{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"demo_chinese_text_binary_classification_with_bert.ipynb","provenance":[],"collapsed_sections":[],"toc_visible":true},"kernelspec":{"name":"python3","display_name":"Python 3"},"accelerator":"GPU"},"cells":[{"cell_type":"markdown","metadata":{"id":"84bZG6NlL5ig","colab_type":"text"},"source":["查看当前GPU信息"]},{"cell_type":"code","metadata":{"id":"rIEr_CwhcCBh","colab_type":"code","outputId":"c7f8354d-044e-49e9-ed71-ce3c53aa2864","executionInfo":{"status":"ok","timestamp":1574680166673,"user_tz":-480,"elapsed":2368,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}},"colab":{"base_uri":"https://localhost:8080/","height":503}},"source":["from tensorflow.python.client import device_lib\n","\n","device_lib.list_local_devices()"],"execution_count":33,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[name: \"/device:CPU:0\"\n"," device_type: \"CPU\"\n"," memory_limit: 268435456\n"," locality {\n"," }\n"," incarnation: 10566334529591942713, name: \"/device:XLA_CPU:0\"\n"," device_type: \"XLA_CPU\"\n"," memory_limit: 17179869184\n"," locality {\n"," }\n"," incarnation: 8480217429325042128\n"," physical_device_desc: \"device: XLA_CPU device\", name: \"/device:XLA_GPU:0\"\n"," device_type: \"XLA_GPU\"\n"," memory_limit: 17179869184\n"," locality {\n"," }\n"," incarnation: 4146199070848845009\n"," physical_device_desc: \"device: XLA_GPU device\", name: \"/device:GPU:0\"\n"," device_type: \"GPU\"\n"," memory_limit: 11330115994\n"," locality {\n"," bus_id: 1\n"," links {\n"," }\n"," }\n"," incarnation: 10101602871662389155\n"," physical_device_desc: \"device: 0, name: Tesla K80, pci bus id: 0000:00:04.0, compute capability: 3.7\"]"]},"metadata":{"tags":[]},"execution_count":33}]},{"cell_type":"code","metadata":{"id":"jviywGyWyKsA","colab_type":"code","trusted":true,"outputId":"2dfbcb0e-dfd2-4302-a976-d21887250f60","executionInfo":{"status":"ok","timestamp":1574680171337,"user_tz":-480,"elapsed":7020,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}},"colab":{"base_uri":"https://localhost:8080/","height":53}},"source":["!pip install bert-tensorflow"],"execution_count":34,"outputs":[{"output_type":"stream","text":["Requirement already satisfied: bert-tensorflow in /usr/local/lib/python3.6/dist-packages (1.0.1)\n","Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from bert-tensorflow) (1.12.0)\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"hsZvic2YxnTz","colab_type":"code","trusted":true,"colab":{}},"source":["import pandas as pd\n","import tensorflow as tf\n","import tensorflow_hub as hub\n","import pickle\n","import bert\n","from bert import run_classifier\n","from bert import optimization\n","from bert import tokenization"],"execution_count":0,"outputs":[]},{"cell_type":"code","metadata":{"colab_type":"code","id":"NZM71PjIOF_I","colab":{}},"source":["def pretty_print(result):\n"," df = pd.DataFrame([result]).T\n"," df.columns = [\"values\"]\n"," return df"],"execution_count":0,"outputs":[]},{"cell_type":"code","metadata":{"trusted":true,"id":"ZCYOL8HbIZu2","colab_type":"code","colab":{}},"source":["def create_tokenizer_from_hub_module(bert_model_hub):\n"," \"\"\"Get the vocab file and casing info from the Hub module.\"\"\"\n"," with tf.Graph().as_default():\n"," bert_module = hub.Module(bert_model_hub)\n"," tokenization_info = bert_module(signature=\"tokenization_info\", as_dict=True)\n"," with tf.Session() as sess:\n"," vocab_file, do_lower_case = sess.run([tokenization_info[\"vocab_file\"],\n"," tokenization_info[\"do_lower_case\"]])\n"," \n"," return bert.tokenization.FullTokenizer(\n"," vocab_file=vocab_file, do_lower_case=do_lower_case)\n","\n","def make_features(dataset, label_list, MAX_SEQ_LENGTH, tokenizer, DATA_COLUMN, LABEL_COLUMN):\n"," input_example = dataset.apply(lambda x: bert.run_classifier.InputExample(guid=None, \n"," text_a = x[DATA_COLUMN], \n"," text_b = None, \n"," label = x[LABEL_COLUMN]), axis = 1)\n"," features = bert.run_classifier.convert_examples_to_features(input_example, label_list, MAX_SEQ_LENGTH, tokenizer)\n"," return features\n","\n","def create_model(bert_model_hub, is_predicting, input_ids, input_mask, segment_ids, labels,\n"," num_labels):\n"," \"\"\"Creates a classification model.\"\"\"\n","\n"," bert_module = hub.Module(\n"," bert_model_hub,\n"," trainable=True)\n"," bert_inputs = dict(\n"," input_ids=input_ids,\n"," input_mask=input_mask,\n"," segment_ids=segment_ids)\n"," bert_outputs = bert_module(\n"," inputs=bert_inputs,\n"," signature=\"tokens\",\n"," as_dict=True)\n","\n"," # Use \"pooled_output\" for classification tasks on an entire sentence.\n"," # Use \"sequence_outputs\" for token-level output.\n"," output_layer = bert_outputs[\"pooled_output\"]\n","\n"," hidden_size = output_layer.shape[-1].value\n","\n"," # Create our own layer to tune for politeness data.\n"," output_weights = tf.get_variable(\n"," \"output_weights\", [num_labels, hidden_size],\n"," initializer=tf.truncated_normal_initializer(stddev=0.02))\n","\n"," output_bias = tf.get_variable(\n"," \"output_bias\", [num_labels], initializer=tf.zeros_initializer())\n","\n"," with tf.variable_scope(\"loss\"):\n","\n"," # Dropout helps prevent overfitting\n"," output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)\n","\n"," logits = tf.matmul(output_layer, output_weights, transpose_b=True)\n"," logits = tf.nn.bias_add(logits, output_bias)\n"," log_probs = tf.nn.log_softmax(logits, axis=-1)\n","\n"," # Convert labels into one-hot encoding\n"," one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)\n","\n"," predicted_labels = tf.squeeze(tf.argmax(log_probs, axis=-1, output_type=tf.int32))\n"," # If we're predicting, we want predicted labels and the probabiltiies.\n"," if is_predicting:\n"," return (predicted_labels, log_probs)\n","\n"," # If we're train/eval, compute loss between predicted and actual label\n"," per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)\n"," loss = tf.reduce_mean(per_example_loss)\n"," return (loss, predicted_labels, log_probs)\n","\n","# model_fn_builder actually creates our model function\n","# using the passed parameters for num_labels, learning_rate, etc.\n","def model_fn_builder(bert_model_hub, num_labels, learning_rate, num_train_steps,\n"," num_warmup_steps):\n"," \"\"\"Returns `model_fn` closure for TPUEstimator.\"\"\"\n"," def model_fn(features, labels, mode, params): # pylint: disable=unused-argument\n"," \"\"\"The `model_fn` for TPUEstimator.\"\"\"\n","\n"," input_ids = features[\"input_ids\"]\n"," input_mask = features[\"input_mask\"]\n"," segment_ids = features[\"segment_ids\"]\n"," label_ids = features[\"label_ids\"]\n","\n"," is_predicting = (mode == tf.estimator.ModeKeys.PREDICT)\n"," \n"," # TRAIN and EVAL\n"," if not is_predicting:\n","\n"," (loss, predicted_labels, log_probs) = create_model(\n"," bert_model_hub, is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)\n","\n"," train_op = bert.optimization.create_optimizer(\n"," loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False)\n","\n"," # Calculate evaluation metrics. \n"," def metric_fn(label_ids, predicted_labels):\n"," accuracy = tf.metrics.accuracy(label_ids, predicted_labels)\n"," f1_score = tf.contrib.metrics.f1_score(\n"," label_ids,\n"," predicted_labels)\n"," auc = tf.metrics.auc(\n"," label_ids,\n"," predicted_labels)\n"," recall = tf.metrics.recall(\n"," label_ids,\n"," predicted_labels)\n"," precision = tf.metrics.precision(\n"," label_ids,\n"," predicted_labels) \n"," true_pos = tf.metrics.true_positives(\n"," label_ids,\n"," predicted_labels)\n"," true_neg = tf.metrics.true_negatives(\n"," label_ids,\n"," predicted_labels) \n"," false_pos = tf.metrics.false_positives(\n"," label_ids,\n"," predicted_labels) \n"," false_neg = tf.metrics.false_negatives(\n"," label_ids,\n"," predicted_labels)\n"," return {\n"," \"eval_accuracy\": accuracy,\n"," \"f1_score\": f1_score,\n"," \"auc\": auc,\n"," \"precision\": precision,\n"," \"recall\": recall,\n"," \"true_positives\": true_pos,\n"," \"true_negatives\": true_neg,\n"," \"false_positives\": false_pos,\n"," \"false_negatives\": false_neg\n"," }\n","\n"," eval_metrics = metric_fn(label_ids, predicted_labels)\n","\n"," if mode == tf.estimator.ModeKeys.TRAIN:\n"," return tf.estimator.EstimatorSpec(mode=mode,\n"," loss=loss,\n"," train_op=train_op)\n"," else:\n"," return tf.estimator.EstimatorSpec(mode=mode,\n"," loss=loss,\n"," eval_metric_ops=eval_metrics)\n"," else:\n"," (predicted_labels, log_probs) = create_model(\n"," bert_model_hub, is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)\n","\n"," predictions = {\n"," 'probabilities': log_probs,\n"," 'labels': predicted_labels\n"," }\n"," return tf.estimator.EstimatorSpec(mode, predictions=predictions)\n","\n"," # Return the actual model function in the closure\n"," return model_fn\n","\n","def estimator_builder(bert_model_hub, OUTPUT_DIR, SAVE_SUMMARY_STEPS, SAVE_CHECKPOINTS_STEPS, label_list, LEARNING_RATE, num_train_steps, num_warmup_steps, BATCH_SIZE):\n","\n"," # Specify outpit directory and number of checkpoint steps to save\n"," run_config = tf.estimator.RunConfig(\n"," model_dir=OUTPUT_DIR,\n"," save_summary_steps=SAVE_SUMMARY_STEPS,\n"," save_checkpoints_steps=SAVE_CHECKPOINTS_STEPS)\n","\n"," model_fn = model_fn_builder(\n"," bert_model_hub = bert_model_hub,\n"," num_labels=len(label_list),\n"," learning_rate=LEARNING_RATE,\n"," num_train_steps=num_train_steps,\n"," num_warmup_steps=num_warmup_steps)\n","\n"," estimator = tf.estimator.Estimator(\n"," model_fn=model_fn,\n"," config=run_config,\n"," params={\"batch_size\": BATCH_SIZE})\n"," return estimator, model_fn, run_config\n"],"execution_count":0,"outputs":[]},{"cell_type":"code","metadata":{"id":"IuMOGwFui4it","colab_type":"code","trusted":true,"colab":{}},"source":["def run_on_dfs(train, test, DATA_COLUMN, LABEL_COLUMN, \n"," MAX_SEQ_LENGTH = 128,\n"," BATCH_SIZE = 32,\n"," LEARNING_RATE = 2e-5,\n"," NUM_TRAIN_EPOCHS = 3.0,\n"," WARMUP_PROPORTION = 0.1,\n"," SAVE_SUMMARY_STEPS = 100,\n"," SAVE_CHECKPOINTS_STEPS = 10000,\n"," bert_model_hub = \"https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1\"):\n","\n"," label_list = train[LABEL_COLUMN].unique().tolist()\n"," \n"," tokenizer = create_tokenizer_from_hub_module(bert_model_hub)\n","\n"," train_features = make_features(train, label_list, MAX_SEQ_LENGTH, tokenizer, DATA_COLUMN, LABEL_COLUMN)\n"," test_features = make_features(test, label_list, MAX_SEQ_LENGTH, tokenizer, DATA_COLUMN, LABEL_COLUMN)\n","\n"," num_train_steps = int(len(train_features) / BATCH_SIZE * NUM_TRAIN_EPOCHS)\n"," num_warmup_steps = int(num_train_steps * WARMUP_PROPORTION)\n","\n"," estimator, model_fn, run_config = estimator_builder(\n"," bert_model_hub, \n"," OUTPUT_DIR, \n"," SAVE_SUMMARY_STEPS, \n"," SAVE_CHECKPOINTS_STEPS, \n"," label_list, \n"," LEARNING_RATE, \n"," num_train_steps, \n"," num_warmup_steps, \n"," BATCH_SIZE)\n","\n"," train_input_fn = bert.run_classifier.input_fn_builder(\n"," features=train_features,\n"," seq_length=MAX_SEQ_LENGTH,\n"," is_training=True,\n"," drop_remainder=False)\n","\n"," estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)\n","\n"," test_input_fn = run_classifier.input_fn_builder(\n"," features=test_features,\n"," seq_length=MAX_SEQ_LENGTH,\n"," is_training=False,\n"," drop_remainder=False)\n","\n"," result_dict = estimator.evaluate(input_fn=test_input_fn, steps=None)\n"," return result_dict, estimator\n"," "],"execution_count":0,"outputs":[]},{"cell_type":"code","metadata":{"trusted":true,"id":"wpUHTA8LIZu_","colab_type":"code","colab":{}},"source":["import random\n","random.seed(10)"],"execution_count":0,"outputs":[]},{"cell_type":"code","metadata":{"trusted":true,"id":"qmP8MBvjIZvB","colab_type":"code","colab":{}},"source":["OUTPUT_DIR = 'output'"],"execution_count":0,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"UV3ExI2JJMhd","colab_type":"text"},"source":["----- 只需更改下方代码 ------"]},{"cell_type":"markdown","metadata":{"id":"XSUjVoFtJVEO","colab_type":"text"},"source":["导入数据集"]},{"cell_type":"code","metadata":{"id":"20hnmIEeLb4F","colab_type":"code","outputId":"0021e66b-fe51-4de3-8203-a186f165c038","executionInfo":{"status":"ok","timestamp":1574680180358,"user_tz":-480,"elapsed":15989,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}},"colab":{"base_uri":"https://localhost:8080/","height":593}},"source":["!wget https://github.com/yaoyue123/SocialComputing/raw/master/spam_message/training.txt\n","!wget https://github.com/yaoyue123/SocialComputing/raw/master/spam_message/validation.txt"],"execution_count":41,"outputs":[{"output_type":"stream","text":["--2019-11-25 11:09:32-- https://github.com/yaoyue123/SocialComputing/raw/master/spam_message/training.txt\n","Resolving github.com (github.com)... 140.82.113.3\n","Connecting to github.com (github.com)|140.82.113.3|:443... connected.\n","HTTP request sent, awaiting response... 302 Found\n","Location: https://raw.githubusercontent.com/yaoyue123/SocialComputing/master/spam_message/training.txt [following]\n","--2019-11-25 11:09:33-- https://raw.githubusercontent.com/yaoyue123/SocialComputing/master/spam_message/training.txt\n","Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n","Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n","HTTP request sent, awaiting response... 200 OK\n","Length: 1149258 (1.1M) [text/plain]\n","Saving to: ‘training.txt.1’\n","\n","\rtraining.txt.1 0%[ ] 0 --.-KB/s \rtraining.txt.1 100%[===================>] 1.10M --.-KB/s in 0.07s \n","\n","2019-11-25 11:09:33 (14.7 MB/s) - ‘training.txt.1’ saved [1149258/1149258]\n","\n","--2019-11-25 11:09:36-- https://github.com/yaoyue123/SocialComputing/raw/master/spam_message/validation.txt\n","Resolving github.com (github.com)... 140.82.113.3\n","Connecting to github.com (github.com)|140.82.113.3|:443... connected.\n","HTTP request sent, awaiting response... 302 Found\n","Location: https://raw.githubusercontent.com/yaoyue123/SocialComputing/master/spam_message/validation.txt [following]\n","--2019-11-25 11:09:37-- https://raw.githubusercontent.com/yaoyue123/SocialComputing/master/spam_message/validation.txt\n","Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n","Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n","HTTP request sent, awaiting response... 200 OK\n","Length: 144983 (142K) [text/plain]\n","Saving to: ‘validation.txt.1’\n","\n","validation.txt.1 100%[===================>] 141.58K --.-KB/s in 0.04s \n","\n","2019-11-25 11:09:37 (3.78 MB/s) - ‘validation.txt.1’ saved [144983/144983]\n","\n"],"name":"stdout"}]},{"cell_type":"code","metadata":{"id":"BA_TjeIigK3X","colab_type":"code","outputId":"90dd406a-0459-4cc8-f842-a7a702894af7","executionInfo":{"status":"ok","timestamp":1574680180360,"user_tz":-480,"elapsed":15973,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}},"colab":{"base_uri":"https://localhost:8080/","height":35}},"source":["train = pd.read_table(\"training.txt\",sep='\\t',error_bad_lines=False)\n","#mytrain= mytrain[order]\n","\n","test = pd.read_table(\"validation.txt\",sep='\\t',error_bad_lines=False)\n","#mytest= mytest[order]"],"execution_count":42,"outputs":[{"output_type":"stream","text":["b'Skipping line 11224: expected 2 fields, saw 3\\n'\n"],"name":"stderr"}]},{"cell_type":"code","metadata":{"id":"YJXN3NQ4nNd0","colab_type":"code","outputId":"35a66662-f6f4-470b-d361-328601bb2a5f","executionInfo":{"status":"ok","timestamp":1574680180362,"user_tz":-480,"elapsed":15961,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}},"colab":{"base_uri":"https://localhost:8080/","height":202}},"source":["train.head()"],"execution_count":43,"outputs":[{"output_type":"execute_result","data":{"text/html":["
\n","\n","
\n"," \n"," \n"," | \n"," label | \n"," massage | \n","
\n"," \n"," \n"," \n"," | 0 | \n"," 0 | \n"," 结果发现对方律师和法官像自己一样浑 | \n","
\n"," \n"," | 1 | \n"," 0 | \n"," 本基金的基金管理人为富国基金管理有限公司 | \n","
\n"," \n"," | 2 | \n"," 0 | \n"," 的电了秀完这一波我要继续做安静看书的美少女xxx就是我的家耶斯 | \n","
\n"," \n"," | 3 | \n"," 0 | \n"," xxxx年x月x日君寿大师与天吕集团达成战略合作 | \n","
\n"," \n"," | 4 | \n"," 0 | \n"," 在30个身高、体重、年龄都差不多的女孩里面 | \n","
\n"," \n","
\n","
"],"text/plain":[" label massage\n","0 0 结果发现对方律师和法官像自己一样浑\n","1 0 本基金的基金管理人为富国基金管理有限公司\n","2 0 的电了秀完这一波我要继续做安静看书的美少女xxx就是我的家耶斯\n","3 0 xxxx年x月x日君寿大师与天吕集团达成战略合作\n","4 0 在30个身高、体重、年龄都差不多的女孩里面"]},"metadata":{"tags":[]},"execution_count":43}]},{"cell_type":"code","metadata":{"id":"liSd6ZBFnaTq","colab_type":"code","outputId":"faa8da26-1530-4214-b5e9-e9335eca201e","executionInfo":{"status":"ok","timestamp":1574680180364,"user_tz":-480,"elapsed":15948,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}},"colab":{"base_uri":"https://localhost:8080/","height":202}},"source":["test.head()"],"execution_count":44,"outputs":[{"output_type":"execute_result","data":{"text/html":["\n","\n","
\n"," \n"," \n"," | \n"," label | \n"," massage | \n","
\n"," \n"," \n"," \n"," | 0 | \n"," 0 | \n"," 中国好声音怎么赶脚要变成中国怪声音的节奏 | \n","
\n"," \n"," | 1 | \n"," 0 | \n"," 促使苏州的二手楼市愈发兴旺起来 | \n","
\n"," \n"," | 2 | \n"," 0 | \n"," 3、看副驾驶出租车姓名并记下车牌号 | \n","
\n"," \n"," | 3 | \n"," 1 | \n"," 喜闹元宵 ,史无前例, 夜更精彩 ! x月x日凡来好润佳财富购物,全场满xxx立减xx ... | \n","
\n"," \n"," | 4 | \n"," 0 | \n"," 曝光一个骗子不做链接不给验票必须直接支付宝还说现在让快递拿走真心搞笑智商呢 | \n","
\n"," \n","
\n","
"],"text/plain":[" label massage\n","0 0 中国好声音怎么赶脚要变成中国怪声音的节奏\n","1 0 促使苏州的二手楼市愈发兴旺起来\n","2 0 3、看副驾驶出租车姓名并记下车牌号\n","3 1 喜闹元宵 ,史无前例, 夜更精彩 ! x月x日凡来好润佳财富购物,全场满xxx立减xx ...\n","4 0 曝光一个骗子不做链接不给验票必须直接支付宝还说现在让快递拿走真心搞笑智商呢"]},"metadata":{"tags":[]},"execution_count":44}]},{"cell_type":"markdown","metadata":{"id":"qgcK6-xkOy4Z","colab_type":"text"},"source":["在此更改你的参数,如标签,bert模型地址,epochs"]},{"cell_type":"code","metadata":{"id":"hM8M7k0gKk5H","colab_type":"code","colab":{}},"source":["myparam = {\n"," \"DATA_COLUMN\": \"massage\",\n"," \"LABEL_COLUMN\": \"label\",\n"," \"LEARNING_RATE\": 2e-5,\n"," \"NUM_TRAIN_EPOCHS\":1,\n"," \"bert_model_hub\":\"https://tfhub.dev/google/bert_chinese_L-12_H-768_A-12/1\"\n","\n"," }"],"execution_count":0,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"x_Q8kZHiTma2","colab_type":"text"},"source":["训练模型,通常情况下,一个epochs用k80训练大概在10min左右"]},{"cell_type":"code","metadata":{"colab_type":"code","id":"Dg2apeXpMqG-","outputId":"1350c684-dc85-4f3e-f52a-1ee96b9a6128","executionInfo":{"status":"ok","timestamp":1574681036220,"user_tz":-480,"elapsed":871782,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}},"colab":{"base_uri":"https://localhost:8080/","height":1000}},"source":["result, estimator = run_on_dfs(train, test, **myparam)"],"execution_count":46,"outputs":[{"output_type":"stream","text":["INFO:tensorflow:Saver not created because there are no variables in the graph to restore\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Saver not created because there are no variables in the graph to restore\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Writing example 0 of 14841\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Writing example 0 of 14841\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 结 果 发 现 对 方 律 师 和 法 官 像 自 己 一 样 浑 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 结 果 发 现 对 方 律 师 和 法 官 像 自 己 一 样 浑 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 5310 3362 1355 4385 2190 3175 2526 2360 1469 3791 2135 1008 5632 2346 671 3416 3847 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 5310 3362 1355 4385 2190 3175 2526 2360 1469 3791 2135 1008 5632 2346 671 3416 3847 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 本 基 金 的 基 金 管 理 人 为 富 国 基 金 管 理 有 限 公 司 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 本 基 金 的 基 金 管 理 人 为 富 国 基 金 管 理 有 限 公 司 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 3315 1825 7032 4638 1825 7032 5052 4415 782 711 2168 1744 1825 7032 5052 4415 3300 7361 1062 1385 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 3315 1825 7032 4638 1825 7032 5052 4415 782 711 2168 1744 1825 7032 5052 4415 3300 7361 1062 1385 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 的 电 了 秀 完 这 一 波 我 要 继 续 做 安 静 看 书 的 美 少 女 xxx 就 是 我 的 家 耶 斯 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 的 电 了 秀 完 这 一 波 我 要 继 续 做 安 静 看 书 的 美 少 女 xxx 就 是 我 的 家 耶 斯 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 4638 4510 749 4899 2130 6821 671 3797 2769 6206 5326 5330 976 2128 7474 4692 741 4638 5401 2208 1957 8790 2218 3221 2769 4638 2157 5456 3172 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 4638 4510 749 4899 2130 6821 671 3797 2769 6206 5326 5330 976 2128 7474 4692 741 4638 5401 2208 1957 8790 2218 3221 2769 4638 2157 5456 3172 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] xxxx 年 x 月 x 日 君 寿 大 师 与 天 吕 集 团 达 成 战 略 合 作 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] xxxx 年 x 月 x 日 君 寿 大 师 与 天 吕 集 团 达 成 战 略 合 作 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 12243 2399 166 3299 166 3189 1409 2195 1920 2360 680 1921 1406 7415 1730 6809 2768 2773 4526 1394 868 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 12243 2399 166 3299 166 3189 1409 2195 1920 2360 680 1921 1406 7415 1730 6809 2768 2773 4526 1394 868 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 在 30 个 身 高 、 体 重 、 年 龄 都 差 不 多 的 女 孩 里 面 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 在 30 个 身 高 、 体 重 、 年 龄 都 差 不 多 的 女 孩 里 面 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 1762 8114 702 6716 7770 510 860 7028 510 2399 7977 6963 2345 679 1914 4638 1957 2111 7027 7481 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 1762 8114 702 6716 7770 510 860 7028 510 2399 7977 6963 2345 679 1914 4638 1957 2111 7027 7481 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Writing example 10000 of 14841\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Writing example 10000 of 14841\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Writing example 0 of 1974\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Writing example 0 of 1974\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 中 国 好 声 音 怎 么 赶 脚 要 变 成 中 国 怪 声 音 的 节 奏 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 中 国 好 声 音 怎 么 赶 脚 要 变 成 中 国 怪 声 音 的 节 奏 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 704 1744 1962 1898 7509 2582 720 6628 5558 6206 1359 2768 704 1744 2597 1898 7509 4638 5688 1941 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 704 1744 1962 1898 7509 2582 720 6628 5558 6206 1359 2768 704 1744 2597 1898 7509 4638 5688 1941 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 促 使 苏 州 的 二 手 楼 市 愈 发 兴 旺 起 来 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 促 使 苏 州 的 二 手 楼 市 愈 发 兴 旺 起 来 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 914 886 5722 2336 4638 753 2797 3517 2356 2689 1355 1069 3200 6629 3341 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 914 886 5722 2336 4638 753 2797 3517 2356 2689 1355 1069 3200 6629 3341 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 3 、 看 副 驾 驶 出 租 车 姓 名 并 记 下 车 牌 号 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 3 、 看 副 驾 驶 出 租 车 姓 名 并 记 下 车 牌 号 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 124 510 4692 1199 7730 7724 1139 4909 6756 1998 1399 2400 6381 678 6756 4277 1384 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 124 510 4692 1199 7730 7724 1139 4909 6756 1998 1399 2400 6381 678 6756 4277 1384 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 喜 闹 元 宵 , 史 无 前 例 , 夜 更 精 彩 ! x 月 x 日 凡 来 好 润 佳 财 富 购 物 , 全 场 满 xxx 立 减 xx ( 生 鲜 、 特 价 、 油 、 米 、 纸 、 洗 衣 粉 、 皂 、 烟 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 喜 闹 元 宵 , 史 无 前 例 , 夜 更 精 彩 ! x 月 x 日 凡 来 好 润 佳 财 富 购 物 , 全 场 满 xxx 立 减 xx ( 生 鲜 、 特 价 、 油 、 米 、 纸 、 洗 衣 粉 、 皂 、 烟 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 1599 7317 1039 2156 8024 1380 3187 1184 891 8024 1915 3291 5125 2506 8013 166 3299 166 3189 1127 3341 1962 3883 881 6568 2168 6579 4289 8024 1059 1767 4007 8790 4989 1121 8584 8020 4495 7831 510 4294 817 510 3779 510 5101 510 5291 510 3819 6132 5106 510 4637 510 4170 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 1599 7317 1039 2156 8024 1380 3187 1184 891 8024 1915 3291 5125 2506 8013 166 3299 166 3189 1127 3341 1962 3883 881 6568 2168 6579 4289 8024 1059 1767 4007 8790 4989 1121 8584 8020 4495 7831 510 4294 817 510 3779 510 5101 510 5291 510 3819 6132 5106 510 4637 510 4170 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 1 (id = 1)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 1 (id = 1)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:*** Example ***\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:guid: None\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 曝 光 一 个 骗 子 不 做 链 接 不 给 验 票 必 须 直 接 支 付 宝 还 说 现 在 让 快 递 拿 走 真 心 搞 笑 智 商 呢 [SEP]\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:tokens: [CLS] 曝 光 一 个 骗 子 不 做 链 接 不 给 验 票 必 须 直 接 支 付 宝 还 说 现 在 让 快 递 拿 走 真 心 搞 笑 智 商 呢 [SEP]\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 3284 1045 671 702 7745 2094 679 976 7216 2970 679 5314 7741 4873 2553 7557 4684 2970 3118 802 2140 6820 6432 4385 1762 6375 2571 6853 2897 6624 4696 2552 3018 5010 3255 1555 1450 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_ids: 101 3284 1045 671 702 7745 2094 679 976 7216 2970 679 5314 7741 4873 2553 7557 4684 2970 3118 802 2140 6820 6432 4385 1762 6375 2571 6853 2897 6624 4696 2552 3018 5010 3255 1555 1450 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:label: 0 (id = 0)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Using config: {'_model_dir': 'output', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 10000, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true\n","graph_options {\n"," rewrite_options {\n"," meta_optimizer_iterations: ONE\n"," }\n","}\n",", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': , '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Using config: {'_model_dir': 'output', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 10000, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true\n","graph_options {\n"," rewrite_options {\n"," meta_optimizer_iterations: ONE\n"," }\n","}\n",", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': , '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Calling model_fn.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Calling model_fn.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Saver not created because there are no variables in the graph to restore\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Saver not created because there are no variables in the graph to restore\n","/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n"," \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Done calling model_fn.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Done calling model_fn.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Create CheckpointSaverHook.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Create CheckpointSaverHook.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Graph was finalized.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Graph was finalized.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Restoring parameters from output/model.ckpt-0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Restoring parameters from output/model.ckpt-0\n"],"name":"stderr"},{"output_type":"stream","text":["WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/saver.py:1069: get_checkpoint_mtimes (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use standard file utilities to get mtimes.\n"],"name":"stdout"},{"output_type":"stream","text":["WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/saver.py:1069: get_checkpoint_mtimes (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use standard file utilities to get mtimes.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Running local_init_op.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Running local_init_op.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Done running local_init_op.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Done running local_init_op.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Saving checkpoints for 0 into output/model.ckpt.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Saving checkpoints for 0 into output/model.ckpt.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.40486598, step = 0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.40486598, step = 0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.574887\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.574887\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.0010435606, step = 100 (173.953 sec)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.0010435606, step = 100 (173.953 sec)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.651929\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.651929\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.0037862405, step = 200 (153.388 sec)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.0037862405, step = 200 (153.388 sec)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.643517\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.643517\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.0011707861, step = 300 (155.401 sec)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.0011707861, step = 300 (155.401 sec)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.648718\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:global_step/sec: 0.648718\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.001997455, step = 400 (154.147 sec)\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:loss = 0.001997455, step = 400 (154.147 sec)\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Saving checkpoints for 463 into output/model.ckpt.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Saving checkpoints for 463 into output/model.ckpt.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Loss for final step: 0.0015291406.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Loss for final step: 0.0015291406.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Calling model_fn.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Calling model_fn.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Saver not created because there are no variables in the graph to restore\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Saver not created because there are no variables in the graph to restore\n","/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n"," \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Done calling model_fn.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Done calling model_fn.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Starting evaluation at 2019-11-25T11:23:11Z\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Starting evaluation at 2019-11-25T11:23:11Z\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Graph was finalized.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Graph was finalized.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Restoring parameters from output/model.ckpt-463\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Restoring parameters from output/model.ckpt-463\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Running local_init_op.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Running local_init_op.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Done running local_init_op.\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Done running local_init_op.\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Finished evaluation at 2019-11-25-11:23:51\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Finished evaluation at 2019-11-25-11:23:51\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Saving dict for global step 463: auc = 0.9902439, eval_accuracy = 0.9979737, f1_score = 0.9901477, false_negatives = 4.0, false_positives = 0.0, global_step = 463, loss = 0.010224212, precision = 1.0, recall = 0.9804878, true_negatives = 1769.0, true_positives = 201.0\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Saving dict for global step 463: auc = 0.9902439, eval_accuracy = 0.9979737, f1_score = 0.9901477, false_negatives = 4.0, false_positives = 0.0, global_step = 463, loss = 0.010224212, precision = 1.0, recall = 0.9804878, true_negatives = 1769.0, true_positives = 201.0\n"],"name":"stderr"},{"output_type":"stream","text":["INFO:tensorflow:Saving 'checkpoint_path' summary for global step 463: output/model.ckpt-463\n"],"name":"stdout"},{"output_type":"stream","text":["INFO:tensorflow:Saving 'checkpoint_path' summary for global step 463: output/model.ckpt-463\n"],"name":"stderr"}]},{"cell_type":"markdown","metadata":{"id":"iJfHK6IRT49J","colab_type":"text"},"source":["bert模型还是比较强的,一个epochs就能达到准确率为99%"]},{"cell_type":"code","metadata":{"id":"YLOvtveTMqwp","colab_type":"code","colab":{"base_uri":"https://localhost:8080/","height":386},"outputId":"1d129704-da63-40d1-b6b6-6381d7b2c37c","executionInfo":{"status":"ok","timestamp":1574681063338,"user_tz":-480,"elapsed":1743,"user":{"displayName":"李云","photoUrl":"","userId":"11496847789952362169"}}},"source":["pretty_print(result)"],"execution_count":48,"outputs":[{"output_type":"execute_result","data":{"text/html":["\n","\n","
\n"," \n"," \n"," | \n"," values | \n","
\n"," \n"," \n"," \n"," | auc | \n"," 0.990244 | \n","
\n"," \n"," | eval_accuracy | \n"," 0.997974 | \n","
\n"," \n"," | f1_score | \n"," 0.990148 | \n","
\n"," \n"," | false_negatives | \n"," 4.000000 | \n","
\n"," \n"," | false_positives | \n"," 0.000000 | \n","
\n"," \n"," | loss | \n"," 0.010224 | \n","
\n"," \n"," | precision | \n"," 1.000000 | \n","
\n"," \n"," | recall | \n"," 0.980488 | \n","
\n"," \n"," | true_negatives | \n"," 1769.000000 | \n","
\n"," \n"," | true_positives | \n"," 201.000000 | \n","
\n"," \n"," | global_step | \n"," 463.000000 | \n","
\n"," \n","
\n","
"],"text/plain":[" values\n","auc 0.990244\n","eval_accuracy 0.997974\n","f1_score 0.990148\n","false_negatives 4.000000\n","false_positives 0.000000\n","loss 0.010224\n","precision 1.000000\n","recall 0.980488\n","true_negatives 1769.000000\n","true_positives 201.000000\n","global_step 463.000000"]},"metadata":{"tags":[]},"execution_count":48}]}]}