

hysop Python
source

Figure 4: Computing backends in HySoP

Parallelism181

The present software is targeting heterogeneous (CPU-GPU) architectures but it is also capable182

to deal with distributed memory parallelism. We implement a domain decomposition of the183

computational domain using the well known MPI parallelism. In practice, we use the mpi4py184

interface without any constraints on the MPI library provider. Thus HySoP may be considered as185

a Python-based solver based on hybrid MPI-OpenCL programming that targets heterogeneous186

compute platforms.187

Another level of parallelism in HySoP may be seen in the operator splitting approach on188

which the library is build. This splitting indeed allows for a parallelism by tasks, where two189

distincts operators may be solved at the same time as long as they are weakly coupled in the190

mathematical problem.191

Computational performances of HySoP are difficult to investigate in an absolute way, however192

the reader is referred to (Cottet et al., 2014), (Keck, 2019) and (Keck et al., 2021) for an insight193

about HySoP performances on multi-GPU and heterogeneous platforms based simulations.194

Continuous integration, deployment and installation195

HySoP code is tested against a set of unitary and integration tests as well as several examples196

provided. These tests are run in a continuous integration process attached to the Gitlab197

instance hosting the code. Continuous integration is running in docker containers on several198

resources hosted by French National Centre for Scientific Research and author’s university.199

Several docker images are considered as reproducing main users configurations either with200

GPU or CPU OpenCL platforms.201

Docker images used for continuous integration are finally completed by an installation of HySoP202

package. These images are freely available as ready-to-use for users. Beside this all inclusive203

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

7

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
way of getting the software, another process is to install all dependencies together with the204

HySoP package itself from sources. The install process rely on meson build system.205

Applications206

The following list illustrates the successful use of the HySoP library in various domains of207

applications, implying a large range of governing equations, thus highlighting its versatility and208

flexibility:209

Applications Involved equations Reference
- Bluff body flows Navier-Stokes (Mimeau et al.,

2016, 2021)
- Large-Eddy Simulations
(sub-grid scale modeling)

Filtered Navier-Stokes (Crouy-Chanel et
al., 2024)

- Transport of passive scalar at
high Schmidt number

Navier-Stokes and a passive scalar
advection-diffusion

(Cottet et al.,
2014)

- Sedimentation in high Schmidt
number flows

Navier-Stokes coupled with scalars
advection-diffusion

(Keck et al., 2021)

- Passive flow control using
porous media

Brinkman-Navier-Stokes (Mimeau et al.,
2017)

- Porous media dissolution at
pore-scale

Darcy-Brinkman-Stokes coupled
with reactive transport

(Etancelin et al.,
2020)

Acknowledgements210

We acknowledge contributions from Jean-Baptiste Lagaert during the genesis of this project.211

The development of HySoP has been supported in parts by french ANR MPARME (ANR-17-212

CE23-0024) and ANR HAMM (ANR-10-COSI-0009)213

References214

Cottet, G.-H., Etancelin, J.-M., Pérignon, F., & Picard, C. (2014). High order Semi-Lagrangian215

particle methods for transport equations: numerical analysis and implementation issues.216

ESAIM: Mathematical Modelling and Numerical Analysis, 48(4), 1029–1060. https:217

//doi.org/10.1051/m2an/2014009218

Crouy-Chanel, M. de, Mimeau, C., Mortazavi, I., Mariotti, A., & Salvetti, M. V. (2024).219

Large-eddy simulations with remeshed vortex methods: An assessment and calibration of220

subgrid-scale models. Computers & Fluids, 277, 106287.221

Etancelin, J.-M., Moonen, P., & Poncet, P. (2020). Improvement of remeshed Lagrangian222

methods for the simulation of dissolution processes at pore-scale. Advances in Water223

Resources, 146, 103780. https://doi.org/10.1016/j.advwatres.2020.103780224

Gillis, T., & Rees, W. M. van. (2022). MURPHY – a scalable multiresolution framework for225

scientific computing on 3D block-structured collocated grids. https://arxiv.org/abs/2112.226

07537227

Incardona, P., Leo, A., Zaluzhnyi, Y., Ramaswamy, R., & Sbalzarini, I. F. (2019). OpenFPM:228

A scalable open framework for particle and particle-mesh codes on parallel computers.229

Computer Physics Communications, 241, 155–177. https://doi.org/https://doi.org/10.230

1016/j.cpc.2019.03.007231

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

8

https://doi.org/10.1051/m2an/2014009
https://doi.org/10.1051/m2an/2014009
https://doi.org/10.1051/m2an/2014009
https://doi.org/10.1016/j.advwatres.2020.103780
https://arxiv.org/abs/2112.07537
https://arxiv.org/abs/2112.07537
https://arxiv.org/abs/2112.07537
https://doi.org/10.1016/j.cpc.2019.03.007
https://doi.org/10.1016/j.cpc.2019.03.007
https://doi.org/10.1016/j.cpc.2019.03.007
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

DRAFT
Keck, J.-B. (2019). Numerical modelling and High Performance Computing for sediment flows232

(Theses No. 2019GREAM067, Université Grenoble Alpes). https://tel.archives-ouvertes.233

fr/tel-02433509234

Keck, J.-B., Cottet, G.-H., Meiburg, E., Mortazavi, I., & Picard, C. (2021). Double-diffusive235

sedimentation at high Schmidt numbers: Semi-Lagrangian simulations. Physical Review236

Fluids, 6(2), L022301. https://doi.org/10.1103/PhysRevFluids.6.L022301237

Lagaert, J.-B., Balarac, G., & Cottet, G.-H. (2014). Hybrid spectral-particle method for the238

turbulent transport of a passive scalar. Journal of Computational Physics, 260, 127–142.239

https://doi.org/https://doi.org/10.1016/j.jcp.2013.12.026240

Mimeau, C., Cottet, G.-H., & Mortazavi, I. (2016). Direct numerical simulations of three-241

dimensional flows past obstacles with a vortex penalization method. Computers and Fluids,242

136, 331–347. https://doi.org/10.1016/j.compfluid.2016.06.020243

Mimeau, C., Marié, S., & Mortazavi, I. (2021). A comparison of semi-Lagrangian Vortex244

method and Lattice Boltzmann method for incompressible flows. Computers and Fluids,245

224, 104946. https://doi.org/10.1016/j.compfluid.2021.104946246

Mimeau, C., & Mortazavi, I. (2021). A Review of Vortex Methods and Their Applications: From247

Creation to Recent Advances. Fluids, 6(2), 68. https://doi.org/10.3390/fluids6020068248

Mimeau, C., Mortazavi, I., & Cottet, G.-H. (2017). Passive control of the flow around a249

hemisphere using porous media. European Journal of Mechanics - B/Fluids, 65, 213–226.250

https://doi.org/10.1016/j.euromechflu.2017.03.002251

Etancelin et al. (2024). HySoP: Hybrid Simulation with Particles. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 7483. https://doi.org/10.
xxxxxx/draft.

9

https://tel.archives-ouvertes.fr/tel-02433509
https://tel.archives-ouvertes.fr/tel-02433509
https://tel.archives-ouvertes.fr/tel-02433509
https://doi.org/10.1103/PhysRevFluids.6.L022301
https://doi.org/10.1016/j.jcp.2013.12.026
https://doi.org/10.1016/j.compfluid.2016.06.020
https://doi.org/10.1016/j.compfluid.2021.104946
https://doi.org/10.3390/fluids6020068
https://doi.org/10.1016/j.euromechflu.2017.03.002
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Governing equations and semi-Lagrangian framework
	Features of the software
	Preliminary description of the software conception
	Detailed conception
	Programming languages and external dependencies
	Parallelism
	Continuous integration, deployment and installation

	Applications
	Acknowledgements
	References

