
The optimizationBenchmarking.org
Experiment Evaluator

Thomas Weise
tweise@ustc.edu.cn · tweise@gmx.de · http://www.it-weise.de

USTC-Birmingham Joint Res. Inst. in Intelligent Computation and Its Applications (UBRI)
University of Science and Technology of China (USTC), Hefei 230027, Anhui, China

September 14, 2015

http://www.optimizationBenchmarking.org
mailto:tweise@ustc.edu.cn
mailto:tweise@gmx.de
http://www.it-weise.de

Outline

1 Introduction

2 Example 1: MAX-SAT

3 Example 2: BBOB

4 Conclusions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 2/75
1

2
3

4
5

6
7

8
9

1
0

1
2

3
4

5
6

7
8

9
1

0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

http://www.optimizationBenchmarking.org

Visit our website

http://www.optimizationBenchmarking.org

or

http://optimizationbenchmarking.github.io/optimizationBenchmarking

for downloading the software (version 0.8.4) and
obtaining more information.

System Requirements:

Java 1.7 (Ideally a JDK, under JRE slower with more memory requirements)

optional: a LATEX installation, such as TeXLive or MiKTeX (needed for generating pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 3/75

http://www.optimizationBenchmarking.org
http://optimizationbenchmarking.github.io/optimizationBenchmarking
http://www.optimizationBenchmarking.org

Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 4/75

http://www.optimizationBenchmarking.org

Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 4/75

http://www.optimizationBenchmarking.org

Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 4/75

http://www.optimizationBenchmarking.org

Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 4/75

http://www.optimizationBenchmarking.org

Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 4/75

http://www.optimizationBenchmarking.org

Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 4/75

http://www.optimizationBenchmarking.org

Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 4/75

http://www.optimizationBenchmarking.org

Section Outline

1 Introduction

2 Example 1: MAX-SAT

3 Example 2: BBOB

4 Conclusions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 5/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.

We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.

Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?

How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Find the shortest tour for a salesman to visit certain set of cities in
China and return to Hefei!

I need to transport n items from here to Feixi but they are too big to
transport them all at once. How can I load them best into my car so
that I have to travel back and forth the least times?
Which setting of x1, x2, x3, and x4 can make
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) become true
(or, at least, as many of its terms as possible)?
I want to build a large factory with n workshops. I know the flow of
material between each two workshops and now need to choose the
locations of the workshops such that the overall running cost incurred
by material transportation is minimized.

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

Harbin

Beijing

Shanghai

Nanjing

Kunming

Wuhan

Changsha

Hefei

Hong Kong

Chongqing

Xi’an

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Find the shortest tour for a salesman to visit certain set of cities
I need to transport n items from here to Feixi but they are too big to
transport them all at once. How can I load them best into my car so
that I have to travel back and forth the least times?

Which setting of x1, x2, x3, and x4 can make
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) become true
(or, at least, as many of its terms as possible)?
I want to build a large factory with n workshops. I know the flow of
material between each two workshops and now need to choose the
locations of the workshops such that the overall running cost incurred
by material transportation is minimized.

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Find the shortest tour for a salesman to visit certain set of cities
I need to transport n items from here to Feixi
Which setting of x1, x2, x3, and x4 can make
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) become true
(or, at least, as many of its terms as possible)?

I want to build a large factory with n workshops. I know the flow of
material between each two workshops and now need to choose the
locations of the workshops such that the overall running cost incurred
by material transportation is minimized.

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

x
1
x

2
x

3
x

4

≥1

&≥1

≥1

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Find the shortest tour for a salesman to visit certain set of cities
I need to transport n items from here to Feixi
Which setting of x1, x2, x3, and x4 can make
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) become true
I want to build a large factory with n workshops. I know the flow of
material between each two workshops and now need to choose the
locations of the workshops such that the overall running cost incurred
by material transportation is minimized.

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

L1

L2

L4
ro

ad

L3

L5
the land with
5 locations

5 workshops and goods flows betwee them
which need to be assigned to locations

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Find the shortest tour for a salesman to visit certain set of cities
I need to transport n items from here to Feixi
Which setting of x1, x2, x3, and x4 can make
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) become true
I want to build a large factory with n workshops.

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.

We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

1

1 million
1 billion
1 trillion

10
15

10
20

10
30

10
25

10
40

10
35

4 81 2 64 12816 32 256 512 1024 2048

f(x)=1.1
x

ms per day

picoseconds
since big bang

f(x)=ex f(x)=2
x

problem instance size100

w
o

rs
t-

c
a

s
e

 r
u

n
ti
m

e
to

 f
in

d
 t

h
e

 o
p

ti
m

u
m

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.

We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

1

1 million
1 billion
1 trillion

10
15

10
20

10
30

10
25

10
40

10
35

4 81 2 64 12816 32 256 512 1024 2048

f(x)=1.1
x

ms per day

picoseconds
since big bang

f(x)=ex f(x)=2
x

problem instance size100

w
o

rs
t-

c
a

s
e

 r
u

n
ti
m

e
to

 f
in

d
 t

h
e

 o
p

ti
m

u
m

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.

Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9], Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9], Particle Swarm Optimization [9], Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9], Particle Swarm Optimization [9], Estimation of
Distribution Algorithms [20–27], CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9], Particle Swarm Optimization [9], Estimation of
Distribution Algorithms [20–27], CMA-ES [28–35], and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9], Particle Swarm Optimization [9], Estimation of
Distribution Algorithms [20–27], CMA-ES [28–35], and Local Search
methods [36–38] such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9], Particle Swarm Optimization [9], Estimation of
Distribution Algorithms [20–27], CMA-ES [28–35], and Local Search
methods [36–38] such as Simulated Annealing [9, 39–47] or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.
We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.
Examples of such algorithms are Evolutionary Algorithms [1–9], Ant
Colony Optimization [9–13], Evolution Strategies [9, 14–19], Differential
Evolution [9], Particle Swarm Optimization [9], Estimation of
Distribution Algorithms [20–27], CMA-ES [28–35], and Local Search
methods [36–38] such as Simulated Annealing [9, 39–47] or Tabu
Search [48–52], as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?
How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.

We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.

Examples of such algorithms are. . . many

Which of them is best (for my problem)?

How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Optimization Algorithms

Many questions in the real world are actually optimization problems,
e.g.,

Traveling Salesman Problem [60–63]

Bin Packing Problem [64]

Maximum (3-)Satisfiability Problem [65–68]

Quadratic Assignment Problem [69, 70]

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.

We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.

Examples of such algorithms are. . . many

Which of them is best (for my problem)?

How can I make a good algorithm better (for my problem)?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 6/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated

since

algorithms are usually randomized

and
have many parameters (e.g., crossover rate, population size)

and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated

since

algorithms are usually randomized

and
have many parameters (e.g., crossover rate, population size)

and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality

Usually not feasible

analysis extremely complicated

since

algorithms are usually randomized

and
have many parameters (e.g., crossover rate, population size)

and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated

since

algorithms are usually randomized

and
have many parameters (e.g., crossover rate, population size)

and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated

since

algorithms are usually randomized

and
have many parameters (e.g., crossover rate, population size)

and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized

and

have many parameters (e.g., crossover rate, population size)

and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized and
have many parameters (e.g., crossover rate, population size)

and

“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized and
have many parameters (e.g., crossover rate, population size) and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)

optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized and
have many parameters (e.g., crossover rate, population size) and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects

theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized and
have many parameters (e.g., crossover rate, population size) and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.

Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized and
have many parameters (e.g., crossover rate, population size) and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized and
have many parameters (e.g., crossover rate, population size) and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]:

solution quality

and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]:

solution quality

and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]: solution quality

and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]: solution quality and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]: solution quality and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]: solution quality and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]: solution quality and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]: solution quality and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]: solution quality and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 8/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a benchmark instance

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a benchmark instance

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances:

multiple instances

which cover some different problem features
should be well-known to make results comparable
e.g., TSPLib [77–79] for the TSP has instances with different numbers of
cities and geometries
e.g., BBOB [71, 80–82] offers different benchmark functions for numerical
optimization problems

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances:

multiple instances
which cover some different problem features

should be well-known to make results comparable
e.g., TSPLib [77–79] for the TSP has instances with different numbers of
cities and geometries
e.g., BBOB [71, 80–82] offers different benchmark functions for numerical
optimization problems

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances:

multiple instances
which cover some different problem features
should be well-known to make results comparable

e.g., TSPLib [77–79] for the TSP has instances with different numbers of
cities and geometries
e.g., BBOB [71, 80–82] offers different benchmark functions for numerical
optimization problems

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances:

multiple instances
which cover some different problem features
should be well-known to make results comparable
e.g., TSPLib [77–79] for the TSP has instances with different numbers of
cities and geometries

e.g., BBOB [71, 80–82] offers different benchmark functions for numerical
optimization problems

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

The relative amounts of the instances of the 110 symmetric instances of TSPLib
according to their features (the 10 asymmetric instances are not plotted).

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances:

multiple instances
which cover some different problem features
should be well-known to make results comparable
e.g., BBOB [71, 80–82] offers different benchmark functions for numerical
optimization problems

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

The relative amounts of BBOB benchmark functions according to their features.

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiment

3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiment:

conduct several independent runs of algorithm for each benchmark
instance

collect algorithm progress informatio, e.g., as “runtime
bestObjectiveValue” tuples
one log file per run, each log file has several such tuples
repeat for different algorithm parameter settings (e.g., different
population sizes of an EA)
repeat with other algorithms for comparison purposes

3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiment:

conduct several independent runs of algorithm for each benchmark
instance
collect algorithm progress informatio, e.g., as “runtime
bestObjectiveValue” tuples

one log file per run, each log file has several such tuples
repeat for different algorithm parameter settings (e.g., different
population sizes of an EA)
repeat with other algorithms for comparison purposes

3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

1

2

3

4

5

6

24099

39334

311078

311078

311078

311078

311078

1111598495

3

5

5

5

5

5

11393

42.19354838709677

70.32258064516128

70.32258064516128

70.32258064516128

70.32258064516128

70.32258064516128

160237.03225806452

4075

3976

3894

3824

3761

3705

2579

...

FEs: function evaluations
DEs: accesses to distance

matrix
AT: absolute runtime in ms
NT: absolute runtime divided

by machine-specific
performance factor

best objective value:

best result so far

Example for data collected in a log file by TSP Suite [72, 83].

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiment:

conduct several independent runs of algorithm for each benchmark
instance
collect algorithm progress informatio, e.g., as “runtime
bestObjectiveValue” tuples
one log file per run, each log file has several such tuples

repeat for different algorithm parameter settings (e.g., different
population sizes of an EA)
repeat with other algorithms for comparison purposes

3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments:

conduct several independent runs of algorithm for each benchmark
instance
collect algorithm progress informatio, e.g., as “runtime
bestObjectiveValue” tuples
one log file per run, each log file has several such tuples
repeat for different algorithm parameter settings (e.g., different
population sizes of an EA)

repeat with other algorithms for comparison purposes

3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments:

conduct several independent runs of algorithm for each benchmark
instance
collect algorithm progress informatio, e.g., as “runtime
bestObjectiveValue” tuples
one log file per run, each log file has several such tuples
repeat for different algorithm parameter settings (e.g., different
population sizes of an EA)
repeat with other algorithms for comparison purposes

3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time

draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] (over time)
use statistical tests to compare results (at different points during the
runs)
analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

0 log (FE/n)10

F
b

2
0.0

4

0.2

0.8

0.4

0.6

1.0

2 log10(FE/n)
0.00

0.50

0

1.00

E
C

D
F

F
E

0
.0

1

6

0.25

0.125 Ft

lo
g

1
0
(E

R
T

/n
)

F
E

0.500.375
0

2

0.00

4

8

0.250

Examples for progress diagrams for different algorithms (signified by different colors)
over different sub-sets of the TSPLib data.

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time
draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] (over time)

use statistical tests to compare results (at different points during the
runs)
analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

0 log (FE/n)10

F
b

2
0.0

4

0.2

0.8

0.4

0.6

1.0

2 log10(FE/n)
0.00

0.50

0

1.00

E
C

D
F

F
E

0
.0

1

6

0.25

0.125 Ft

lo
g

1
0
(E

R
T

/n
)

F
E

0.500.375
0

2

0.00

4

8

0.250

Examples for progress and ERT diagrams for different algorithms (signified by different
colors) over different sub-sets of the TSPLib data.

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time
draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] and ERT [72, 80] (over time)

use statistical tests to compare results (at different points during the
runs)
analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

0 log (FE/n)10

F
b

2
0.0

4

0.2

0.8

0.4

0.6

1.0

2 log10(FE/n)
0.00

0.50

0

1.00

E
C

D
F

F
E

0
.0

1

6

0.25

0.125 Ft

lo
g

1
0
(E

R
T

/n
)

F
E

0.500.375
0

2

0.00

4

8

0.250

Examples for progress, ERT, and ECDF diagrams for different algorithms (signified by
different colors) over different sub-sets of the TSPLib data.

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time
draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] and ERT [72, 80] (over time)
use statistical tests to compare results (at different points during the
runs)

analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time
draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] and ERT [72, 80] (over time)
use statistical tests to compare results (at different points during the
runs)
analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time
draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] and ERT [72, 80] (over time)
use statistical tests to compare results (at different points during the
runs)
analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings

5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time
draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] and ERT [72, 80] (over time)
use statistical tests to compare results (at different points during the
runs)
analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a set of benchmark instances
2 Do experiments
3 Evaluate the gathered data:

draw diagrams of progress of solution quality over time
draw diagrams of advanced statistical parameters such as
ECDF [66, 72, 80, 84] and ERT [72, 80] (over time)
use statistical tests to compare results (at different points during the
runs)
analyze the impact of benchmark features and algorithm parameters on
the above

4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 9/75

http://www.optimizationBenchmarking.org

Section Outline

1 Introduction

2 Example 1: MAX-SAT

3 Example 2: BBOB

4 Conclusions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 10/75

http://www.optimizationBenchmarking.org

Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org

Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org

Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org

Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

The satisfiability problem (SAT) is one of the most prominent problems
in artificial intelligence, logic, theoretical computer science, and various
application areas. [65]

Given: formula B in Boolean logic consisting of n Boolean variables
~x = (x1, x2, . . . , xn)

T which each can be either true or false
Goal: find a setting for these variables so that B becomes true

CNF 3-SAT Problems

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

The satisfiability problem (SAT) is one of the most prominent problems
in artificial intelligence, logic, theoretical computer science, and various
application areas. [65]

Given: formula B in Boolean logic consisting of n Boolean variables
~x = (x1, x2, . . . , xn)

T which each can be either true or false

Goal: find a setting for these variables so that B becomes true

CNF 3-SAT Problems

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

The satisfiability problem (SAT) is one of the most prominent problems
in artificial intelligence, logic, theoretical computer science, and various
application areas. [65]

Given: formula B in Boolean logic consisting of n Boolean variables
~x = (x1, x2, . . . , xn)

T which each can be either true or false
Goal: find a setting for these variables so that B becomes true

CNF 3-SAT Problems

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

B consists of k clauses C1 . . . Ck

each clause consists of 3 literals
a literal can either be a variable (e.g., x5) or its negate (e.g., ¬x5)
in a clause, the 3 literals are combined with logical or (∨)
in the formula B, all k clauses are combined with logical and (∧)

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸

1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸

3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

B consists of k clauses C1 . . . Ck

each clause consists of 3 literals

a literal can either be a variable (e.g., x5) or its negate (e.g., ¬x5)
in a clause, the 3 literals are combined with logical or (∨)
in the formula B, all k clauses are combined with logical and (∧)

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸

1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

B consists of k clauses C1 . . . Ck

each clause consists of 3 literals
a literal can either be a variable (e.g., x5) or its negate (e.g., ¬x5)

in a clause, the 3 literals are combined with logical or (∨)
in the formula B, all k clauses are combined with logical and (∧)

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

B consists of k clauses C1 . . . Ck

each clause consists of 3 literals
a literal can either be a variable (e.g., x5) or its negate (e.g., ¬x5)
in a clause, the 3 literals are combined with logical or (∨)

in the formula B, all k clauses are combined with logical and (∧)

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

B consists of k clauses C1 . . . Ck

each clause consists of 3 literals
a literal can either be a variable (e.g., x5) or its negate (e.g., ¬x5)
in a clause, the 3 literals are combined with logical or (∨)
in the formula B, all k clauses are combined with logical and (∧)

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible
if all are true =⇒ B is satisfied
define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible

if all are true =⇒ B is satisfied
define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible
if all are true =⇒ B is satisfied

define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible
if all are true =⇒ B is satisfied
define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible
if all are true =⇒ B is satisfied
define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible
if all are true =⇒ B is satisfied
define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible
if all are true =⇒ B is satisfied
define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

B(~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸
1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸
3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms

:
1 1-flip Hill Climber

2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber

2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber

starts with random bit string

in each iteration flips a randomly chosen bit
if new solution is better, keep it
otherwise, undo change

2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber

starts with random bit string
in each iteration flips a randomly chosen bit

if new solution is better, keep it
otherwise, undo change

2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber

starts with random bit string
in each iteration flips a randomly chosen bit
if new solution is better, keep it

otherwise, undo change

2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber

starts with random bit string
in each iteration flips a randomly chosen bit
if new solution is better, keep it
otherwise, undo change

2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts

3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts

same as 1-flip Hill Climber, but

restart if no improvement after z steps
z = 1 at beginning, increased by 1 at each restart

3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts

same as 1-flip Hill Climber, but
restart if no improvement after z steps

z = 1 at beginning, increased by 1 at each restart

3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts

same as 1-flip Hill Climber, but
restart if no improvement after z steps
z = 1 at beginning, increased by 1 at each restart

3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber

4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber

like 1-flip Hill Climber, but

in each iteration flips one or two randomly chosen bits

4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber

like 1-flip Hill Climber, but
in each iteration flips one or two randomly chosen bits

4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts

5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber

6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber

like 1- or 2-flip Hill Climber, but

in each iteration, randomly chose m bits to flip (m chosen according to
a geometric distribution)
if new solution is better, keep it, otherwise undo change
all other bits must have been chosen once before a given bit can be
chosen again

6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber

like 1- or 2-flip Hill Climber, but
in each iteration, randomly chose m bits to flip (m chosen according to
a geometric distribution)

if new solution is better, keep it, otherwise undo change
all other bits must have been chosen once before a given bit can be
chosen again

6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber

like 1- or 2-flip Hill Climber, but
in each iteration, randomly chose m bits to flip (m chosen according to
a geometric distribution)
if new solution is better, keep it, otherwise undo change

all other bits must have been chosen once before a given bit can be
chosen again

6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber

like 1- or 2-flip Hill Climber, but
in each iteration, randomly chose m bits to flip (m chosen according to
a geometric distribution)
if new solution is better, keep it, otherwise undo change
all other bits must have been chosen once before a given bit can be
chosen again

6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Investigated Algorithms

We want to compare the performance of six algorithms:
1 1-flip Hill Climber
2 1-flip Hill Climber with Restarts
3 2-flip Hill Climber
4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 13/75

http://www.optimizationBenchmarking.org

Benchmark

As benchmark, we use some instances from SATLib [65]

:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features

:

n: the number of variables

k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75

http://www.optimizationBenchmarking.org

Benchmark

As benchmark, we use some instances from SATLib [65]:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features

:

n: the number of variables

k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75

http://www.optimizationBenchmarking.org

Benchmark

As benchmark, we use some instances from SATLib [65]:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features

:

n: the number of variables

k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75

http://www.optimizationBenchmarking.org

Benchmark

As benchmark, we use some instances from SATLib [65]:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features

:

n: the number of variables

k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75

http://www.optimizationBenchmarking.org

Benchmark

As benchmark, we use some instances from SATLib [65]:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features

:

n: the number of variables

k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75

http://www.optimizationBenchmarking.org

Benchmark

As benchmark, we use some instances from SATLib [65]:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features:

n: the number of variables

k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75

http://www.optimizationBenchmarking.org

Benchmark

As benchmark, we use some instances from SATLib [65]:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features:

n: the number of variables
k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?

1 Data should allow us to reproduce algorithm progress over time

2 We can collect one data point whenever the algorithm makes an
improvement in terms of f

(and one at the end of run)

3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?

1 Data should allow us to reproduce algorithm progress over time

2 We can collect one data point whenever the algorithm makes an
improvement in terms of f

(and one at the end of run)

3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time

2 We can collect one data point whenever the algorithm makes an
improvement in terms of f

(and one at the end of run)

3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time
2 We can collect one data point whenever the algorithm makes an

improvement in terms of f

(and one at the end of run)
3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time
2 We can collect one data point whenever the algorithm makes an

improvement in terms of f (and one at the end of run)

3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time
2 We can collect one data point whenever the algorithm makes an

improvement in terms of f (and one at the end of run)
3 k + 1 possible objective values =⇒ at most k + 2 log points

4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time
2 We can collect one data point whenever the algorithm makes an

improvement in terms of f (and one at the end of run)
3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time
2 We can collect one data point whenever the algorithm makes an

improvement in terms of f (and one at the end of run)
3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time
2 We can collect one data point whenever the algorithm makes an

improvement in terms of f (and one at the end of run)
3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed
the ellapsed runtime RT (in ns)

the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Experiments

Now we want to do the experiments.

What data shall we collect?
1 Data should allow us to reproduce algorithm progress over time
2 We can collect one data point whenever the algorithm makes an

improvement in terms of f (and one at the end of run)
3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed
the ellapsed runtime RT (in ns)
the best objective value F achieved so far

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 15/75

http://www.optimizationBenchmarking.org

Example of Log File

Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 16/75

Listing: Log File uf075-02 2FlipHCrs 01.txt.

1 9806 46

3 24643 28

17 106040 25

19 115529 23

20 120373 21

25 144087 18

31 172967 16

290 1550118 15

296 1576034 14

297 1579525 13

300 1592492 12

323 1692189 10

332 1732127 9

1082 5436999 8

1558 7670059 7

2008 9765759 6

2024 9830168 5

2809 13302012 4

5246 24105640 3

6330 28508740 2

17284 73166926 1

60865 238968738 0

http://www.optimizationBenchmarking.org

Example of Log File

Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 16/75

Listing: Log File uf075-02 2FlipHCrs 01.txt.

1 9806 46

3 24643 28

17 106040 25

19 115529 23

20 120373 21

25 144087 18

31 172967 16

290 1550118 15

296 1576034 14

297 1579525 13

300 1592492 12

323 1692189 10

332 1732127 9

1082 5436999 8

1558 7670059 7

2008 9765759 6

2024 9830168 5

2809 13302012 4

5246 24105640 3

6330 28508740 2

17284 73166926 1

60865 238968738 0

log point

ellapsed FEs

runtime [ns]

F : best f(~x)

http://www.optimizationBenchmarking.org

Example of Log File

Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 16/75

Listing: Log File uf075-02 2FlipHCrs 01.txt.

1 9806 46

3 24643 28

17 106040 25

19 115529 23

20 120373 21

25 144087 18

31 172967 16

290 1550118 15

296 1576034 14

297 1579525 13

300 1592492 12

323 1692189 10

332 1732127 9

1082 5436999 8

1558 7670059 7

2008 9765759 6

2024 9830168 5

2809 13302012 4

5246 24105640 3

6330 28508740 2

17284 73166926 1

60865 238968738 0

log point

ellapsed FEs

runtime [ns]

F : best f(~x)

http://www.optimizationBenchmarking.org

Example of Log File

Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 16/75

Listing: Log File uf075-02 2FlipHCrs 01.txt.

1 9806 46

3 24643 28

17 106040 25

19 115529 23

20 120373 21

25 144087 18

31 172967 16

290 1550118 15

296 1576034 14

297 1579525 13

300 1592492 12

323 1692189 10

332 1732127 9

1082 5436999 8

1558 7670059 7

2008 9765759 6

2024 9830168 5

2809 13302012 4

5246 24105640 3

6330 28508740 2

17284 73166926 1

60865 238968738 0

log point

ellapsed FEs

runtime [ns]

F : best f(~x)

http://www.optimizationBenchmarking.org

Example of Log File

Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 16/75

Listing: Log File uf075-02 2FlipHCrs 01.txt.

1 9806 46

3 24643 28

17 106040 25

19 115529 23

20 120373 21

25 144087 18

31 172967 16

290 1550118 15

296 1576034 14

297 1579525 13

300 1592492 12

323 1692189 10

332 1732127 9

1082 5436999 8

1558 7670059 7

2008 9765759 6

2024 9830168 5

2809 13302012 4

5246 24105640 3

6330 28508740 2

17284 73166926 1

60865 238968738 0

log point

ellapsed FEs

runtime [ns]

F : best f(~x)

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)

for each of the 6 algorithm setups,
on each of the 10 benchmark instances
of each of the 10 instance sets.
We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log
files!

(with 607 993 log points and
8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)

for each of the 6 algorithm setups,
on each of the 10 benchmark instances
of each of the 10 instance sets.
We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log
files!

(with 607 993 log points and
8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)
for each of the 6 algorithm setups,

on each of the 10 benchmark instances
of each of the 10 instance sets.
We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log
files!

(with 607 993 log points and
8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)
for each of the 6 algorithm setups,
on each of the 10 benchmark instances

of each of the 10 instance sets.
We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log
files!

(with 607 993 log points and
8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)
for each of the 6 algorithm setups,
on each of the 10 benchmark instances
of each of the 10 instance sets.

We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log
files!

(with 607 993 log points and
8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)
for each of the 6 algorithm setups,
on each of the 10 benchmark instances
of each of the 10 instance sets.
We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log
files!

(with 607 993 log points and
8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)
for each of the 6 algorithm setups,
on each of the 10 benchmark instances
of each of the 10 instance sets.
We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log files
(with 607 993 log points and 8.6 MiB
total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment we have
6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log files (with
607 993 log points and 8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment we have
6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log files (with
607 993 log points and 8.6 MiB total)!

How can we extract useful information
from them

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment we have
6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log files (with
607 993 log points and 8.6 MiB total)!

How can we extract useful information
from them in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment we have
6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log files (with
607 993 log points and 8.6 MiB total)!

How can we extract useful information
from them in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Obtained Data

OK, so after the experiment we have
6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log files (with
607 993 log points and 8.6 MiB total)!

How can we extract useful information
from them in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75

http://www.optimizationBenchmarking.org

Example Results from optimizationBenchmarking

In the following, I provide some examples for what our evaluator can
do.

First, a quick guide to download and run the example on your
computer is given

Then, I present some of the evaluation information generated by the
Evaluator

Finally, I will show how that gets done in detail.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 18/75
1

2
3

4
5

6
7

8
9

1
0

1
2

3
4

5
6

7
8

9
1

0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

http://www.optimizationBenchmarking.org

Example Results from optimizationBenchmarking

In the following, I provide some examples for what our evaluator can
do.

First, a quick guide to download and run the example on your
computer is given

Then, I present some of the evaluation information generated by the
Evaluator

Finally, I will show how that gets done in detail.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 18/75
1

2
3

4
5

6
7

8
9

1
0

1
2

3
4

5
6

7
8

9
1

0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

http://www.optimizationBenchmarking.org

Example Results from optimizationBenchmarking

In the following, I provide some examples for what our evaluator can
do.

First, a quick guide to download and run the example on your
computer is given

Then, I present some of the evaluation information generated by the
Evaluator

Finally, I will show how that gets done in detail.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 18/75
1

2
3

4
5

6
7

8
9

1
0

1
2

3
4

5
6

7
8

9
1

0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

http://www.optimizationBenchmarking.org

Example Results from optimizationBenchmarking

In the following, I provide some examples for what our evaluator can
do.

First, a quick guide to download and run the example on your
computer is given

Then, I present some of the evaluation information generated by the
Evaluator

Finally, I will show how that gets done in detail.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 18/75
1

2
3

4
5

6
7

8
9

1
0

1
2

3
4

5
6

7
8

9
1

0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

http://www.optimizationBenchmarking.org

Quick Guide

You can quickly download all example data and the Evaluator and run
the example on your PC by executing the following code snippet.

System Requirements:

Linux (for make.sh), Windows (for make.bat, tested: Win 8, should
work also under Win 7)
Java 1.7 (ideally a JDK under a JRE slower and higher memory
consumption)
svn

optional: a LATEX installation, such as TeXLive (needed for generating
pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

http://www.optimizationBenchmarking.org

Quick Guide

You can quickly download all example data and the Evaluator and run
the example on your PC by executing the following code snippet.

System Requirements:

Linux (for make.sh), Windows (for make.bat, tested: Win 8, should
work also under Win 7)
Java 1.7 (ideally a JDK under a JRE slower and higher memory
consumption)
svn

optional: a LATEX installation, such as TeXLive (needed for generating
pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

Listing: Linux: script make.sh for downloading & running the MAX-SAT example.

#!/bin/bash

jarName="optimizationBenchmarking-full.jar"

outputDir=`pwd`
echo "Writing output to folder '${outputDir}'"

echo "Downloading experimental results via 'svn export' from GitHub."

svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/results

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/evaluation

jarDownloadURL=$(wget "http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url" -q -O -)

echo "Downloading evaluator from '${jarDownloadURL}'."
wget -O "${outputDir}/${jarName}" "${jarDownloadURL}"

echo "Applying evaluator and obtaining reports in different formats."

cd "${outputDir}/evaluation"
java -jar "${outputDir}/${jarName}" -configXML=configForIEEEtran.xml

java -jar "${outputDir}/${jarName}" -configXML=configForLNCS.xml

java -jar "${outputDir}/${jarName}" -configXML=configForSigAlternate.xml

java -jar "${outputDir}/${jarName}" -configXML=configForXHTML.xml

java -jar "${outputDir}/${jarName}" -configXML=configForExport.xml

cd "${outputDir}"
echo "Done."

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

Listing: Windows: script make.bat for downloading & running the MAX-SAT example.

echo "Downloading evaluator."

powershell -command "& {iwr http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url -OutFile version.txt}"

for /F "delims=" %i in (version.txt) do set downloadURL=%i

powershell -command "& {iwr %downloadURL% -OutFile optimizationBenchmarking.jar}"

del version.txt

echo "Downloading (but not installing!) required 3rd-party software: downloading SVN client and 7-Zip to extract it."

md svn

cd svn

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/7zip/7za.exe -OutFile 7za.exe}"

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/svn/svn.tar.lzma -OutFile svn.tar.lzma}"

7za x svn.tar.lzma

7za x svn.tar

cd..

echo "Downloading experimental results via 'svn-export' from GitHub."

svn\svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/results

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

svn\svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/evaluation

rd /s /q svn

echo "Applying evaluator and obtaining reports in different formats."

cd evaluation

java -jar "..\optimizationBenchmarking.jar" -configXML=configForIEEEtran.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForLNCS.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForSigAlternate.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForXHTML.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForExport.xml

cd..

echo "Done."

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports

But now, let’s continue with the example. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances for time measure FEs (log-scaled).

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances for time measure FEs (log-scaled).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances for time measure FEs (log-scaled).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances for time measure FEs (log-scaled).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances for time measure FEs (log-scaled,
optimized for IEEEtran and two figures per row).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances (log-scaled, optimized for LNCS and
two figures per row).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances (log-scaled, optimized for
sig-alternate and two figures per row).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions

http://www.optimizationBenchmarking.org

ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 20/75

The ECDF in over all 100 benchmark instances (log-scaled, optimized for XHTML and
two figures per row).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

We now look at the
ECDF for different
values of n and a
goal of 1%
unsatisfied clauses
over RT
(log-scaled).

legend

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

For n = 20, the
methods with
restarts are better.

legend n = 20

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

But for n ≥ 50,
those without reach
the goal faster.

legend n = 20 n = 50

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

It seems that 1%
unsatisfied clauses
can be reached with
1-flips and without
restarts.

legend n = 20 n = 50

n = 75

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

The 2-flip operator
again performs
worst.

legend n = 20 n = 50

n = 75 n = 100

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

It looks as if it gets
easier to attain a
1% error margin if n
increases (all
ECDFs reach 1).

legend n = 20 n = 50

n = 75 n = 100 n = 125

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

For small problems,
1-flip is slightly
faster than m-flip.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

For small problems,
1-flip is slightly
faster than m-flip.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

For larger problems,
m-flip becomes
slightly faster.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

All in all, similar
behavior over all
scales (reaching 1%
error seems to be
easy).

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225

http://www.optimizationBenchmarking.org

ECDF for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 21/75

Only required
runtime increases by
up to 100 times.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225 n = 250

http://www.optimizationBenchmarking.org

Progress for Different Values of k

1We normalize FEs with n in the hope to make the time measure comparable over
different n.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

We now look at the
progress curves (F
over FEs divided
by1 n, log-scaled)
for different values
of k.

legend

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

For very small-scale
problems, all
algorithms behave
similar.

legend k = 91

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

But soon, two
groups form: with
and without
restarts.

legend k = 91 k = 218

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

Algorithms using
my example restart
policy seem to be
slower.

legend k = 91 k = 218

k = 325

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

The gap increases
with rising k

legend k = 91 k = 218

k = 325 k = 430

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

Thus, we find:
algorithms with my
restart policy are
slower than those
without. . .

legend k = 91 k = 218

k = 325 k = 430 k = 538

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

. . . but from the
ECDF we know they
can solve more
problems eventually.

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

For all scales, the
initial random
solutions, seem to
have about 12% of
unsatisfied clauses
(in median).

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

k = 753

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

Convergence seems
to happen between
100n and 1000n

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

k = 753 k = 860

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

Convergence seems
to happen between
100n and 1000n

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

k = 753 k = 860 k = 960

http://www.optimizationBenchmarking.org

Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

Convergence seems
to happen between
100n and 1000n

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

k = 753 k = 860 k = 960 k = 1065

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

1Since F is always in 1 . . . k, dividing it by k normalizes it into [0, 1] and makes the
values comparable for different k or n.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

Let’s look at the
standard deviation
of the best objective
value F (divided
by1 k) found over
RT (log-scaled) for
different values of
n.

legend

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

For small-scale
problems, the
standard deviation
seems to decrease
steadily.

legend n = 20

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

The reason is
probably that the
algorithms converge
nicely.

legend n = 20 n = 50

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

For the methods
with restarts, it
reaches very close
to 0.

legend n = 20 n = 50

n = 75

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

For those without,
it remains constant
above 0 after some
time.

legend n = 20 n = 50

n = 75 n = 100

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

These algorithms
probably get stuck
at different local
optima in different
runs.

legend n = 20 n = 50

n = 75 n = 100 n = 125

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

For increasing
scales, the standard
deviation goes first
down, then up, then
farther down.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

Maybe there is
some kind of
hard-to-attain
improvement that
some runs find
earlier than others.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

The time of
convergence seems
to increase for the
methods with
restarts with n.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

The early standard
deviations are
usually below 0.03
and highest for
small n.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225

http://www.optimizationBenchmarking.org

StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

The early standard
deviations are
usually below 0.03
and highest for
small n.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225 n = 250

http://www.optimizationBenchmarking.org

So. . . how to get there?

So these are some of the things optimizationBenchmarking can
currently do.

But how to do them?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 24/75
1

2
3

4
5

6
7

8
9

1
0

1
2

3
4

5
6

7
8

9
1

0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

http://www.optimizationBenchmarking.org

So. . . how to get there?

So these are some of the things optimizationBenchmarking can
currently do.

But how to do them?

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 24/75
1

2
3

4
5

6
7

8
9

1
0

1
2

3
4

5
6

7
8

9
1

0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

http://www.optimizationBenchmarking.org

The Flow

Let us now take a closer look on how the
optimizationBenchmarking evaluator is used (and works)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 25/75

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment

: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured

: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are

:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured

: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are

:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured

: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are

:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are

:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are

:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

We got a couple of log files for each experiment: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters: in our example, these are
algorithm, operator, restart

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

http://www.optimizationBenchmarking.org

The Flow

An “input driver” loads the data

: most commonly, the data will be in
CSV+EDI format, but we also support BBOB [71, 80–82], TSP Suite [72, 83], and
pure EDI

Via a configuration file, we choose which input and output formats to use,
as well as which file specifies the evaluation process

The evaluation.xml specifies how to evaluate the data, i.e., which
evaluation modules to apply

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

An “input driver” loads the data: most commonly, the data will be in
CSV+EDI format, but we also support BBOB [71, 80–82], TSP Suite [72, 83], and
pure EDI

Via a configuration file, we choose which input and output formats to use,
as well as which file specifies the evaluation process

The evaluation.xml specifies how to evaluate the data, i.e., which
evaluation modules to apply

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

An “input driver” loads the data: most commonly, the data will be in
CSV+EDI format, but we also support BBOB [71, 80–82], TSP Suite [72, 83], and
pure EDI

Via a configuration file, we choose which input and output formats to use,
as well as which file specifies the evaluation process

The evaluation.xml specifies how to evaluate the data, i.e., which
evaluation modules to apply

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

An “input driver” loads the data: most commonly, the data will be in
CSV+EDI format, but we also support BBOB [71, 80–82], TSP Suite [72, 83], and
pure EDI

Via a configuration file, we choose which input and output formats to use,
as well as which file specifies the evaluation process

The evaluation.xml specifies how to evaluate the data, i.e., which
evaluation modules to apply

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

An evaluation module prints on particular type of information about an
experiment or experiment set, such as the ECDF, or a table with final
results, etc. . .

Evaluation modules can be applied multiple times, with different
configurations (e.g., we can plot ECDFs for different target solution
qualities)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

An evaluation module prints on particular type of information about an
experiment or experiment set, such as the ECDF, or a table with final
results, etc. . .

Evaluation modules can be applied multiple times, with different
configurations (e.g., we can plot ECDFs for different target solution
qualities)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can choose among several different formats to be used for graphics,
including EPS [85], PDF [86], PGF (LATEX), SVG(Z), EMF, PNG [87], GIF [88],
BMP, and JPG

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including. . .

LATEX [89–92]

:

can automatically be compiled to PDF [86], if a LATEX compiler (such as
TeXLive [93] or MiKTeX [94]) is auto-detected

different document classes, such as IEEEtran [95], Springer LLNCS [96],
ACM sig-alternate [97] can be chosen
graphic sizes and fonts used in graphics are automatically adapted to
document class

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX [89–92]

:

can automatically be compiled to PDF [86], if a LATEX compiler (such as
TeXLive [93] or MiKTeX [94]) is auto-detected

different document classes, such as IEEEtran [95], Springer LLNCS [96],
ACM sig-alternate [97] can be chosen
graphic sizes and fonts used in graphics are automatically adapted to
document class

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

LTEXA

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX [89–92]:

can automatically be compiled to PDF [86], if a LATEX compiler (such as
TeXLive [93] or MiKTeX [94]) is auto-detected

different document classes, such as IEEEtran [95], Springer LLNCS [96],
ACM sig-alternate [97] can be chosen
graphic sizes and fonts used in graphics are automatically adapted to
document class

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

LTEXA

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX [89–92]:

can automatically be compiled to PDF [86], if a LATEX compiler (such as
TeXLive [93] or MiKTeX [94]) is auto-detected
different document classes, such as IEEEtran [95], Springer LLNCS [96],
ACM sig-alternate [97] can be chosen

graphic sizes and fonts used in graphics are automatically adapted to
document class

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

LTEXA

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX [89–92]:

can automatically be compiled to PDF [86], if a LATEX compiler (such as
TeXLive [93] or MiKTeX [94]) is auto-detected
different document classes, such as IEEEtran [95], Springer LLNCS [96],
ACM sig-alternate [97] can be chosen
graphic sizes and fonts used in graphics are automatically adapted to
document class

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

LTEXA

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX and XHTML [98] for quick viewing in a browser

Evaluation Modules as well as Input, Document, and Graphic Drivers can
easily be added

: implement the corresponding interface

, throw your class
into the classpath

, and tell the system to use it in the config.xml or
evaluation.xml. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX, XHTML [98], and a plain text format to export results to
other applications

Evaluation Modules as well as Input, Document, and Graphic Drivers can
easily be added

: implement the corresponding interface

, throw your class
into the classpath

, and tell the system to use it in the config.xml or
evaluation.xml. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX, XHTML [98], and a plain text format to export results to
other applications

Evaluation Modules as well as Input, Document, and Graphic Drivers can
easily be added

: implement the corresponding interface

, throw your class
into the classpath

, and tell the system to use it in the config.xml or
evaluation.xml. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX, XHTML [98], and a plain text format to export results to
other applications

Evaluation Modules as well as Input, Document, and Graphic Drivers can
easily be added: implement the corresponding interface

, throw your class
into the classpath

, and tell the system to use it in the config.xml or
evaluation.xml. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX, XHTML [98], and a plain text format to export results to
other applications

Evaluation Modules as well as Input, Document, and Graphic Drivers can
easily be added: implement the corresponding interface, throw your class
into the classpath

, and tell the system to use it in the config.xml or
evaluation.xml. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

The Flow

We can also choose among different formats for the report documents,
including LATEX, XHTML [98], and a plain text format to export results to
other applications

Evaluation Modules as well as Input, Document, and Graphic Drivers can
easily be added: implement the corresponding interface, throw your class
into the classpath, and tell the system to use it in the config.xml or
evaluation.xml. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 26/75

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name

a type
a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name

a type
a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name

a type
a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name

a type
a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)

iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)
iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)
runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor
qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)
qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)
iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)

iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)
runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor
qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)
qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)
iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)
iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)
runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor
qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)
qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)
iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)
iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)

runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor
qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)
qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)
iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)
iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)
runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor

qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)
qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)
iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)
iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)
runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor
qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)

qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)
iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)
iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)
runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor
qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)
qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction, which is either

decreasing, i.e., values get smaller, but consecutive log points may
have same value

decreasingStrictly, such as the objective value in the log points of
our MAX-SAT example
increasing, like the absolute runtime: due to clock resolution, some
log points may be taken at the same clock time
increasingStrictly, like the FEs in our example – no two log points
can have the same value in this dimension

a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction, which is either

decreasing, i.e., values get smaller, but consecutive log points may
have same value
decreasingStrictly, such as the objective value in the log points of
our MAX-SAT example

increasing, like the absolute runtime: due to clock resolution, some
log points may be taken at the same clock time
increasingStrictly, like the FEs in our example – no two log points
can have the same value in this dimension

a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction, which is either

decreasing, i.e., values get smaller, but consecutive log points may
have same value
decreasingStrictly, such as the objective value in the log points of
our MAX-SAT example
increasing, like the absolute runtime: due to clock resolution, some
log points may be taken at the same clock time

increasingStrictly, like the FEs in our example – no two log points
can have the same value in this dimension

a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction, which is either

decreasing, i.e., values get smaller, but consecutive log points may
have same value
decreasingStrictly, such as the objective value in the log points of
our MAX-SAT example
increasing, like the absolute runtime: due to clock resolution, some
log points may be taken at the same clock time
increasingStrictly, like the FEs in our example – no two log points
can have the same value in this dimension

a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name,
a type,
a direction,
a data type

bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type, which is either

byte

,
short

,

int

,

long

,

float

, or

double

bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type, which is either

byte,
short

,
int

,

long

,

float

, or

double

bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type, which is either

byte,
short,
int

,
long

,

float

, or

double

bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type, which is either

byte,
short,
int,
long

,
float

, or

double

bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type, which is either

byte,
short,
int,
long,
float

, or
double

bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type, which is either

byte,
short,
int,
long,
float, or
double

bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks, such
as

iLowerBound, a integer lower bound, such as 1 for FEs

or
fLowerBound, a floating point lower bound
iUpperBound, a integer upper bound

or

fUpperBound, a floating point upper bound

an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks, such
as

iLowerBound, a integer lower bound, such as 1 for FEs or
fLowerBound, a floating point lower bound

iUpperBound, a integer upper bound

or

fUpperBound, a floating point upper bound

an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks, such
as

iLowerBound, a integer lower bound, such as 1 for FEs or
fLowerBound, a floating point lower bound
iUpperBound, a integer upper bound

or
fUpperBound, a floating point upper bound

an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks, such
as

iLowerBound, a integer lower bound, such as 1 for FEs or
fLowerBound, a floating point lower bound
iUpperBound, a integer upper bound or
fUpperBound, a floating point upper bound

an optional description

With this information, the nature of measurements is defined and
data can be validated
Multiple time and quality dimensions can be specified
Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks, and
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks,
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks,
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name,
a type,
a direction,
a data type,
bounds which can be used in computations and for sanity checks,
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 27/75

http://www.optimizationBenchmarking.org

Measured Dimensions: dimensions.xml

To specify all this, we can make an XML file called dimensions.xml

and put it into the results folder with our log files.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 28/75

Listing: File dimensions.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<dimensions

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd">

<dimension name="FEs"

description="The number of function evaluations , i.e., the amount of

generated candidate solutions."

dimensionType="iterationFE" direction="increasingStrictly" dataType="long"

iLowerBound="1" />

<dimension name="RT" description="The elapsed runtime in nanoseconds."

dimensionType="runtimeCPU" direction="increasing" dataType="long"

iLowerBound="0" />

<dimension name="F" description="The number of unsatisfied clauses."

dimensionType="qualityProblemDependent" direction="decreasing"

dataType="int" iLowerBound="0" iUpperBound="2000" />

</dimensions >

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances

Each instance has

a name

features, such as n or k in our example
each feature has

a name (such as n)

a value (such as 250)
an optional description
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name

features, such as n or k in our example
each feature has

a name (such as n)

a value (such as 250)
an optional description
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name

features, such as n or k in our example
each feature has

a name (such as n)

a value (such as 250)
an optional description
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example

each feature has

a name (such as n)

a value (such as 250)
an optional description
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example
each feature has

a name (such as n)

a value (such as 250)
an optional description
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example
each feature has

a name (such as n),
a value (such as 250)

an optional description
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example
each feature has

a name (such as n),
a value (such as 250),
an optional description

an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example
each feature has

a name (such as n),
a value (such as 250),
an optional description, and
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension

an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior

Any number of features can be defined, but all instances much specify
the same features (may with different values)

Any feature value type is possible, numerical features are
automatically detected

Numerical features can be used in formulas and computations, e.g.,
to normalize values

Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension

makes particular sense for qualityProblemDependent

specified as element bounds with attribute dimension and either
iLowerBound or fLowerBound and/or either iUpperBound or
fUpperBound

an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension

makes particular sense for qualityProblemDependent
specified as element bounds with attribute dimension and either
iLowerBound or fLowerBound and/or either iUpperBound or
fUpperBound

an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension, and
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior

Any number of features can be defined, but all instances much specify
the same features (may with different values)

Any feature value type is possible, numerical features are
automatically detected

Numerical features can be used in formulas and computations, e.g.,
to normalize values

Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension, and
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior

Any number of features can be defined, but all instances much specify
the same features (may with different values)

Any feature value type is possible, numerical features are
automatically detected

Numerical features can be used in formulas and computations, e.g.,
to normalize values

Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension, and
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior

Any number of features can be defined, but all instances much specify
the same features (may with different values)

Any feature value type is possible, numerical features are
automatically detected

Numerical features can be used in formulas and computations, e.g.,
to normalize values

Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension, and
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior

Any number of features can be defined, but all instances much specify
the same features (may with different values)

Any feature value type is possible, numerical features are
automatically detected

Numerical features can be used in formulas and computations, e.g.,
to normalize values

Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension, and
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior

Any number of features can be defined, but all instances much specify
the same features (may with different values)

Any feature value type is possible, numerical features are
automatically detected

Numerical features can be used in formulas and computations, e.g.,
to normalize values

Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances
Each instance has

a name,
features, such as n or k in our example,
optional bounds for each dimension, and
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior

Any number of features can be defined, but all instances much specify
the same features (may with different values)

Any feature value type is possible, numerical features are
automatically detected

Numerical features can be used in formulas and computations, e.g.,
to normalize values

Bounds allow us to validate measured data and can be used in
computations

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 29/75

http://www.optimizationBenchmarking.org

Benchmark Instances: instances.xml

To specify all this, we can make an XML file called instances.xml

and put it into the results folder with our log files.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 30/75

Listing: Excerpt from file instances.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<instances

xmlns="http://www.optimizationBenchmarking.org/formats/experimentDataInterchange/experimentDataInterchange

.1.0. xsd">

<instance name="uf020 -01"

description="A uniformly randomly generated satisfiable 3-SAT instance with 20 variables and 91 clauses.">

<feature name="n" value="20" />

<feature name="k" value="91" />

</instance >

<instance name="uf020 -02"

description="A uniformly randomly generated satisfiable 3-SAT instance with 20 variables and 91 clauses.">

<feature name="n" value="20" />

<feature name="k" value="91" />

</instance >

<instance name="uf075 -01"

description="A uniformly randomly generated satisfiable 3-SAT instance with 75 variables and 325 clauses.">

<feature name="n" value="75" />

<feature name="k" value="325" />

</instance >

<instance name="uf075 -02"

description="A uniformly randomly generated satisfiable 3-SAT instance with 75 variables and 325 clauses.">

<feature name="n" value="75" />

<feature name="k" value="325" />

</instance >

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each

Each experiment has

a name

parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”)

a value (such as “2-flip”)
an optional description
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name

parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”)

a value (such as “2-flip”)
an optional description
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name

parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”)

a value (such as “2-flip”)
an optional description
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example

each parameter has

a name (such as “operator”)

a value (such as “2-flip”)
an optional description
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”)

a value (such as “2-flip”)
an optional description
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”),
a value (such as “2-flip”)

an optional description
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”),
a value (such as “2-flip”),
an optional description

an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”),
a value (such as “2-flip”),
an optional description, and
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example,
an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example,
an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well

Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example,
an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)

Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each
Each experiment has

a name,
parameters, such as the search operation and whether we do restarts in
our example,
an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected

Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each

Each experiment has a name, parameters, and an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance

The algorithm itself is treated as parameter as well

Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)

Any parameter value type is possible, numerical features are
automatically detected

Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 31/75

http://www.optimizationBenchmarking.org

Experiments: experiment.xml

To specify all this, we can make a separate XML file called
experiment.xml for each experiment and put it into root folder of
the experiment, e.g., results/1FlipHC.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 32/75

Listing: Excerpt from file experiment.xml for the 1-flip Hill Climber without restarts.

<?xml version="1.0" encoding="UTF -8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd"

name="1FlipHC" description="An experiment with a 1-flip Hill

Climber without restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="1-flip" />

<parameter name="restart" value="false" />

</experiment >

http://www.optimizationBenchmarking.org

Experiments: experiment.xml

To specify all this, we can make a separate XML file called
experiment.xml for each experiment and put it into root folder of
the experiment, e.g., results/1FlipHCrs.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 32/75

Listing: Excerpt from file experiment.xml for the 1-flip Hill Climber with restarts.

<?xml version="1.0" encoding="UTF -8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd"

name="1FlipHCrs" description="An experiment with a 1-flip Hill

Climber with restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="1-flip" />

<parameter name="restart" value="true" />

</experiment >

http://www.optimizationBenchmarking.org

Experiments: experiment.xml

To specify all this, we can make a separate XML file called
experiment.xml for each experiment and put it into root folder of
the experiment, e.g., results/mFlipHCrs.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 32/75

Listing: Excerpt from file experiment.xml for the m-flip Hill Climber with restarts.

<?xml version="1.0" encoding="UTF -8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd"

name="mFlipHCrs" description="An experiment with a m-flip Hill

Climber with restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="m-flip" />

<parameter name="restart" value="true" />

</experiment >

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 33/75

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

Global base configuration

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

Global base configuration: 2 figures per row

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

Global base configuration: 2 figures per row, figure series should have
dedicated sub-figure for legend

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

Global base configuration: 2 figures per row, figure series should have
dedicated sub-figure for legend, when benchmarks are grouped either
by n or by k, put those with same values of these features together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

Execute one module: print pie charts showing how many benchmark
instances have which feature values

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

The ECDF module is applied two times

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 2 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0.01" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

The ECDF module is applied two times: in order to aggregate the
ECDF over all problem instances, F is scaled by k and the ECDF is
computed for a goal value of F

k = 0. The x-axis in FEs is log-scaled
and figures are rendered page-wide

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 2 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0.01" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

The ECDF module is applied two times: then one ECDF diagram is
drawn for each distinct value of n, the log-scaled time measure RT,
and a goal 0.01 for F

k , i.e., for reaching no more than 1% of
unsatisfied clauses (and the globally configured figure size)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 2 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0.01" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

The “Aggregation” module is applied twice as well

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 3 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/n)" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="k" />

</cfg:configuration >

</e:module >

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="aggregate" value="stddev" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

The “Aggregation” module is applied twice as well: once we plot the
median F over runtime measured in FEs and divided by n (log-scaled)
aggregated over benchmark instances with the same k feature

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 3 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/n)" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="k" />

</cfg:configuration >

</e:module >

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="aggregate" value="stddev" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Specifying Evaluation Process: evaluation.xml

The “Aggregation” module is applied twice as well: then the

“standard deviation” is computed, for F
k but this time over the

absolute CPU time RT (log-scaled), with one diagram for each
distinct value of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 3 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/n)" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="k" />

</cfg:configuration >

</e:module >

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="aggregate" value="stddev" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions

we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions

we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances

we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments

we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is
What format to use for the report document (LATEX/PDF? XHTML?
Export?)

What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is
What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)

In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is
What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions
we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is
What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . .)
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . .)

So let’s glue everything together

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 35/75

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Use csv+edi as input format (as in our example)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Use csv+edi as input format (as in our example, but we could also
use tspSuite or bbob as input format)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Specify path to input folder, relative to current path

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Specify path to input folder, relative to current path (but we could
also specify a URL or the path to a ZIP file)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Specify path to input folder, relative to current path (but we could
also specify a URL or the path to a ZIP file, actually, we can specify
multiple paths, URLs, and ZIP files)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Choose LATEX as output format

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Choose LATEX as output format (but we could also choose XHTML or
export)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Choose LATEX as output format (but we could also choose XHTML or
export, LATEX documents will automatically be compiled to PDF if
LATEX installation is auto-detected)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Choose PDF as graphics format

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Choose PDF as graphics format (but we could also choose EPS, PNG,
TEX, . . .)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Specify output path relative to current directory

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Specify base name of output document

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

If LATEX is the output format, specify document class (here IEEEtran)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

If LATEX is the output format, specify document class (here IEEEtran,
but we could also choose LNCS, sig-alternate, . . .)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Specify path to evaluation.xml, relative to current directory

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Specify path to evaluation.xml, relative to current directory (but
we could also specify a URL or the path to a ZIP file)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Optional: Tell the system to produce lots of log output to the console
and detailed error messages, if any

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Now let’s use the LATEX document class for Springer’s LNCS instead. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForLNCS.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/LNCS/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="LNCS" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Now let’s create an XHTML web page with PNG figures instead. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForXHTML.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="XHTML" />

<cfg:parameter name="graphicDriver" value="png" />

<cfg:parameter name="output" value="../ reports/XHTML/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Gluing everything together: config.xml

Now let’s export all figures to CSV text files instead, so that we can
load them into GnuPlot, MatLab, or whatever for post-processing

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForExport.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="export" />

<cfg:parameter name="output" value="../ reports/export/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute

:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute

:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute

:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute

:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 37/75

http://www.optimizationBenchmarking.org

Result

The Evaluator will now produce report documents containing the
requested information (and figures)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 38/75

http://www.optimizationBenchmarking.org

Result

The Evaluator will now produce report documents containing the
requested information (and figures)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 38/75

1

Evaluation Report on Six Experiments
Anne Anonymous

Abstract—This is the evaluation report on six experiments,
namely 1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has been
generated with the version 0.8.4 of the Evaluator Component of
the Optimization Benchmarking Tool Suite.

I. INSTANCE INFORMATION

Experiments were conducted on 100 benchmark instances,
which can be distinguished by two features.

The benchmark instances are characterized by two features:
• n (ten values, ranging from 20 to 250)
• k (ten values, ranging from 91 to 1065)
In Figure 2 we illustrate the relative amount of benchmark

instances per feature value over all 100 benchmark instances.
The slices in the pie charts are the bigger, the more benchmark
instances have the associated feature value in comparison
to the other values. The more similar the pie sizes are, the
more evenly are the benchmark instances distributed over the
benchmark feature values, which may be a good idea for fair
experimentation.

II. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 FEs. The

ECDF
(

FEs, F
k ≤ 0

)
represents the fraction of runs which

reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over
the runs of an experiment for a given benchmark instance.
If runs for multiple instances are available, we aggregate the
results by computing their arithmetic mean. The x-axis does
not represent the values of FEs directly, but instead log10 FEs.
The ECDF is always between 0 and 1 — and the higher it is,
the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 RT.

The ECDF
(

RT, F
k ≤ 0.01

)
represents the fraction of runs

which reach a value of F
k less than or equal to 0.01 for a

given ellapsed runtime measured in RT . The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of RT directly, but
instead log10 RT. The ECDF is always between 0 and 1 — and

the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature n grouped
together.

The corresponding plots are illustrated in Figure 3.

C. Median of Medians

We analyze the median of medians (med med) of F over
log10

(
FEs

n
)

. The med med(FEs,F) represents the median
of the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these medians by computing
their median. The x-axis does not represent the values of
FEs directly, but instead log10

(
FEs

n
)

. The instance run sets
belonging to instances with the same value of the feature k
grouped together.

The corresponding plots are illustrated in Figure 4.

D. Median of Standard Deviations

We analyze the median of standard deviations
(med stddev) computed based on F

k over log10 RT. The

med stddev
(

RT, F
k

)
represents the standard deviation of the

F
k for a given ellapsed runtime measured in RT . The standard
deviation is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these standard deviations by
computing their median. The x-axis does not represent the
values of RT directly, but instead log10 RT. The instance run
sets belonging to instances with the same value of the feature
n grouped together.

The corresponding plots are illustrated in Figure 5.

REFERENCES

[1] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms — pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Jul. 24–26, 1998, pp. 238–245. [Online]. Available:
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z

[2] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell, Eds.,
vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-Verlag
GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available: http:
//ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf?attredirects=0

[3] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter
black-box optimization benchmarking: Experimental setup,” Orsay,
France: Université Paris Sud, Institut National de Recherche en
Informatique et en Automatique (INRIA) Futurs, Équipe TAO,
Tech. Rep., Mar. 24, 2012. [Online]. Available: http://coco.lri.fr/
BBOB-downloads/download11.05/bbobdocexperiment.pdf

first page of the re-
port in LATEX for
IEEEtran

http://www.optimizationBenchmarking.org

Result

The Evaluator will now produce report documents containing the
requested information (and figures)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 38/75

1

Evaluation Report on Six Experiments
Anne Anonymous

Abstract—This is the evaluation report on six experiments,
namely 1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has been
generated with the version 0.8.4 of the Evaluator Component of
the Optimization Benchmarking Tool Suite.

I. INSTANCE INFORMATION

Experiments were conducted on 100 benchmark instances,
which can be distinguished by two features.

The benchmark instances are characterized by two features:
• n (ten values, ranging from 20 to 250)
• k (ten values, ranging from 91 to 1065)
In Figure 2 we illustrate the relative amount of benchmark

instances per feature value over all 100 benchmark instances.
The slices in the pie charts are the bigger, the more benchmark
instances have the associated feature value in comparison
to the other values. The more similar the pie sizes are, the
more evenly are the benchmark instances distributed over the
benchmark feature values, which may be a good idea for fair
experimentation.

II. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 FEs. The

ECDF
(

FEs, F
k ≤ 0

)
represents the fraction of runs which

reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over
the runs of an experiment for a given benchmark instance.
If runs for multiple instances are available, we aggregate the
results by computing their arithmetic mean. The x-axis does
not represent the values of FEs directly, but instead log10 FEs.
The ECDF is always between 0 and 1 — and the higher it is,
the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 RT.

The ECDF
(

RT, F
k ≤ 0.01

)
represents the fraction of runs

which reach a value of F
k less than or equal to 0.01 for a

given ellapsed runtime measured in RT . The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of RT directly, but
instead log10 RT. The ECDF is always between 0 and 1 — and

the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature n grouped
together.

The corresponding plots are illustrated in Figure 3.

C. Median of Medians

We analyze the median of medians (med med) of F over
log10

(
FEs

n
)

. The med med(FEs,F) represents the median
of the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these medians by computing
their median. The x-axis does not represent the values of
FEs directly, but instead log10

(
FEs

n
)

. The instance run sets
belonging to instances with the same value of the feature k
grouped together.

The corresponding plots are illustrated in Figure 4.

D. Median of Standard Deviations

We analyze the median of standard deviations
(med stddev) computed based on F

k over log10 RT. The

med stddev
(

RT, F
k

)
represents the standard deviation of the

F
k for a given ellapsed runtime measured in RT . The standard
deviation is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these standard deviations by
computing their median. The x-axis does not represent the
values of RT directly, but instead log10 RT. The instance run
sets belonging to instances with the same value of the feature
n grouped together.

The corresponding plots are illustrated in Figure 5.

REFERENCES

[1] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms — pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Jul. 24–26, 1998, pp. 238–245. [Online]. Available:
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z

[2] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell, Eds.,
vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-Verlag
GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available: http:
//ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf?attredirects=0

[3] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter
black-box optimization benchmarking: Experimental setup,” Orsay,
France: Université Paris Sud, Institut National de Recherche en
Informatique et en Automatique (INRIA) Futurs, Équipe TAO,
Tech. Rep., Mar. 24, 2012. [Online]. Available: http://coco.lri.fr/
BBOB-downloads/download11.05/bbobdocexperiment.pdf

first page of the re-
port in LATEX for
IEEEtran

Evaluation Report on Six Experiments

Anne Anonymous

No Institute Given

Abstract. This is the evaluation report on six experiments, namely
1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and mFlipHCrs
on 100 benchmark instances. This report has been generated with the
version 0.8.4 of the Evaluator Component of the Optimization Bench-
marking Tool Suite.

1 Instance Information

Experiments were conducted on 100 benchmark instances, which can be distin-
guished by two features.

The benchmark instances are characterized by two features:

– n (ten values, ranging from 20 to 250)
– k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of benchmark instances per
feature value over all 100 benchmark instances. The slices in the pie charts are
the bigger, the more benchmark instances have the associated feature value in
comparison to the other values. The more similar the pie sizes are, the more
evenly are the benchmark instances distributed over the benchmark feature val-
ues, which may be a good idea for fair experimentation.

2 Performance Comparisons

2.1 Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [2,3,1] com-
puted based on F

k over log10 FEs. The ECDF
(
FEs, Fk ≤ 0

)
represents the frac-

tion of runs which reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over the runs of an
experiment for a given benchmark instance. If runs for multiple instances are
available, we aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead log10 FEs. The
ECDF is always between 0 and 1 — and the higher it is, the better.

The corresponding plot is illustrated in Figure 1.

first page of the re-
port in LATEX for
LNCS

http://www.optimizationBenchmarking.org

Result

The Evaluator will now produce report documents containing the
requested information (and figures)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 38/75

1

Evaluation Report on Six Experiments
Anne Anonymous

Abstract—This is the evaluation report on six experiments,
namely 1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has been
generated with the version 0.8.4 of the Evaluator Component of
the Optimization Benchmarking Tool Suite.

I. INSTANCE INFORMATION

Experiments were conducted on 100 benchmark instances,
which can be distinguished by two features.

The benchmark instances are characterized by two features:
• n (ten values, ranging from 20 to 250)
• k (ten values, ranging from 91 to 1065)
In Figure 2 we illustrate the relative amount of benchmark

instances per feature value over all 100 benchmark instances.
The slices in the pie charts are the bigger, the more benchmark
instances have the associated feature value in comparison
to the other values. The more similar the pie sizes are, the
more evenly are the benchmark instances distributed over the
benchmark feature values, which may be a good idea for fair
experimentation.

II. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 FEs. The

ECDF
(

FEs, F
k ≤ 0

)
represents the fraction of runs which

reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over
the runs of an experiment for a given benchmark instance.
If runs for multiple instances are available, we aggregate the
results by computing their arithmetic mean. The x-axis does
not represent the values of FEs directly, but instead log10 FEs.
The ECDF is always between 0 and 1 — and the higher it is,
the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 RT.

The ECDF
(

RT, F
k ≤ 0.01

)
represents the fraction of runs

which reach a value of F
k less than or equal to 0.01 for a

given ellapsed runtime measured in RT . The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of RT directly, but
instead log10 RT. The ECDF is always between 0 and 1 — and

the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature n grouped
together.

The corresponding plots are illustrated in Figure 3.

C. Median of Medians

We analyze the median of medians (med med) of F over
log10

(
FEs

n
)

. The med med(FEs,F) represents the median
of the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these medians by computing
their median. The x-axis does not represent the values of
FEs directly, but instead log10

(
FEs

n
)

. The instance run sets
belonging to instances with the same value of the feature k
grouped together.

The corresponding plots are illustrated in Figure 4.

D. Median of Standard Deviations

We analyze the median of standard deviations
(med stddev) computed based on F

k over log10 RT. The

med stddev
(

RT, F
k

)
represents the standard deviation of the

F
k for a given ellapsed runtime measured in RT . The standard
deviation is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these standard deviations by
computing their median. The x-axis does not represent the
values of RT directly, but instead log10 RT. The instance run
sets belonging to instances with the same value of the feature
n grouped together.

The corresponding plots are illustrated in Figure 5.

REFERENCES

[1] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms — pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Jul. 24–26, 1998, pp. 238–245. [Online]. Available:
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z

[2] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell, Eds.,
vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-Verlag
GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available: http:
//ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf?attredirects=0

[3] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter
black-box optimization benchmarking: Experimental setup,” Orsay,
France: Université Paris Sud, Institut National de Recherche en
Informatique et en Automatique (INRIA) Futurs, Équipe TAO,
Tech. Rep., Mar. 24, 2012. [Online]. Available: http://coco.lri.fr/
BBOB-downloads/download11.05/bbobdocexperiment.pdf

first page of the re-
port in LATEX for
IEEEtran

Evaluation Report on Six Experiments

Anne Anonymous

No Institute Given

Abstract. This is the evaluation report on six experiments, namely
1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and mFlipHCrs
on 100 benchmark instances. This report has been generated with the
version 0.8.4 of the Evaluator Component of the Optimization Bench-
marking Tool Suite.

1 Instance Information

Experiments were conducted on 100 benchmark instances, which can be distin-
guished by two features.

The benchmark instances are characterized by two features:

– n (ten values, ranging from 20 to 250)
– k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of benchmark instances per
feature value over all 100 benchmark instances. The slices in the pie charts are
the bigger, the more benchmark instances have the associated feature value in
comparison to the other values. The more similar the pie sizes are, the more
evenly are the benchmark instances distributed over the benchmark feature val-
ues, which may be a good idea for fair experimentation.

2 Performance Comparisons

2.1 Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [2,3,1] com-
puted based on F

k over log10 FEs. The ECDF
(
FEs, Fk ≤ 0

)
represents the frac-

tion of runs which reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over the runs of an
experiment for a given benchmark instance. If runs for multiple instances are
available, we aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead log10 FEs. The
ECDF is always between 0 and 1 — and the higher it is, the better.

The corresponding plot is illustrated in Figure 1.

first page of the re-
port in LATEX for
LNCS

Evaluation Report on Six Experiments

Anne Anonymous

ABSTRACT
This is the evaluation report on six experiments, namely
1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has
been generated with the version 0.8.4 of the Evaluator Com-
ponent of the Optimization Benchmarking Tool Suite.

1. INSTANCE INFORMATION
Experiments were conducted on 100 benchmark instances,

which can be distinguished by two features.
The benchmark instances are characterized by two fea-

tures:

• n (ten values, ranging from 20 to 250)

• k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of bench-
mark instances per feature value over all 100 benchmark
instances. The slices in the pie charts are the bigger, the
more benchmark instances have the associated feature value
in comparison to the other values. The more similar the pie
sizes are, the more evenly are the benchmark instances dis-
tributed over the benchmark feature values, which may be
a good idea for fair experimentation.

2. PERFORMANCE COMPARISONS

2.1 Estimated Cumulative Distribution Func-
tion

We analyze the estimated cumulative distribution func-
tion (ECDF) [2, 3, 1] computed based on F

k
over log10 FEs.

The ECDF
(
FEs, F

k
≤ 0

)
represents the fraction of runs which

reach a value of F
k
less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed
over the runs of an experiment for a given benchmark in-
stance. If runs for multiple instances are available, we ag-
gregate the results by computing their arithmetic mean. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

x-axis does not represent the values of FEs directly, but in-
stead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better.
The corresponding plot is illustrated in Figure 1.

2.2 Estimated Cumulative Distribution Func-
tion

We analyze the estimated cumulative distribution func-
tion (ECDF) [2, 3, 1] computed based on F

k
over log10 RT.

The ECDF
(
RT, F

k
≤ 0.01

)
represents the fraction of runs

which reach a value of F
k

less than or equal to 0.01 for a
given ellapsed runtime measured in RT . The ECDF is al-
ways computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate the results by computing their arithmetic
mean. The x-axis does not represent the values of RT di-
rectly, but instead log10 RT. The ECDF is always between
0 and 1 — and the higher it is, the better. The instance
run sets belonging to instances with the same value of the
feature n grouped together.
The corresponding plots are illustrated in Figure 3.

2.3 Median of Medians
We analyze the median of medians (med med) of F over

log10
(
FEs
n

)
. The med med(FEs,F) represents the median of

the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple in-
stances are available, we aggregate these medians by com-
puting their median. The x-axis does not represent the val-
ues of FEs directly, but instead log10

(
FEs
n

)
. The instance

run sets belonging to instances with the same value of the
feature k grouped together.
The corresponding plots are illustrated in Figure 4.

2.4 Median of Standard Deviations
We analyze the median of standard deviations (med stddev)

computed based on F
k
over log10 RT. The med stddev

(
RT, F

k

)

represents the standard deviation of the F
k

for a given el-
lapsed runtime measured in RT . The standard deviation is
always computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate these standard deviations by computing
their median. The x-axis does not represent the values of
RT directly, but instead log10 RT. The instance run sets
belonging to instances with the same value of the feature n
grouped together.
The corresponding plots are illustrated in Figure 5.

first page of the re-
port in LATEX for
sig-alternate

http://www.optimizationBenchmarking.org

Result

The Evaluator will now produce report documents containing the
requested information (and figures)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 38/75

1

Evaluation Report on Six Experiments
Anne Anonymous

Abstract—This is the evaluation report on six experiments,
namely 1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has been
generated with the version 0.8.4 of the Evaluator Component of
the Optimization Benchmarking Tool Suite.

I. INSTANCE INFORMATION

Experiments were conducted on 100 benchmark instances,
which can be distinguished by two features.

The benchmark instances are characterized by two features:
• n (ten values, ranging from 20 to 250)
• k (ten values, ranging from 91 to 1065)
In Figure 2 we illustrate the relative amount of benchmark

instances per feature value over all 100 benchmark instances.
The slices in the pie charts are the bigger, the more benchmark
instances have the associated feature value in comparison
to the other values. The more similar the pie sizes are, the
more evenly are the benchmark instances distributed over the
benchmark feature values, which may be a good idea for fair
experimentation.

II. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 FEs. The

ECDF
(

FEs, F
k ≤ 0

)
represents the fraction of runs which

reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over
the runs of an experiment for a given benchmark instance.
If runs for multiple instances are available, we aggregate the
results by computing their arithmetic mean. The x-axis does
not represent the values of FEs directly, but instead log10 FEs.
The ECDF is always between 0 and 1 — and the higher it is,
the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 RT.

The ECDF
(

RT, F
k ≤ 0.01

)
represents the fraction of runs

which reach a value of F
k less than or equal to 0.01 for a

given ellapsed runtime measured in RT . The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of RT directly, but
instead log10 RT. The ECDF is always between 0 and 1 — and

the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature n grouped
together.

The corresponding plots are illustrated in Figure 3.

C. Median of Medians

We analyze the median of medians (med med) of F over
log10

(
FEs

n
)

. The med med(FEs,F) represents the median
of the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these medians by computing
their median. The x-axis does not represent the values of
FEs directly, but instead log10

(
FEs

n
)

. The instance run sets
belonging to instances with the same value of the feature k
grouped together.

The corresponding plots are illustrated in Figure 4.

D. Median of Standard Deviations

We analyze the median of standard deviations
(med stddev) computed based on F

k over log10 RT. The

med stddev
(

RT, F
k

)
represents the standard deviation of the

F
k for a given ellapsed runtime measured in RT . The standard
deviation is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these standard deviations by
computing their median. The x-axis does not represent the
values of RT directly, but instead log10 RT. The instance run
sets belonging to instances with the same value of the feature
n grouped together.

The corresponding plots are illustrated in Figure 5.

REFERENCES

[1] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms — pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Jul. 24–26, 1998, pp. 238–245. [Online]. Available:
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z

[2] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell, Eds.,
vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-Verlag
GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available: http:
//ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf?attredirects=0

[3] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter
black-box optimization benchmarking: Experimental setup,” Orsay,
France: Université Paris Sud, Institut National de Recherche en
Informatique et en Automatique (INRIA) Futurs, Équipe TAO,
Tech. Rep., Mar. 24, 2012. [Online]. Available: http://coco.lri.fr/
BBOB-downloads/download11.05/bbobdocexperiment.pdf

first page of the re-
port in LATEX for
IEEEtran

Evaluation Report on Six Experiments

Anne Anonymous

No Institute Given

Abstract. This is the evaluation report on six experiments, namely
1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and mFlipHCrs
on 100 benchmark instances. This report has been generated with the
version 0.8.4 of the Evaluator Component of the Optimization Bench-
marking Tool Suite.

1 Instance Information

Experiments were conducted on 100 benchmark instances, which can be distin-
guished by two features.

The benchmark instances are characterized by two features:

– n (ten values, ranging from 20 to 250)
– k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of benchmark instances per
feature value over all 100 benchmark instances. The slices in the pie charts are
the bigger, the more benchmark instances have the associated feature value in
comparison to the other values. The more similar the pie sizes are, the more
evenly are the benchmark instances distributed over the benchmark feature val-
ues, which may be a good idea for fair experimentation.

2 Performance Comparisons

2.1 Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [2,3,1] com-
puted based on F

k over log10 FEs. The ECDF
(
FEs, Fk ≤ 0

)
represents the frac-

tion of runs which reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over the runs of an
experiment for a given benchmark instance. If runs for multiple instances are
available, we aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead log10 FEs. The
ECDF is always between 0 and 1 — and the higher it is, the better.

The corresponding plot is illustrated in Figure 1.

first page of the re-
port in LATEX for
LNCS

Evaluation Report on Six Experiments

Anne Anonymous

ABSTRACT
This is the evaluation report on six experiments, namely
1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has
been generated with the version 0.8.4 of the Evaluator Com-
ponent of the Optimization Benchmarking Tool Suite.

1. INSTANCE INFORMATION
Experiments were conducted on 100 benchmark instances,

which can be distinguished by two features.
The benchmark instances are characterized by two fea-

tures:

• n (ten values, ranging from 20 to 250)

• k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of bench-
mark instances per feature value over all 100 benchmark
instances. The slices in the pie charts are the bigger, the
more benchmark instances have the associated feature value
in comparison to the other values. The more similar the pie
sizes are, the more evenly are the benchmark instances dis-
tributed over the benchmark feature values, which may be
a good idea for fair experimentation.

2. PERFORMANCE COMPARISONS

2.1 Estimated Cumulative Distribution Func-
tion

We analyze the estimated cumulative distribution func-
tion (ECDF) [2, 3, 1] computed based on F

k
over log10 FEs.

The ECDF
(
FEs, F

k
≤ 0

)
represents the fraction of runs which

reach a value of F
k
less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed
over the runs of an experiment for a given benchmark in-
stance. If runs for multiple instances are available, we ag-
gregate the results by computing their arithmetic mean. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

x-axis does not represent the values of FEs directly, but in-
stead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better.
The corresponding plot is illustrated in Figure 1.

2.2 Estimated Cumulative Distribution Func-
tion

We analyze the estimated cumulative distribution func-
tion (ECDF) [2, 3, 1] computed based on F

k
over log10 RT.

The ECDF
(
RT, F

k
≤ 0.01

)
represents the fraction of runs

which reach a value of F
k

less than or equal to 0.01 for a
given ellapsed runtime measured in RT . The ECDF is al-
ways computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate the results by computing their arithmetic
mean. The x-axis does not represent the values of RT di-
rectly, but instead log10 RT. The ECDF is always between
0 and 1 — and the higher it is, the better. The instance
run sets belonging to instances with the same value of the
feature n grouped together.
The corresponding plots are illustrated in Figure 3.

2.3 Median of Medians
We analyze the median of medians (med med) of F over

log10
(
FEs
n

)
. The med med(FEs,F) represents the median of

the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple in-
stances are available, we aggregate these medians by com-
puting their median. The x-axis does not represent the val-
ues of FEs directly, but instead log10

(
FEs
n

)
. The instance

run sets belonging to instances with the same value of the
feature k grouped together.
The corresponding plots are illustrated in Figure 4.

2.4 Median of Standard Deviations
We analyze the median of standard deviations (med stddev)

computed based on F
k
over log10 RT. The med stddev

(
RT, F

k

)

represents the standard deviation of the F
k

for a given el-
lapsed runtime measured in RT . The standard deviation is
always computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate these standard deviations by computing
their median. The x-axis does not represent the values of
RT directly, but instead log10 RT. The instance run sets
belonging to instances with the same value of the feature n
grouped together.
The corresponding plots are illustrated in Figure 5.

first page of the re-
port in LATEX for
sig-alternate

Evaluation Report on Six Experiments
Abstract. This is the evaluation report on six experiments, namely 1FlipHC, 1FlipHCrs,
2FlipHC, 2FlipHCrs, mFlipHC, and mFlipHCrs on 100 benchmark instances. This report
has been generated with the version 0.8.4 of the Evaluator Component of the Optimization
Benchmarking Tool Suite.

by Anne Anonymous
on 2015-09-14

1. Instance Information
Experiments were conducted on 100 benchmark instances, which can be distinguished by two features.
 The benchmark instances are characterized by two features:

n (ten values, ranging from 20 to 250)
k (ten values, ranging from 91 to 1065)

Fig. 1.1.1. Feature k Fig. 1.1.2. Feature n
Fig. 1.1. The fractions of instances with specific feature values.

 In Figure 1.1 we illustrate the relative amount of benchmark instances per feature value over all 100 benchmark instances. The slices in the pie charts are the bigger, the more
benchmark instances have the associated feature value in comparison to the other values. The more similar the pie sizes are, the more evenly are the benchmark instances distributed
over the benchmark feature values, which may be a good idea for fair experimentation.

2. Performance Comparisons
2.1. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [1], [2], [3] computed based on
F
k over log10FEs. The ECDF(FEs, Fk≤0) represents the fraction of runs which reach a

value of
F
k less than or equal to 0 for a given ellapsed runtime measured in FEs. The ECDF is always computed over the runs of an experiment for a given benchmark instance. If runs for

multiple instances are available, we aggregate the results by computing their arithmetic mean. The x-axis does not represent the values of FEs directly, but instead log10FEs. The ECDF is
always between 0 and 1 ‒ and the higher it is, the better.

first page of the re-
port in XHTML

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 39/75

http://www.optimizationBenchmarking.org

Section Outline

1 Introduction

2 Example 1: MAX-SAT

3 Example 2: BBOB

4 Conclusions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 40/75

http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems

,
which differ in features such as dimension

, degree of separability

,
conditioning

, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems

,
which differ in features such as dimension

, degree of separability

,
conditioning

, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems

,
which differ in features such as dimension

, degree of separability

,
conditioning

, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

(figures taken from [82])

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension

, degree of separability

,
conditioning

, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

The relative amounts of BBOB benchmark functions according to their features.

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension, degree of separability

,
conditioning

, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

The relative amounts of BBOB benchmark functions according to their features.

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension, degree of separability,
conditioning

, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

The relative amounts of BBOB benchmark functions according to their features.

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension, degree of separability,
conditioning, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

The relative amounts of BBOB benchmark functions according to their features.

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension, degree of separability,
conditioning, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension, degree of separability,
conditioning, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension, degree of separability,
conditioning, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems,
which differ in features such as dimension, degree of separability,
conditioning, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 41/75

http://coco.gforge.inria.fr
http://www.optimizationBenchmarking.org

Quick Guide

You can quickly download all example data and the Evaluator and run
the example on your PC by executing the following code snippet.

System Requirements:

Linux (for make.sh), Windows (for make.bat, tested: Win 8, should
work also under Win 7)
Java 1.7 (ideally a JDK under a JRE slower and higher memory
consumption)
svn

optional: a LATEX installation, such as TeXLive (needed for generating
pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 42/75

http://www.optimizationBenchmarking.org

Quick Guide

You can quickly download all example data and the Evaluator and run
the example on your PC by executing the following code snippet.

System Requirements:

Linux (for make.sh), Windows (for make.bat, tested: Win 8, should
work also under Win 7)
Java 1.7 (ideally a JDK under a JRE slower and higher memory
consumption)
svn

optional: a LATEX installation, such as TeXLive (needed for generating
pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 42/75

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 42/75

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 42/75

Listing: Linux: script make.sh for downloading & running the BBOB example.

#!/bin/bash

jarName="optimizationBenchmarking-full.jar"

bbobDownloadBaseURL="http://coco.lri.fr/BBOB2013/rawdata"

outputDir=`pwd`
echo "Writing output to folder '${outputDir}'"

echo "Downloading selected experimental results from '${bbobDownloadBaseURL}'."
mkdir -p "${outputDir}/results"
cd "${outputDir}/results"
for archive in "hutter2013_CMAES.tar.gz" "liao2013_IPOP.tar.gz" "liao2013_IPOP-500.tar.gz" "liao2013_IPOP-tany.tar.gz" \

"liao2013_IPOP-texp.tar.gz" "tran2013_P-DCN.tar.gz" "pal2013_DE.tar.gz" "pal2013_fmincon.tar.gz" \

"pal2013_simplex.tar.gz" "pal2013_HMLSL.tar.gz" "holtschulte2013_hill.tar.gz" "holtschulte2013_ga100.tar.gz"

do

wget -O "${outputDir}/results/${archive}" "${bbobDownloadBaseURL}/$archive"
tar -xvf "${outputDir}/results/${archive}"
rm "${outputDir}/results/${archive}"

done

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

cd "${outputDir}"
svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/bbob/evaluation

jarDownloadURL=$(wget "http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url" -q -O -)

echo "Downloading evaluator from '${jarDownloadURL}'."
wget -O "${outputDir}/${jarName}" "${jarDownloadURL}"

echo "Applying evaluator and obtaining report in IEEEtran format."

cd "${outputDir}/evaluation"
java -jar "${outputDir}/${jarName}" -configXML=configForIEEEtran.xml

cd "${outputDir}"
echo "Done."

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 42/75

Listing: Windows: script make.sh for downloading & running the BBOB example.

echo "Downloading evaluator."

powershell -command "& {iwr http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url -OutFile version.txt}"

for /F "delims=" %i in (version.txt) do set downloadURL=%i

powershell -command "& {iwr %downloadURL% -OutFile optimizationBenchmarking.jar}"

del version.txt

echo "Downloading (but not installing!) required 3rd-party software: downloading SVN client and 7-Zip to extract it."

md svn

cd svn

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/7zip/7za.exe -OutFile 7za.exe}"

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/svn/svn.tar.lzma -OutFile svn.tar.lzma}"

7za x svn.tar.lzma

7za x svn.tar

cd..

echo "Downloading experimental results from http://coco.lri.fr/BBOB2013/rawdata/

md results

cd results

for %i in (hutter2013_CMAES.tar liao2013_IPOP.tar liao2013_IPOP-500.tar liao2013_IPOP-tany.tar ^

liao2013_IPOP-texp.tar tran2013_P-DCN.tar pal2013_DE.tar pal2013_fmincon.tar ^

pal2013_simplex.tar pal2013_HMLSL.tar holtschulte2013_hill.tar holtschulte2013_ga100.tar) do ^

powershell -command "& { iwr http://coco.lri.fr/BBOB2013/rawdata/%i.gz -OutFile %i.gz }" && ^

..\svn\7za x %i.gz && ^

..\svn\7za x %i && ^

del %i.gz && ^

del %i

cd ..

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

svn\svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/bbob/evaluation

rd /s /q svn

echo "Applying evaluator and obtaining report in IEEEtran format."

cd evaluation

java -jar "..\optimizationBenchmarking.jar" -configXML=configForIEEEtran.xml

cd..

echo "Done."

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 42/75

http://www.optimizationBenchmarking.org

Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports

But now, let’s continue with the example. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 42/75

http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator

:
1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator:

1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator:

1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator:

1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator:

1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator:

1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator:

1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator:

1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata. . .

. . . and unpack them into one common folder

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 43/75

http://coco.lri.fr/BBOB2013/rawdata
http://www.optimizationBenchmarking.org

Evaluation

All we need to supply to the Evaluator is

1 the evaluation.xml file specifying what kind of information we want
to obtain from the experimental data

and
2 the a configuration file (let’s call it configForIEEEtran.xml) telling

the Evaluator where everything is and what document driver or
document class to use (guess which).

We now look at the interesting parts of the evaluation.xml file (the
file in general has been discussed in the previous example)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 44/75

http://www.optimizationBenchmarking.org

Evaluation

All we need to supply to the Evaluator is
1 the evaluation.xml file specifying what kind of information we want

to obtain from the experimental data

and
2 the a configuration file (let’s call it configForIEEEtran.xml) telling

the Evaluator where everything is and what document driver or
document class to use (guess which).

We now look at the interesting parts of the evaluation.xml file (the
file in general has been discussed in the previous example)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 44/75

http://www.optimizationBenchmarking.org

Evaluation

All we need to supply to the Evaluator is
1 the evaluation.xml file specifying what kind of information we want

to obtain from the experimental data and
2 the a configuration file (let’s call it configForIEEEtran.xml) telling

the Evaluator where everything is and what document driver or
document class to use (guess which).

We now look at the interesting parts of the evaluation.xml file (the
file in general has been discussed in the previous example)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 44/75

http://www.optimizationBenchmarking.org

Evaluation

All we need to supply to the Evaluator is
1 the evaluation.xml file specifying what kind of information we want

to obtain from the experimental data and
2 the a configuration file (let’s call it configForIEEEtran.xml) telling

the Evaluator where everything is and what document driver or
document class to use (guess which).

We now look at the interesting parts of the evaluation.xml file (the
file in general has been discussed in the previous example)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 44/75

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

We set the goal “error” to 1 · 10−8

For the time measured in FEs and log-scaled, we plot the fraction of
runs achieving this goal

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

Listing: Part 1 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

We set the goal “error” to 1 · 10−8

For the time measured in FEs and log-scaled, we plot the fraction of
runs achieving this goal

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

Listing: Part 1 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

We set the goal “error” to 1 · 10−8

For the time measured in FEs and log-scaled, we plot the fraction of
runs achieving this goal

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

Listing: Part 1 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

It seems that IPOP-texp can reach
F ≤ 1 · 10−8 on more instances than
the other tested algorithms

The different IPOP variants in
general reach this value more often
than the other algorithms

pal2013 fmincon and
pal2013 HMLSL both solve more
problems during approximately the
first 2500 FEs, i.e., are initially faster

The Hill Climber and GA
(holtshulte) solve the least
problems in the comparison

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

It seems that IPOP-texp can reach
F ≤ 1 · 10−8 on more instances than
the other tested algorithms

The different IPOP variants in
general reach this value more often
than the other algorithms

pal2013 fmincon and
pal2013 HMLSL both solve more
problems during approximately the
first 2500 FEs, i.e., are initially faster

The Hill Climber and GA
(holtshulte) solve the least
problems in the comparison

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

It seems that IPOP-texp can reach
F ≤ 1 · 10−8 on more instances than
the other tested algorithms

The different IPOP variants in
general reach this value more often
than the other algorithms

pal2013 fmincon and
pal2013 HMLSL both solve more
problems during approximately the
first 2500 FEs, i.e., are initially faster

The Hill Climber and GA
(holtshulte) solve the least
problems in the comparison

http://www.optimizationBenchmarking.org

ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 45/75

It seems that IPOP-texp can reach
F ≤ 1 · 10−8 on more instances than
the other tested algorithms

The different IPOP variants in
general reach this value more often
than the other algorithms

pal2013 fmincon and
pal2013 HMLSL both solve more
problems during approximately the
first 2500 FEs, i.e., are initially faster

The Hill Climber and GA
(holtshulte) solve the least
problems in the comparison

http://www.optimizationBenchmarking.org

ECDF by Dimension

Let’s now plot the ECDF aggregated over each distinct value of the
benchmark feature dimension

The goal “error” to achieve is again 1 · 10−8

and

also use the (only) time measured in FEs, log-scaled.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

Listing: Part 2 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="groupBy" value="dim" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF by Dimension

Let’s now plot the ECDF aggregated over each distinct value of the
benchmark feature dimension

The goal “error” to achieve is again 1 · 10−8

and

also use the (only) time measured in FEs, log-scaled.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

Listing: Part 2 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="groupBy" value="dim" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF by Dimension

Let’s now plot the ECDF aggregated over each distinct value of the
benchmark feature dimension

The goal “error” to achieve is again 1 · 10−8 and

also use the (only) time measured in FEs, log-scaled.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

Listing: Part 2 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="groupBy" value="dim" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF by Dimension

Let’s now plot the ECDF aggregated over each distinct value of the
benchmark feature dimension

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

legend dim = 2 dim = 4

dim = 5 dim = 10 dim = 20

http://www.optimizationBenchmarking.org

ECDF by Dimension

We find that for larger dimension, fewer problems can be solved

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

legend dim = 2 dim = 4

dim = 5 dim = 10 dim = 20

http://www.optimizationBenchmarking.org

ECDF by Dimension

While the overall performance of pal2013 fmincon and
pal2013 simplex look similar when considering all problems, we find
that the simplex algorithm is very heavily influenced by the dimension

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

legend dim = 2 dim = 4

dim = 5 dim = 10 dim = 20

http://www.optimizationBenchmarking.org

ECDF by Dimension

Similarly, the performance of DE breaks down when the dimension
increases

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

legend dim = 2 dim = 4

dim = 5 dim = 10 dim = 20

http://www.optimizationBenchmarking.org

ECDF by Dimension

The performance of the IPOP algorithm family, on the other hand,
degenerates gracefully with rising dimension

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

legend dim = 2 dim = 4

dim = 5 dim = 10 dim = 20

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Let’s now plot the ECDF aggregated over the benchmark instances
with the same value of feature condition number

“the condition number corresponds to the square root of the ratio
between the largest axis of the ellipsoid and the shortest axis” [82]

As goal “error” to achieve, this time we pick 1 · 10−5

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

Listing: Part 3 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-5" />

<cfg:parameter name="groupBy" value="cond" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Let’s now plot the ECDF aggregated over the benchmark instances
with the same value of feature condition number

“the condition number corresponds to the square root of the ratio
between the largest axis of the ellipsoid and the shortest axis” [82]

As goal “error” to achieve, this time we pick 1 · 10−5

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

Listing: Part 3 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-5" />

<cfg:parameter name="groupBy" value="cond" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Let’s now plot the ECDF aggregated over the benchmark instances
with the same value of feature condition number

“the condition number corresponds to the square root of the ratio
between the largest axis of the ellipsoid and the shortest axis” [82]

As goal “error” to achieve, this time we pick 1 · 10−5

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

Listing: Part 3 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-5" />

<cfg:parameter name="groupBy" value="cond" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Let’s now plot the ECDF aggregated over the benchmark instances
with the same value of feature condition number

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

legend cond = 1 cond = 10 cond = 25

cond = 30 cond = 100 cond = 1000 cond = 1000 000

http://www.optimizationBenchmarking.org

ECDF by Condition Number

The influence of the condition number on problem hardness does not
seem to obvious at first glance

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

legend cond = 1 cond = 10 cond = 25

cond = 30 cond = 100 cond = 1000 cond = 1000 000

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Some algorithms perform bad on some mediocre condition numbers
while performing better on smaller and larger ones (e.g., P-DCN on
cond = 1000)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

legend cond = 1 cond = 10 cond = 25

cond = 30 cond = 100 cond = 1000 cond = 1000 000

http://www.optimizationBenchmarking.org

ECDF by Condition Number

For some problems, there doesn’t seem to be a direct relationship
between conditioning and performance (e.g., DE)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

legend cond = 1 cond = 10 cond = 25

cond = 30 cond = 100 cond = 1000 cond = 1000 000

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Possible reason: The problems in the benchmark belonging to a
certain condition number may have various other features making
them hard or easy

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

legend cond = 1 cond = 10 cond = 25

cond = 30 cond = 100 cond = 1000 cond = 1000 000

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Possible reasons: The problems in the benchmark belonging to a
certain condition number may have various other features making
them hard or easy and the number of problems per condition number
differs largely

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

The relative amounts of BBOB benchmark functions according to their features.
(This diagram has also been created with optimizationBenchmarking.)

http://www.optimizationBenchmarking.org

ECDF by Condition Number

Possible reason: The problems in the benchmark belonging to a
certain condition number may have various other features making
them hard or easy, the number of problems per condition number
differs largely, and the goal value 1 · 10−5 may be too easy to achieve,
leading to a large variance in the results

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 47/75

http://www.optimizationBenchmarking.org

Progress by Separability

Finally, let’s see how the algorithms progress on problems of different
degrees of separability

The x-axis be again the log-scaled FEs divided by the square of the
benchmark instance dimension1

and

on the y-axis, we plot the median of the log-scaled objective value F

1Yes, the square. Because why not. You can do arbitrary mathematical expressions
(as long as the preserve the order of the values)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

Listing: Part 4 from file evaluation.xml for our BBOB example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/dim 2)" />

<cfg:parameter name="yAxis" value="lg F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="sep" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

Progress by Separability

Finally, let’s see how the algorithms progress on problems of different
degrees of separability

The x-axis be again the log-scaled FEs divided by the square of the
benchmark instance dimension1

and

on the y-axis, we plot the median of the log-scaled objective value F

1Yes, the square. Because why not. You can do arbitrary mathematical expressions
(as long as the preserve the order of the values)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

Listing: Part 4 from file evaluation.xml for our BBOB example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/dim 2)" />

<cfg:parameter name="yAxis" value="lg F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="sep" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

Progress by Separability

Finally, let’s see how the algorithms progress on problems of different
degrees of separability

The x-axis be again the log-scaled FEs divided by the square of the
benchmark instance dimension1 and

on the y-axis, we plot the median of the log-scaled objective value F

1Yes, the square. Because why not. You can do arbitrary mathematical expressions
(as long as the preserve the order of the values)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

Listing: Part 4 from file evaluation.xml for our BBOB example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/dim 2)" />

<cfg:parameter name="yAxis" value="lg F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="sep" />

</cfg:configuration >

</e:module >

http://www.optimizationBenchmarking.org

Progress by Separability

Finally, let’s see how the algorithms progress on problems of different
degrees of separability

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

le
g

en
d

fu
ll
y

se
p

ar
a

b
le

p
ar

ti
a

ll
y

se
p

ar
a

b
le

n
o

n
-s

ep
ar

a
b

le

http://www.optimizationBenchmarking.org

Progress by Separability

We find that pal2013 fmincon and pal2013 HMLSL are quite good
in solving fully and partially separable problems but both (and
especially pal2013 fmincon) perform worse on non-separable
problems

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

le
g

en
d

fu
ll
y

se
p

ar
a

b
le

p
ar

ti
a

ll
y

se
p

ar
a

b
le

n
o

n
-s

ep
ar

a
b

le

http://www.optimizationBenchmarking.org

Progress by Separability

Here seems to be the strength of the IPOP family of algorithms

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

le
g

en
d

fu
ll
y

se
p

ar
a

b
le

p
ar

ti
a

ll
y

se
p

ar
a

b
le

n
o

n
-s

ep
ar

a
b

le

http://www.optimizationBenchmarking.org

Progress by Separability

Generally, a decrease in separability, i.e., stronger “variable
interactions” [108], makes optimization problems harder for numerical
optimization algorithms, which either need longer to or cease to
achieve high-quality solutions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

le
g

en
d

fu
ll
y

se
p

ar
a

b
le

p
ar

ti
a

ll
y

se
p

ar
a

b
le

n
o

n
-s

ep
ar

a
b

le

http://www.optimizationBenchmarking.org

Example Summary

We can use the
optimizationBenchmarking

Evaluator to analyze data gathered
by COCO for BBOB.

Benchmark instances can be grouped
according to features, allowing for
convinient analysis of an algorithm’s
strengths and weaknesses.

Evaluator modules implemented
once can be used for benchmark
data from various algorithms and
various optimization problems.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 49/75

1

Evaluation Report on Twelve Experiments
Anne Anonymous

Abstract—This is the evaluation report on twelve experiments,
namely P-DCN, holtschulte2013_ga100, holtschulte2013_hill,
hutter2013_CMAES, liao2013_IPOP, liao2013_IPOP-500,
liao2013_IPOP-tany, liao2013_IPOP-texp, pal2013_DE,
pal2013_HMLSL, pal2013_fmincon, and pal2013_simplex
on 144 benchmark instances. This report has been generated
with the version 0.8.4 of the Evaluator Component of the
Optimization Benchmarking Tool Suite.

I. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead
log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of FEs directly, but
instead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature dim grouped
together.

The corresponding plots are illustrated in Figure 2.

C. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-5) represents the fraction of runs which
reach a value of F less than or equal to 1.E-5 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead

log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better. The instance run sets belonging to
instances with the same value of the feature cond grouped
together.

The corresponding plots are illustrated in Figure 3.

D. Median of Medians

We analyze the median of medians (med med)
computed based on log10 F over log10

(
FEs
dim2

)
. The

med med(FEs, log10 F) represents the median of the log10 F
for a given ellapsed runtime measured in FEs. The median
is always computed over the runs of an experiment for a
given benchmark instance. If runs for multiple instances are
available, we aggregate these medians by computing their
median. The x-axis does not represent the values of FEs
directly, but instead log10

(
FEs
dim2

)
. The instance run sets

belonging to instances with the same value of the feature sep
grouped together.

The corresponding plots are illustrated in Figure 4.

REFERENCES

[1] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms — pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Jul. 24–26, 1998, pp. 238–245. [Online]. Available:
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z

[2] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell, Eds.,
vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-Verlag
GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available: http:
//ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf?attredirects=0

[3] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter
black-box optimization benchmarking: Experimental setup,” Orsay,
France: Université Paris Sud, Institut National de Recherche en
Informatique et en Automatique (INRIA) Futurs, Équipe TAO,
Tech. Rep., Mar. 24, 2012. [Online]. Available: http://coco.lri.fr/
BBOB-downloads/download11.05/bbobdocexperiment.pdf

first page of the report in LATEX
for IEEEtran

http://www.optimizationBenchmarking.org

Example Summary

We can use the
optimizationBenchmarking

Evaluator to analyze data gathered
by COCO for BBOB.

Benchmark instances can be grouped
according to features, allowing for
convinient analysis of an algorithm’s
strengths and weaknesses.

Evaluator modules implemented
once can be used for benchmark
data from various algorithms and
various optimization problems.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 49/75

1

Evaluation Report on Twelve Experiments
Anne Anonymous

Abstract—This is the evaluation report on twelve experiments,
namely P-DCN, holtschulte2013_ga100, holtschulte2013_hill,
hutter2013_CMAES, liao2013_IPOP, liao2013_IPOP-500,
liao2013_IPOP-tany, liao2013_IPOP-texp, pal2013_DE,
pal2013_HMLSL, pal2013_fmincon, and pal2013_simplex
on 144 benchmark instances. This report has been generated
with the version 0.8.4 of the Evaluator Component of the
Optimization Benchmarking Tool Suite.

I. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead
log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of FEs directly, but
instead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature dim grouped
together.

The corresponding plots are illustrated in Figure 2.

C. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-5) represents the fraction of runs which
reach a value of F less than or equal to 1.E-5 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead

log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better. The instance run sets belonging to
instances with the same value of the feature cond grouped
together.

The corresponding plots are illustrated in Figure 3.

D. Median of Medians

We analyze the median of medians (med med)
computed based on log10 F over log10

(
FEs
dim2

)
. The

med med(FEs, log10 F) represents the median of the log10 F
for a given ellapsed runtime measured in FEs. The median
is always computed over the runs of an experiment for a
given benchmark instance. If runs for multiple instances are
available, we aggregate these medians by computing their
median. The x-axis does not represent the values of FEs
directly, but instead log10

(
FEs
dim2

)
. The instance run sets

belonging to instances with the same value of the feature sep
grouped together.

The corresponding plots are illustrated in Figure 4.

REFERENCES

[1] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms — pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Jul. 24–26, 1998, pp. 238–245. [Online]. Available:
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z

[2] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell, Eds.,
vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-Verlag
GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available: http:
//ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf?attredirects=0

[3] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter
black-box optimization benchmarking: Experimental setup,” Orsay,
France: Université Paris Sud, Institut National de Recherche en
Informatique et en Automatique (INRIA) Futurs, Équipe TAO,
Tech. Rep., Mar. 24, 2012. [Online]. Available: http://coco.lri.fr/
BBOB-downloads/download11.05/bbobdocexperiment.pdf

first page of the report in LATEX
for IEEEtran

http://www.optimizationBenchmarking.org

Example Summary

We can use the
optimizationBenchmarking

Evaluator to analyze data gathered
by COCO for BBOB.

Benchmark instances can be grouped
according to features, allowing for
convinient analysis of an algorithm’s
strengths and weaknesses.

Evaluator modules implemented
once can be used for benchmark
data from various algorithms and
various optimization problems.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 49/75

1

Evaluation Report on Twelve Experiments
Anne Anonymous

Abstract—This is the evaluation report on twelve experiments,
namely P-DCN, holtschulte2013_ga100, holtschulte2013_hill,
hutter2013_CMAES, liao2013_IPOP, liao2013_IPOP-500,
liao2013_IPOP-tany, liao2013_IPOP-texp, pal2013_DE,
pal2013_HMLSL, pal2013_fmincon, and pal2013_simplex
on 144 benchmark instances. This report has been generated
with the version 0.8.4 of the Evaluator Component of the
Optimization Benchmarking Tool Suite.

I. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead
log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of FEs directly, but
instead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature dim grouped
together.

The corresponding plots are illustrated in Figure 2.

C. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-5) represents the fraction of runs which
reach a value of F less than or equal to 1.E-5 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead

log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better. The instance run sets belonging to
instances with the same value of the feature cond grouped
together.

The corresponding plots are illustrated in Figure 3.

D. Median of Medians

We analyze the median of medians (med med)
computed based on log10 F over log10

(
FEs
dim2

)
. The

med med(FEs, log10 F) represents the median of the log10 F
for a given ellapsed runtime measured in FEs. The median
is always computed over the runs of an experiment for a
given benchmark instance. If runs for multiple instances are
available, we aggregate these medians by computing their
median. The x-axis does not represent the values of FEs
directly, but instead log10

(
FEs
dim2

)
. The instance run sets

belonging to instances with the same value of the feature sep
grouped together.

The corresponding plots are illustrated in Figure 4.

REFERENCES

[1] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms — pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., Jul. 24–26, 1998, pp. 238–245. [Online]. Available:
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z

[2] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell, Eds.,
vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-Verlag
GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available: http:
//ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf?attredirects=0

[3] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter
black-box optimization benchmarking: Experimental setup,” Orsay,
France: Université Paris Sud, Institut National de Recherche en
Informatique et en Automatique (INRIA) Futurs, Équipe TAO,
Tech. Rep., Mar. 24, 2012. [Online]. Available: http://coco.lri.fr/
BBOB-downloads/download11.05/bbobdocexperiment.pdf

first page of the report in LATEX
for IEEEtran

http://www.optimizationBenchmarking.org

Section Outline

1 Introduction

2 Example 1: MAX-SAT

3 Example 2: BBOB

4 Conclusions

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 50/75

http://www.optimizationBenchmarking.org

Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 51/75

http://www.optimizationBenchmarking.org

Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 51/75

http://www.optimizationBenchmarking.org

Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 51/75

http://www.optimizationBenchmarking.org

Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 51/75

http://www.optimizationBenchmarking.org

Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 51/75

http://www.optimizationBenchmarking.org

Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 51/75

http://www.optimizationBenchmarking.org

Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 51/75

http://www.optimizationBenchmarking.org

Future Work: Short-Term

Add the missing text to the different evaluation modules

Add more modules, to reach TSP Suite’s power, e.g., add automated
algorithm ranking

Publicize the use optimizationBenchmarking about colleagues

Improve features based on feedback

Write an overview paper about our system to publish it more widely

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 52/75

http://www.optimizationBenchmarking.org

Future Work: Short-Term

Add the missing text to the different evaluation modules

Add more modules, to reach TSP Suite’s power, e.g., add automated
algorithm ranking

Publicize the use optimizationBenchmarking about colleagues

Improve features based on feedback

Write an overview paper about our system to publish it more widely

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 52/75

http://www.optimizationBenchmarking.org

Future Work: Short-Term

Add the missing text to the different evaluation modules

Add more modules, to reach TSP Suite’s power, e.g., add automated
algorithm ranking

Publicize the use optimizationBenchmarking about colleagues

Improve features based on feedback

Write an overview paper about our system to publish it more widely

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 52/75

http://www.optimizationBenchmarking.org

Future Work: Short-Term

Add the missing text to the different evaluation modules

Add more modules, to reach TSP Suite’s power, e.g., add automated
algorithm ranking

Publicize the use optimizationBenchmarking about colleagues

Improve features based on feedback

Write an overview paper about our system to publish it more widely

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 52/75

http://www.optimizationBenchmarking.org

Future Work: Short-Term

Add the missing text to the different evaluation modules

Add more modules, to reach TSP Suite’s power, e.g., add automated
algorithm ranking

Publicize the use optimizationBenchmarking about colleagues

Improve features based on feedback

Write an overview paper about our system to publish it more widely

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 52/75

http://www.optimizationBenchmarking.org

Future Work: Long-Term

Scout for new interesting ways to evaluate optimization and Machine
Learning algorithms and implement them as evaluator modules

Idea: We could use clustering to group algorithms by their behavior or
problems by their hardness

Idea: We could use Machine Learning to predict algorithm
performance or result quality based on problem features

Idea: We could use regression or curve fitting to find curves fitting to
measured progress or ECDF functions and then use these to compare
with or develop new theoretical concepts

Btw: This is Big Data, since we can collect much information. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 53/75

http://www.optimizationBenchmarking.org

Future Work: Long-Term

Scout for new interesting ways to evaluate optimization and Machine
Learning algorithms and implement them as evaluator modules

Idea: We could use clustering to group algorithms by their behavior or
problems by their hardness

Idea: We could use Machine Learning to predict algorithm
performance or result quality based on problem features

Idea: We could use regression or curve fitting to find curves fitting to
measured progress or ECDF functions and then use these to compare
with or develop new theoretical concepts

Btw: This is Big Data, since we can collect much information. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 53/75

http://www.optimizationBenchmarking.org

Future Work: Long-Term

Scout for new interesting ways to evaluate optimization and Machine
Learning algorithms and implement them as evaluator modules

Idea: We could use clustering to group algorithms by their behavior or
problems by their hardness

Idea: We could use Machine Learning to predict algorithm
performance or result quality based on problem features

Idea: We could use regression or curve fitting to find curves fitting to
measured progress or ECDF functions and then use these to compare
with or develop new theoretical concepts

Btw: This is Big Data, since we can collect much information. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 53/75

http://www.optimizationBenchmarking.org

Future Work: Long-Term

Scout for new interesting ways to evaluate optimization and Machine
Learning algorithms and implement them as evaluator modules

Idea: We could use clustering to group algorithms by their behavior or
problems by their hardness

Idea: We could use Machine Learning to predict algorithm
performance or result quality based on problem features

Idea: We could use regression or curve fitting to find curves fitting to
measured progress or ECDF functions and then use these to compare
with or develop new theoretical concepts

Btw: This is Big Data, since we can collect much information. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 53/75

http://www.optimizationBenchmarking.org

Future Work: Long-Term

Scout for new interesting ways to evaluate optimization and Machine
Learning algorithms and implement them as evaluator modules

Idea: We could use clustering to group algorithms by their behavior or
problems by their hardness

Idea: We could use Machine Learning to predict algorithm
performance or result quality based on problem features

Idea: We could use regression or curve fitting to find curves fitting to
measured progress or ECDF functions and then use these to compare
with or develop new theoretical concepts

Btw: This is Big Data, since we can collect much information. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 53/75

http://www.optimizationBenchmarking.org

Future Work: Long-Term

Scout for new interesting ways to evaluate optimization and Machine
Learning algorithms and implement them as evaluator modules

Idea: We could use clustering to group algorithms by their behavior or
problems by their hardness

Idea: We could use Machine Learning to predict algorithm
performance or result quality based on problem features

Idea: We could use regression or curve fitting to find curves fitting to
measured progress or ECDF functions and then use these to compare
with or develop new theoretical concepts

Btw: This is Big Data, since we can collect much information. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 53/75

http://www.optimizationBenchmarking.org

Visit our website

http://www.optimizationBenchmarking.org

or

http://optimizationbenchmarking.github.io/optimizationBenchmarking

for downloading the software (version 0.8.4) and
obtaining more information.

System Requirements:

Java 1.7 (Ideally a JDK, under JRE slower with more memory requirements)

optional: a LATEX installation, such as TeXLive or MiKTeX (needed for generating pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 54/75

http://www.optimizationBenchmarking.org
http://optimizationbenchmarking.github.io/optimizationBenchmarking
http://www.optimizationBenchmarking.org

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢！！！
Thank you.
Thomas Weise
tweise@ustc.edu.cn ·
tweise@gmx.de ·
http://www.it-weise.de

USTC-Birmingham Joint Res. Inst. in
Intelligent Computation and Its Appli-
cations (UBRI)
University of Science and Technology
of China (USTC), Hefei 230027, An-
hui, China

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 55/75

mailto:tweise@ustc.edu.cn
mailto:tweise@gmx.de
http://www.it-weise.de
http://www.optimizationBenchmarking.org

Bibliography

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 56/75

http://www.optimizationBenchmarking.org

Bibliography I

1. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolutionary Computation.
Computational Intelligence Library. New York, NY, USA: Oxford University Press, Inc., Dirac House, Temple Back,
Bristol, UK: Institute of Physics Publishing Ltd. (IOP), and Boca Raton, FL, USA: CRC Press, Inc., January 1, 1997.
ISBN 0-7503-0392-1, 0-7503-0895-8, 978-0-7503-0392-7, and 978-0-7503-0895-3. URL
http://books.google.de/books?id=n5nuiIZvmpAC.

2. Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz, editors. Variants of Evolutionary Algorithms for Real-World
Applications. Berlin/Heidelberg: Springer-Verlag, 2011. ISBN 978-3-642-23423-1 and 978-3-642-23424-8. doi:
10.1007/978-3-642-23424-8. URL http://books.google.de/books?id=B2ONePP40MEC.

3. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Evolutionary Computation 1: Basic Algorithms and
Operators. Dirac House, Temple Back, Bristol, UK: Institute of Physics Publishing Ltd. (IOP), January 2000. ISBN
0750306645 and 9780750306645. URL http://books.google.de/books?id=4HMYCq9US78C.

4. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Evolutionary Computation 2: Advanced Algorithms
and Operators. Dirac House, Temple Back, Bristol, UK: Institute of Physics Publishing Ltd. (IOP), November 2000. ISBN
0750306653 and 9780750306652.

5. Dumitru (Dan) Dumitrescu, Beatrice Lazzerini, Lakhmi C. Jain, and A. Dumitrescu. Evolutionary Computation,
volume 18 of International Series on Computational Intelligence. Boca Raton, FL, USA: CRC Press, Inc., June 2000.
ISBN 0-8493-0588-8 and 978-0-8493-0588-7. URL http://books.google.de/books?id=MSU9ep79JvUC.

6. Ágoston E. Eiben, editor. Evolutionary Computation. Theoretical Computer Science. Amsterdam, The Netherlands: IOS
Press, 1999. ISBN 4-274-90269-2, 90-5199-471-0, 978-4-274-90269-7, and 978-90-5199-471-1. URL
http://books.google.de/books?id=8LVAGQAACAAJ. This is the book edition of the journal Fundamenta Informaticae,
Volume 35, Nos. 1-4, 1998.

7. David Wolfe Corne, Marco Dorigo, Fred W. Glover, Dipankar Dasgupta, Pablo Moscato, Riccardo Poli, and Kenneth V.
Price, editors. New Ideas in Optimization. McGraw-Hill’s Advanced Topics In Computer Science Series. Maidenhead,
England, UK: McGraw-Hill Ltd., May 1999. ISBN 0-07-709506-5 and 978-0-07-709506-2. URL
http://books.google.de/books?id=nC35AAAACAAJ.

8. Ashish Ghosh and Shigeyoshi Tsutsui, editors. Advances in Evolutionary Computing – Theory and Applications. Natural
Computing Series. New York, NY, USA: Springer New York, November 22, 2002. ISBN 3-540-43330-9 and
978-3-540-43330-9. URL http://books.google.de/books?id=OGMEMC9P3vMC.

9. Thomas Weise. Global Optimization Algorithms – Theory and Application. Germany: it-weise.de (self-published), 2009.
URL http://www.it-weise.de/projects/book.pdf.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 57/75

http://books.google.de/books?id=n5nuiIZvmpAC
http://books.google.de/books?id=B2ONePP40MEC
http://books.google.de/books?id=4HMYCq9US78C
http://books.google.de/books?id=MSU9ep79JvUC
http://books.google.de/books?id=8LVAGQAACAAJ
http://books.google.de/books?id=nC35AAAACAAJ
http://books.google.de/books?id=OGMEMC9P3vMC
http://www.it-weise.de/projects/book.pdf
http://www.optimizationBenchmarking.org

Bibliography II

10. Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system: Optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 26(1):29–41, February 1996. doi:
10.1109/3477.484436. URL ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf.

11. Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Books. Cambridge, MA, USA: MIT Press, July 1,
2004. ISBN 0-262-04219-3 and 978-0-262-04219-2. URL http://books.google.de/books?id=_aefcpY8GiEC.

12. Michael Guntsch and Martin Middendorf. Applying population based aco to dynamic optimization problems. In Marco
Dorigo, Gianni A. Di Caro, and Michael Samples, editors, From Ant Colonies to Artificial Ants – Proceedings of the Third
International Workshop on Ant Colony Optimization (ANTS’02), volume 2463/2002 of Lecture Notes in Computer
Science (LNCS), pages 111–122, Brussels, Belgium, 2002. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/3-540-45724-0 10. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6580.

13. Mark Zlochin, Mauro Birattari, Nicolas Meuleau, and Marco Dorigo. Model-based search for combinatorial optimization:
A critical survey. Annals of Operations Research, 132(1-4):373–395, November 2004. doi:
10.1023/B:ANOR.0000039526.52305.af.

14. Ingo Rechenberg. Cybernetic Solution Path of an Experimental Problem. Farnborough, Hampshire, UK: Royal Aircraft
Establishment, August 1965. Library Translation 1122.

15. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD
thesis, Berlin, Germany: Technische Universität Berlin, 1971. URL http://books.google.de/books?id=QcNNGQAACAAJ.

16. Ingo Rechenberg. Evolutionsstrategie ’94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Bad Cannstadt,
Stuttgart, Baden-Württemberg, Germany: Frommann-Holzboog Verlag, 1994. ISBN 3-7728-1642-8 and
978-3-772-81642-0. URL http://books.google.de/books?id=savAAAACAAJ.

17. Hans-Paul Schwefel. Kybernetische evolution als strategie der exprimentellen forschung in der strömungstechnik. Master’s
thesis, Berlin, Germany: Technische Universität Berlin, 1965.

18. Hans-Paul Schwefel. Experimentelle optimierung einer zweiphasendüse teil i. Technical Report 35, Berlin, Germany: AEG
Research Institute, 1968. Project MHD–Staustrahlrohr 11.034/68.

19. Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Berlin, Germany: Technische
Universität Berlin, Institut für Meß- und Regelungstechnik, Institut für Biologie und Anthropologie, 1975.

20. Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution – A Practical Approach to Global
Optimization. Natural Computing Series. Basel, Switzerland: Birkhäuser Verlag, 2005. ISBN 3-540-20950-6,
3-540-31306-0, 978-3-540-20950-8, and 978-3-540-31306-9. URL http://books.google.de/books?id=S67vX-KqVqUC.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 58/75

ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf
http://books.google.de/books?id=_aefcpY8GiEC
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6580
http://books.google.de/books?id=QcNNGQAACAAJ
http://books.google.de/books?id=savAAAACAAJ
http://books.google.de/books?id=S67vX-KqVqUC
http://www.optimizationBenchmarking.org

Bibliography III

21. Vitaliy Feoktistov. Differential Evolution – In Search of Solutions, volume 5 of Springer Optimization and Its Applications.
New York, NY, USA: Springer New York, December 2006. ISBN 0-387-36895-7, 0-387-36896-5, 978-0-387-36895-5, and
978-0-387-36896-2. URL http://books.google.de/books?id=kG7aP_v-SU4C.

22. Efrén Mezura-Montes, Jesús Velázquez-Reyes, and Carlos Artemio Coello Coello. A comparative study of differential
evolution variants for global optimization. In Maarten Keijzer and Mike Cattolico, editors, Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation (GECCO’06), pages 485–492, Seattle, WA, USA: Renaissance
Seattle Hotel, 2006. New York, NY, USA: ACM Press. doi: 10.1145/1143997.1144086. URL
http://delta.cs.cinvestav.mx/~ccoello/conferences/mezura-gecco2006.pdf.gz.

23. Janez Brest, Viljem Žumer, and Mirjam Sepesy Maučec. Control parameters in self-adaptive differential evolution. In
Bogdan Filipič and Jurij Šilc, editors, Proceedings of the Second International Conference on Bioinspired Optimization
Methods and their Applications (BIOMA’06), Informacijska Družba (Information Society), pages 35–44, Ljubljana,
Slovenia: Jožef Stefan International Postgraduate School, 2006. Ljubljana, Slovenia: Jožef Stefan Institute. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8106.

24. Jouni A. Lampinen and Ivan Zelinka. On stagnation of the differential evolution algorithm. In Pavel Osmera, editor,
Proceedings of the 6th International Conference on Soft Computing (MENDEL’00), pages 76–83, Brno, Czech Republic:

Brno University of Technology, 2000. Brno, Czech Republic: Brno University of Technology, Ústav Automatizace a
Informatiky. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7932.

25. Roberto R. F. Mendes and Arvind S. Mohais. Dynde: A differential evolution for dynamic optimization problems. In
David Wolfe Corne, Zbigniew Michalewicz, Robert Ian McKay, Ágoston E. Eiben, David B. Fogel, Carlos M. Fonseca,
Günther R. Raidl, Kay Chen Tan, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’05), volume 3, pages 2808–2815, Edinburgh, Scotland, UK, 2005. Piscataway, NJ, USA: IEEE
Computer Society. doi: 10.1109/CEC.2005.1555047. URL
http://www3.di.uminho.pt/~rcm/publications/DynDE.pdf.

26. Patricia Besson, Jean-Marc Vesin, Vlad Popovici, and Murat Kunt. Differential evolution applied to a multimodal
information theoretic optimization problem. In Franz Rothlauf, Jürgen Branke, Stefano Cagnoni, Ernesto Jorge Fernandes
Costa, Carlos Cotta, Rolf Drechsler, Evelyne Lutton, Penousal Machado, Jason H. Moore, Juan Romero, George D.
Smith, Giovanni Squillero, and Hideyuki Takagi, editors, Applications of Evolutionary Computing – Proceedings of
EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC
(EvoWorkshops’06), volume 3907/2006 of Lecture Notes in Computer Science (LNCS), pages 505–509, Budapest,
Hungary, 2006. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/11732242 46.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 59/75

http://books.google.de/books?id=kG7aP_v-SU4C
http://delta.cs.cinvestav.mx/~ccoello/conferences/mezura-gecco2006.pdf.gz
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8106
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7932
http://www3.di.uminho.pt/~rcm/publications/DynDE.pdf
http://www.optimizationBenchmarking.org

Bibliography IV

27. Rainer M. Storn. Differential evolution (de) for continuous function optimization (an algorithm by kenneth price and
rainer storn), 2010. URL http://www.icsi.berkeley.edu/~storn/code.html.

28. Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. In Larry J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA’95), pages 57–64, Pittsburgh, PA, USA: University of Pittsburgh,
1995. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9321.

29. Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: The
covariance matrix adaptation. In Keisoku Jidō and Seigyo Gakkai, editors, Proceedings of IEEE International Conference
on Evolutionary Computation (CEC’96), pages 312–317, Nagoya, Aichi, Japan: Nagoya University, Symposium & Toyoda
Auditorium, 1996. Los Alamitos, CA, USA: IEEE Computer Society Press. URL http://www.lri.fr/~hansen/CMAES.pdf.

30. Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159–195, 2001. URL http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf.

31. Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (cma-es). Evolutionary Computation, 11(1):1–18, 2003. doi:
10.1162/106365603321828970. URL http://mitpress.mit.edu/journals/pdf/evco_11_1_1_0.pdf.

32. Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on multimodal test functions. In Xin Yao,
Edmund K. Burke, José Antonio Lozano, Jim Smith, Juan Julián Merelo-Guervós, John A. Bullinaria, Jonathan E. Rowe,
Peter Tiño, Ata Kabán, and Hans-Paul Schwefel, editors, Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature (PPSN VIII), volume 3242/2004 of Lecture Notes in Computer Science (LNCS), pages
282–291, Birmingham, UK, 2008. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-540-30217-9 29.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.163.

33. Nikolaus Hansen. The cma evolution strategy: A comparing review. In José Antonio Lozano, Pedro Larrañaga, Iñaki Inza,
and Endika Bengoetxea, editors, Towards a New Evolutionary Computation – Advances on Estimation of Distribution
Algorithms, volume 192/2006 of Studies in Fuzziness and Soft Computing, pages 75–102. Berlin, Germany:
Springer-Verlag GmbH, 2006. URL http://www.lri.fr/~hansen/hansenedacomparing.pdf.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 60/75

http://www.icsi.berkeley.edu/~storn/code.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9321
http://www.lri.fr/~hansen/CMAES.pdf
http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf
http://mitpress.mit.edu/journals/pdf/evco_11_1_1_0.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.163
http://www.lri.fr/~hansen/hansenedacomparing.pdf
http://www.optimizationBenchmarking.org

Bibliography V

34. Anne Auger and Nikolaus Hansen. A restart cma evolution strategy with increasing population size. In David Wolfe
Corne, Zbigniew Michalewicz, Robert Ian McKay, Ágoston E. Eiben, David B. Fogel, Carlos M. Fonseca, Günther R.
Raidl, Kay Chen Tan, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on Evolutionary Computation
(CEC’05), pages 1769–1776, Edinburgh, Scotland, UK, 2005. Piscataway, NJ, USA: IEEE Computer Society. doi:
10.1109/CEC.2005.1554902. URL http://www.lri.fr/~hansen/cec2005ipopcmaes.pdf.

35. Anne Auger and Nikolaus Hansen. Performance evaluation of an advanced local search evolutionary algorithm. In
David Wolfe Corne, Zbigniew Michalewicz, Robert Ian McKay, Ágoston E. Eiben, David B. Fogel, Carlos M. Fonseca,
Günther R. Raidl, Kay Chen Tan, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’05), volume 2, pages 1777–1784, Edinburgh, Scotland, UK, 2005. Piscataway, NJ, USA: IEEE
Computer Society. doi: 10.1109/CEC.2005.1554903. URL http://www.lri.fr/~hansen/cec2005localcmaes.pdf.

36. Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann
Series in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005. ISBN 1558608729 and
978-1558608726. URL http://books.google.de/books?id=3HAedXnC49IC.

37. Emile H. L. Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Optimization. Estimation, Simulation,
and Control – Wiley-Interscience Series in Discrete Mathematics and Optimization. Princeton, NJ, USA: Princeton
University Press, 1997. ISBN 0585277540, 0691115222, 9780585277547, and 9780691115221. URL
http://books.google.de/books?id=NWghN9G7q9MC.

38. Matthijs den Besten, Thomas Stützle, and Marco Dorigo. Design of iterated local search algorithms. In Egbert J. W.
Boers, Jens Gottlieb, Pier Luca Lanzi, Robert Elliott Smith, Stefano Cagnoni, Emma Hart, Günther R. Raidl, and Harald
Tijink, editors, Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2001: EvoCOP, EvoFlight,
EvoIASP, EvoLearn, and EvoSTIM (EvoWorkshops’01), volume 2037/2001 of Lecture Notes in Computer Science
(LNCS), pages 441–451, Lake Como, Milan, Italy, 2001. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/3-540-45365-2 46.

39. Peter Salamon, Paolo Sibani, and Richard Frost. Facts, Conjectures, and Improvements for Simulated Annealing,
volume 7 of SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics (SIAM), 2002. ISBN 0898715083 and 9780898715088. URL
http://books.google.de/books?id=jhAldlYvClcC.

40. Peter J. M. van Laarhoven and Emile H. L. Aarts, editors. Simulated Annealing: Theory and Applications, volume 37 of
Mathematics and its Applications. Norwell, MA, USA: Kluwer Academic Publishers, 1987. ISBN 90-277-2513-6,
978-90-277-2513-4, and 978-90-481-8438-5. URL http://books.google.de/books?id=-IgUab6Dp_IC.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 61/75

http://www.lri.fr/~hansen/cec2005ipopcmaes.pdf
http://www.lri.fr/~hansen/cec2005localcmaes.pdf
http://books.google.de/books?id=3HAedXnC49IC
http://books.google.de/books?id=NWghN9G7q9MC
http://books.google.de/books?id=jhAldlYvClcC
http://books.google.de/books?id=-IgUab6Dp_IC
http://www.optimizationBenchmarking.org

Bibliography VI

41. Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing. Research Notes in Artificial Intelligence. London,
UK: Pitman, 1987. ISBN 0273087711, 0934613443, 9780273087717, and 978-0934613446. URL
http://books.google.de/books?id=edfSSAAACAAJ.

42. James C. Spall. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control –
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience,
first edition, June 2003. ISBN 0-471-33052-3, 0-471-72213-8, 978-0-471-33052-3, and 978-0-471-72213-7. URL
http://books.google.de/books?id=f66OIvvkKnAC.

43. Scott Kirkpatrick, Charles Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science
Magazine, 220(4598):671–680, May 13, 1983. doi: 10.1126/science.220.4598.671. URL
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf.

44. Vladiḿır Černý. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal
of Optimization Theory and Applications, 45(1):41–51, January 1985. doi: 10.1007/BF00940812. URL
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf. Communicated by S. E. Dreyfus. Also: Technical
Report, Comenius University, Mlynská Dolina, Bratislava, Czechoslovakia, 1982.

45. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. Monte carlo techniques in code optimization. ACM
SIGMICRO Newsletter, 13(4):143–148, December 1982.

46. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. Monte carlo techniques in code optimization. In International
Symposium on Microarchitecture – Proceedings of the 15th Annual Workshop on Microprogramming (MICRO 15), pages
143–146, Palo Alto, CA, USA, 1982. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics Engineers).

47. Martin Pincus. A monte carlo method for the approximate solution of certain types of constrained optimization problems.
Operations Research (Oper. Res.), 18(6):1225–1228, November–December 1970.

48. Fred W. Glover. Tabu search – part i. ORSA Journal on Computing, 1(3):190–206, 1989. doi: 10.1287/ijoc.1.3.190.
URL http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20I-ORSA.pdf.

49. Fred W. Glover. Tabu search – part ii. ORSA Journal on Computing, 2(1):190–206, 1990. doi: 10.1287/ijoc.2.1.4.
URL http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20II-ORSA-aw.pdf.

50. Fred W. Glover and Manuel Laguna. Tabu search. In Colin R. Reeves, editor, Modern Heuristic Techniques for
Combinatorial Problems, Advanced Topics in Computer Science Series. Chichester, West Sussex, UK: Blackwell Publishing
Ltd, 1993. ISBN 079239965X and 978-0470220795. URL
http://www.dei.unipd.it/~fisch/ricop/tabu_search_glover_laguna.pdf.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 62/75

http://books.google.de/books?id=edfSSAAACAAJ
http://books.google.de/books?id=f66OIvvkKnAC
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf
http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20I-ORSA.pdf
http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20II-ORSA-aw.pdf
http://www.dei.unipd.it/~fisch/ricop/tabu_search_glover_laguna.pdf
http://www.optimizationBenchmarking.org

Bibliography VII

51. Dominique de Werra and Alain Hertz. Tabu search techniques: A tutorial and an application to neural networks. OR
Spectrum – Quantitative Approaches in Management, 11(3):131–141, September 1989. doi: 10.1007/BF01720782.
URL http://www.springerlink.de/content/x25k97k0qx237553/fulltext.pdf.

52. Roberto Battiti and Giampietro Tecchiolli. The reactive tabu search. ORSA Journal on Computing, 6(2):126–140, 1994.
doi: 10.1287/ijoc.6.2.126. URL http://citeseer.ist.psu.edu/141556.html.

53. Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
Caltech Concurrent Computation Program C3P 826, Pasadena, CA, USA: California Institute of Technology (Caltech),
Caltech Concurrent Computation Program (C3P), 1989. URL
http://www.each.usp.br/sarajane/SubPaginas/arquivos_aulas_IA/memetic.pdf.

54. Pablo Moscato. Memetic algorithms. In Panos M. Pardalos and Mauricio G.C. Resende, editors, Handbook of Applied
Optimization, chapter 3.6.4, pages 157–167. New York, NY, USA: Oxford University Press, Inc., 2002.

55. Pablo Moscato and Carlos Cotta. A gentle introduction to memetic algorithms. In Fred W. Glover and Gary A.
Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research &
Management Science, chapter 5, pages 105–144. Norwell, MA, USA: Kluwer Academic Publishers, Dordrecht,
Netherlands: Springer Netherlands, and Boston, MA, USA: Springer US, 2003. doi: 10.1007/0-306-48056-5 5. URL
http://www.lcc.uma.es/~ccottap/papers/handbook03memetic.pdf.

56. Ágoston E. Eiben and James E. Smith. Hybridisation with other techniques: Memetic algorithms. In Introduction to
Evolutionary Computing, Natural Computing Series, chapter 10, pages 173–188. New York, NY, USA: Springer New York,
2003.

57. William Eugene Hart, Natalio Krasnogor, and James E. Smith, editors. Recent Advances in Memetic Algorithms, volume
166/2005 of Studies in Fuzziness and Soft Computing. Berlin, Germany: Springer-Verlag GmbH, 2005. ISBN
3-540-22904-3 and 978-3-540-22904-9. doi: 10.1007/3-540-32363-5. URL
http://books.google.de/books?id=LYf7YW4DmkUC.

58. Jason Digalakis and Konstantinos Margaritis. Performance comparison of memetic algorithms. Journal of Applied
Mathematics and Computation, 158:237–252, October 2004. doi: 10.1016/j.amc.2003.08.115. URL
http://www.complexity.org.au/ci/draft/draft/digala02/digala02s.pdf.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 63/75

http://www.springerlink.de/content/x25k97k0qx237553/fulltext.pdf
http://citeseer.ist.psu.edu/141556.html
http://www.each.usp.br/sarajane/SubPaginas/arquivos_aulas_IA/memetic.pdf
http://www.lcc.uma.es/~ccottap/papers/handbook03memetic.pdf
http://books.google.de/books?id=LYf7YW4DmkUC
http://www.complexity.org.au/ci/draft/draft/digala02/digala02s.pdf
http://www.optimizationBenchmarking.org

Bibliography VIII

59. Nicholas J. Radcliffe and Patrick David Surry. Formal memetic algorithms. In Terence Claus Fogarty, editor, Proceedings
of the Workshop on Artificial Intelligence and Simulation of Behaviour, International Workshop on Evolutionary
Computing, Selected Papers (AISB’94), volume 865/1994 of Lecture Notes in Computer Science (LNCS), pages 1–16,
Leeds, UK, 1994. Chichester, West Sussex, UK: Society for the Study of Artificial Intelligence and the Simulation of
Behaviour (SSAISB), Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/3-540-58483-8 1. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9885.

60. David Lee Applegate, Robert E. Bixby, Vašek Chvátal, and William John Cook. The Traveling Salesman Problem: A
Computational Study. Princeton Series in Applied Mathematics. Princeton, NJ, USA: Princeton University Press,
February 2007. ISBN 0-691-12993-2 and 978-0-691-12993-8. URL http://books.google.de/books?id=nmF4rVNJMVsC.

61. Eugene Leighton (Gene) Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Estimation, Simulation, and Control –
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience,
September 1985. ISBN 0-471-90413-9 and 978-0-471-90413-7. URL http://books.google.de/books?id=BXBGAAAAYAAJ.

62. Gregory Z. Gutin and Abraham P. Punnen, editors. The Traveling Salesman Problem and its Variations, volume 12 of
Combinatorial Optimization. Norwell, MA, USA: Kluwer Academic Publishers, 2002. ISBN 0-306-48213-4, 1-4020-0664-0,
and 978-1-4020-0664-7. doi: 10.1007/b101971. URL http://books.google.de/books?id=TRYkPg_Xf20C.

63. Weiqi Li. Seeking global edges for traveling salesman problem in multi-start search. Journal of Global Optimization, 51
(3):515–540, November 2011. doi: 10.1007/s10898-010-9643-4.

64. Sami Khuri, Martin Schütz, and Jörg Heitkötter. Evolutionary heuristics for the bin packing problem. In David W.
Pearson, Nigel C. Steele, and Rudolf F. Albrecht, editors, Proceedings of the 2nd International Conference on Artificial
Neural Nets and Genetic Algorithms (ICANNGA’95), pages 285–288, Alès, France, 1995. New York, NY, USA: Springer
New York. URL http://www6.uniovi.es/pub/EC/GA/papers/icannga95.ps.gz.

65. Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research on sat. In Ian P. Gent, Hans van Maaren,
and Toby Walsh, editors, SAT2000 – Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers in
Artificial Intelligence and Applications, pages 283–292. Amsterdam, The Netherlands: IOS Press, 2000. URL
http://www.cs.ubc.ca/~hoos/Publ/sat2000-satlib.pdf.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 64/75

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9885
http://books.google.de/books?id=nmF4rVNJMVsC
http://books.google.de/books?id=BXBGAAAAYAAJ
http://books.google.de/books?id=TRYkPg_Xf20C
http://www6.uniovi.es/pub/EC/GA/papers/icannga95.ps.gz
http://www.cs.ubc.ca/~hoos/Publ/sat2000-satlib.pdf
http://www.optimizationBenchmarking.org

Bibliography IX

66. Dave Andrew Douglas Tompkins and Holger H. Hoos. Ubcsat: An implementation and experimentation environment for
sls algorithms for sat and max-sat. In Holger H. Hoos and David G. Mitchell, editors, Revised Selected Papers from the
Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT’04), volume 3542 of Lecture
Notes in Computer Science (LNCS), pages 306–320, Vancouver, BC, Canada, 2004. Berlin, Germany: Springer-Verlag
GmbH. doi: 10.1007/11527695 24. URL http://ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf.

67. Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton, Walter Burkhard, Walter Savitch,
Emily P. Friedman, and Alfred Vaino Aho, editors, Proceedings of the Tenth Annual ACM Symposium on Theory of
Computing (STOC’78), pages 216–226, San Diego, CA, USA, 1978. New York, NY, USA: Association for Computing
Machinery (ACM). doi: 10.1145/800133.804350. URL
http://www.ccs.neu.edu/home/lieber/courses/csg260/f06/materials/papers/max-sat/p216-schaefer.pdf.

68. Claudio Rossi, Elena Marchiori, and Joost N. Kok. An adaptive evolutionary algorithm for the satisfiability problem. In
Proceedings of the 2000 ACM symposium on Applied computing (SAC’00), volume 1, pages 463–469, Villa Olmo, Como,
Italy, 2000. New York, NY, USA: ACM Press. doi: 10.1145/335603.335912. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4771.

69. Peter Merz and Bernd Freisleben. A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic
assignment problem. In Peter John Angeline, Zbigniew Michalewicz, Marc Schoenauer, Xin Yao, and Ali M. S. Zalzala,
editors, Proceedings of the IEEE Congress on Evolutionary Computation (CEC’99), volume 3, pages 2063–2070,
Washington, DC, USA: Mayflower Hotel, 1999. Piscataway, NJ, USA: IEEE Computer Society. URL
http://en.scientificcommons.org/204950.

70. Luca Maria Gambardella, Éric D. Taillard, and Marco Dorigo. Ant colonies for the quadratic assignment problem. The
Journal of the Operational Research Society (JORS), 50(2):167–176, February 1999. doi: 10.2307/3010565. URL
http://www.idsia.ch/~luca/tr-idsia-4-97.pdf.

71. Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization benchmarking
2010: Experimental setup. Rapports de Recherche 7215, Institut National de Recherche en Informatique et en
Automatique (INRIA), March 9, 2010. URL http://hal.inria.fr/docs/00/46/24/81/PDF/RR-7215.pdf.

72. Thomas Weise, Raymond Chiong, Ke Tang, Jörg Lässig, Shigeyoshi Tsutsui, Wenxiang Chen, Zbigniew Michalewicz, and
Xin Yao. Benchmarking optimization algorithms: An open source framework for the traveling salesman problem. IEEE
Computational Intelligence Magazine (CIM), 9(3):40–52, August 2014. doi: 10.1109/MCI.2014.2326101. URL
http://www.it-weise.de/documents/files/WCTLTCMY2014BOAAOSFFTTSP.pdf. Featured article and selected paper at
the website of the IEEE Computational Intelligence Society (http://cis.ieee.org/).

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 65/75

http://ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf
http://www.ccs.neu.edu/home/lieber/courses/csg260/f06/materials/papers/max-sat/p216-schaefer.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4771
http://en.scientificcommons.org/204950
http://www.idsia.ch/~luca/tr-idsia-4-97.pdf
http://hal.inria.fr/docs/00/46/24/81/PDF/RR-7215.pdf
http://www.it-weise.de/documents/files/WCTLTCMY2014BOAAOSFFTTSP.pdf
http://www.optimizationBenchmarking.org

Bibliography X

73. Mark S. Boddy and Thomas L. Dean. Solving time-dependent planning problems. Technical Report CS-89-03,
Providence, RI, USA: Brown University, Department of Computer Science, February 1989. URL
ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf.

74. John D. C. Little, Katta G. Murty, Dura W. Sweeny, and Caroline Karel. An algorithm for the traveling salesman problem.
Sloan Working Papers 07-63, Cambridge, MA, USA: Massachusetts Institute of Technology (MIT), Sloan School of
Management, March 1, 1963. URL
http://dspace.mit.edu/bitstream/handle/1721.1/46828/algorithmfortrav00litt.pdf.

75. Weixiong Zhang. Truncated branch-and-bound: A case study on the asymmetric traveling salesman problem. In
Proceedings of the AAAI-93 Spring Symposium on AI and NP-Hard Problems, pages 160–166, Stanford, CA, USA, 1993.
Menlo Park, CA, USA: AAAI Press. URL www.cs.wustl.edu/~zhang/publications/atsp-aaai93-symp.ps.

76. Weixiong Zhang. Truncated and anytime depth-first branch and bound: A case study on the asymmetric traveling
salesman problem. In Weixiong Zhang and Sven König, editors, AAAI Spring Symposium Series: Search Techniques for
Problem Solving Under Uncertainty and Incomplete Information, volume SS-99-07 of AAAI Technical Report, pages
148–155. Menlo Park, CA, USA: AAAI Press, 1999. URL
https://www.aaai.org/Papers/Symposia/Spring/1999/SS-99-07/SS99-07-026.pdf.

77. Gerhard Reinelt. Tsplib – a traveling salesman problem library. ORSA Journal on Computing, 3(4):376–384, 1991. doi:
10.1287/ijoc.3.4.376.

78. Gerhard Reinelt. Tsplib 95. Technical report, Heidelberg, Germany: Universität Heidelberg, Institut für Mathematik,
1995. URL http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/DOC.PS.

79. Gerhard Reinelt. Tsplib, 1995. URL http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
80. Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization benchmarking:

Experimental setup. Technical report, Orsay, France: Université Paris Sud, Institut National de Recherche en Informatique
et en Automatique (INRIA) Futurs, Équipe TAO, March 24, 2012. URL
http://coco.lri.fr/BBOB-downloads/download11.05/bbobdocexperiment.pdf.

81. Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization benchmarking
2009: Experimental setup. Rapports de Recherche RR-6828, Institut National de Recherche en Informatique et en
Automatique (INRIA), October 16, 2009. URL http://hal.archives-ouvertes.fr/inria-00362649/en/. Version 3.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 66/75

ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/46828/algorithmfortrav00litt.pdf
www.cs.wustl.edu/~zhang/publications/atsp-aaai93-symp.ps
https://www.aaai.org/Papers/Symposia/Spring/1999/SS-99-07/SS99-07-026.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/DOC.PS
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://coco.lri.fr/BBOB-downloads/download11.05/bbobdocexperiment.pdf
http://hal.archives-ouvertes.fr/inria-00362649/en/
http://www.optimizationBenchmarking.org

Bibliography XI

82. Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter black-box optimization benchmarking
2010: Presentation of the noiseless functions. Technical report, April 13, 2013. URL
http://coco.lri.fr/downloads/download13.09/bbobdocfunctions.pdf. Working Paper 2009/20, compiled April 13,
2013.

83. Yan Jiang, Thomas Weise, Jörg Lässig, Raymond Chiong, and Rukshan Athauda. Comparing a hybrid branch and bound
algorithm with evolutionary computation methods, local search and their hybrids on the tsp. In Proceedings of the IEEE
Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS’14), Proceedings of the IEEE
Symposium Series on Computational Intelligence (SSCI’14), Orlando, FL, USA: Caribe Royale All-Suite Hotel and
Convention Center, 2014. Los Alamitos, CA, USA: IEEE Computer Society Press. URL
http://www.it-weise.de/documents/files/JWLCA2014CAHBABAWECMLSATHOTT.pdf.

84. Holger H. Hoos and Thomas Stützle. Evaluating las vegas algorithms – pitfalls and remedies. In Gregory F. Cooper and
Serafin Moral, editors, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98), pages
238–245, Madison, WI, USA, 1998. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z. Also published as Technical Report
“Forschungsbericht AIDA-98-02“ of the Fachgebiet Intellektik, Fachbereich Informatik, Technische Hochschule
Darmstadt, Germany.

85. Encapsulated PostScript File Format Specification. Number Tech Note #5002. Version 3.0 edition, May 1, 1992. URL
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf.

86. Document Management – Portable Document Format – Part 1: PDF 1.7. Number ISO 32000-1:2008. July 2008.
87. Thomas Boutell, et al., and USA: Boutell.Com Inc. Philadelphia, PA. PNG (Portable Network Graphics) Specification

Version 1.0, volume 2083 of Request for Comments (RFC). Network Working Group, March 1997. URL
http://tools.ietf.org/html/rfc2083.

88. USA: CompuServe Incorporated Columbus, OH. Graphics interchange format(sm), version 89a, programming reference,
July 31, 1990. URL http://www.w3.org/Graphics/GIF/spec-gif89a.txt.

89. Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris Rowley. The LaTeX Companion.
Reading, MA, USA: Addison-Wesley Publishing Co. Inc., 2004. ISBN 0-201-36299-6.

90. Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LaTeX Companion. Tools and Techniques for Computer
Typesetting. Reading, MA, USA: Addison-Wesley Publishing Co. Inc., 1994. ISBN 0201541998 and 9780201541991. URL
http://books.google.de/books?id=54A3MuBzIrEC.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 67/75

http://coco.lri.fr/downloads/download13.09/bbobdocfunctions.pdf
http://www.it-weise.de/documents/files/JWLCA2014CAHBABAWECMLSATHOTT.pdf
http://www.intellektik.informatik.tu-darmstadt.de/TR/1998/98-02.ps.Z
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf
http://tools.ietf.org/html/rfc2083
http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://books.google.de/books?id=54A3MuBzIrEC
http://www.optimizationBenchmarking.org

Bibliography XII

91. Leslie Lamport. LaTeX: A Document Preparation System. User’s Guide and Reference Manual. Reading, MA, USA:
Addison-Wesley Publishing Co. Inc., 1994. ISBN 0201529831 and 9780201529838. URL
http://books.google.de/books?id=19pzDwEACAAJ.

92. Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. The Not So Short Introduction to LaTeX2ε – Or
LaTeX2ε in 157 minutes. 5.01 edition, April 6, 2011. URL http://tobi.oetiker.ch/lshort/lshort.pdf.

93. Sebastian Rahtz, Akira Kakuto, Karl Berry, Manuel Pégourié-Gonnard, Norbert Preining, Peter Breitenlohner, Reinhard
Kotucha, Siep Kroonenberg, Staszek Wawrykiewicz, and Tomasz Trzeciak. TeX Live. Portland, OR, USA: TeX Users
Group (TUG), June 30, 2013. URL http://www.tug.org/texlive/.

94. Christian Schenk. MiKTEX . . . typesetting beautiful documents. . . . 2013. URL http://miktex.org/.
95. Gerald Murray, Silvano Balemi, Jon Dixon, Peter Nüchter, Jürgen von Hagen, and Michael Shell. Official ieee latex class

for authors of the institute of electrical and electronics engineers (ieee) transactions journals and conferences, May 3,
2007. URL http://www.michaelshell.org/tex/ieeetran/.

96. Llncs document class – springer verlag latex2e support for lecture notes in computer science, June 12, 2010. URL
ftp://ftp.springer.de/pub/tex/latex/llncs/latex2e/llncs2e.zip.

97. Gerald Murray and G.K.M. Tobin. Sig-alternate.cls – version 2.4 (compatible with the acm proc article-sp.cls“ v3.2sp),
April 22, 2009. URL http://www.acm.org/sigs/publications/proceedings-templates.

98. Murray Altheim and Shane McCarron. XHTML™ 1.1 – Module-based XHTML – Second Edition. W3C Recommendation.
MIT/CSAIL (USA), ERCIM (France), Keio University (Japan): World Wide Web Consortium (W3C), November 23,
2010. URL http://www.w3.org/TR/2010/REC-xhtml11-20101123.

99. Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. An evaluation of sequential model-based optimization for
expensive blackbox functions. In Christian Blum and Enrique Alba Torres, editors, Companion Material Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’13), pages 1209–1216, Amsterdam, The Netherlands, 2013.
New York, NY, USA: Association for Computing Machinery (ACM). doi: 10.1145/2464576.2501592. URL
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0311-hutter.pdf.

100. Tianjun Liao and Thomas Stützle. Bounding the population size of ipop-cma-es on the noiseless bbob testbed. In
Christian Blum and Enrique Alba Torres, editors, Companion Material Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’13), pages 1161–1168, Amsterdam, The Netherlands, 2013. New York, NY, USA:
Association for Computing Machinery (ACM). doi: 10.1145/2464576.2482694. URL
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0304-liao.pdf.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 68/75

http://books.google.de/books?id=19pzDwEACAAJ
http://tobi.oetiker.ch/lshort/lshort.pdf
http://www.tug.org/texlive/
http://miktex.org/
http://www.michaelshell.org/tex/ieeetran/
ftp://ftp.springer.de/pub/tex/latex/llncs/latex2e/llncs2e.zip
http://www.acm.org/sigs/publications/proceedings-templates
http://www.w3.org/TR/2010/REC-xhtml11-20101123
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0311-hutter.pdf
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0304-liao.pdf
http://www.optimizationBenchmarking.org

Bibliography XIII

101. Tianjun Liao and Thomas Stützle. Testing the impact of parameter tuning on a variant of ipop-cma-es with a bounded
maximum population size on the noiseless bbob testbed. In Christian Blum and Enrique Alba Torres, editors, Companion
Material Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’13), pages 1169–1176,
Amsterdam, The Netherlands, 2013. New York, NY, USA: Association for Computing Machinery (ACM). doi:
10.1145/2464576.2482695. URL
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0305-liao.pdf.

102. Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T Meyarivan. A fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: Nsga-ii. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne
Lutton, Juan Julián Merelo-Guervós, and Hans-Paul Schwefel, editors, Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature (PPSN VI), volume 1917/2000 of Lecture Notes in Computer Science (LNCS),
pages 849–858, Paris, France, 2000. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/3-540-45356-3 83. URL
https://eprints.kfupm.edu.sa/17643/1/17643.pdf.

103. Thanh-Do Tran, Dimo Brockhoff, and Bilel Derbel. Multiobjectivization with nsga-ii on the noiseless bbob testbed. In
Christian Blum and Enrique Alba Torres, editors, Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1217–1224, Amsterdam, The Netherlands, 2013. New York, NY, USA: Association for Computing Machinery
(ACM). doi: 10.1145/2464576.2482700. URL
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0312-tran.pdf.

104. László Pál. Benchmarking a hybrid multi level single linkage algorithm on the bbob noiseless testbed. In Christian Blum
and Enrique Alba Torres, editors, Companion Material Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’13), pages 1145–1152, Amsterdam, The Netherlands, 2013. New York, NY, USA: Association for
Computing Machinery (ACM). URL
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0302-pal.pdf.

105. László Pál. Comparison of multistart global optimization algorithms on the bbob noiseless testbed. In Christian Blum and
Enrique Alba Torres, editors, Companion Material Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’13), pages 1153–1160, Amsterdam, The Netherlands, 2013. New York, NY, USA: Association for Computing
Machinery (ACM). doi: 10.1145/2464576.2482693. URL
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0303-pal.pdf.

106. John Ashworth Nelder and Roger A. Mead. A simplex method for function minimization. The Computer Journal, Oxford
Journals, 7(4):308–313, January 1965. doi: 10.1093/comjnl/7.4.308. URL
http://www.rupley.com/~jar/Rupley/Code/src/simplex/nelder-mead-simplex.pdf.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 69/75

http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0305-liao.pdf
https://eprints.kfupm.edu.sa/17643/1/17643.pdf
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0312-tran.pdf
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0302-pal.pdf
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0303-pal.pdf
http://www.rupley.com/~jar/Rupley/Code/src/simplex/nelder-mead-simplex.pdf
http://www.optimizationBenchmarking.org

Bibliography XIV

107. Neal J. Holtschulte and Melanie Moses. Benchmarking cellular genetic algorithms on the bbob noiseless testbed. In
Christian Blum and Enrique Alba Torres, editors, Companion Material Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’13), pages 1201–1208, Amsterdam, The Netherlands, 2013. New York, NY, USA:
Association for Computing Machinery (ACM). doi: 10.1145/2464576.2482699. URL
http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0309-holtschulte.pdf.

108. Wenxiang Chen, Thomas Weise, Zhenyu Yang, and Ke Tang. Large-scale global optimization using cooperative
coevolution with variable interaction learning. In Robert Schaefer, Carlos Cotta, Joanna Ko lodziej, and Günter Rudolph,
editors, Proceedings of the 11th International Conference on Parallel Problem Solving From Nature, Part 2 (PPSN’10-2),
volume 6239 of Lecture Notes in Computer Science (LNCS), pages 300–309, Kraków, Poland: AGH University of Science
and Technology, 2010. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-642-15871-1 31. URL
http://www.it-weise.de/documents/files/CWYT2010LSGOUCCWVIL.pdf.

109. Scott Chacon and Ben Straub. Pro Git: Everything you need to know about Git. New York, NY, USA: Apress, Inc., 2nd
edition, 2014. URL http://www.git-scm.com/book/en/v2.

110. Chris Dawson and Timothy M. O’Brien. Github: Amplify your Software Development with Social Coding. Sebastopol,
CA, USA: O’Reilly Media, Inc., 1st edition, October 25, 2015. ISBN 1449368018 and 978-1449368012.

111. Richard E. Silverman. Git Pocket Guide. Sebastopol, CA, USA: O’Reilly Media, Inc., August 2, 2013. ISBN 1449325866
and 978-1449325862.

112. Eclipse. Ottawa, ON, Canada: Eclipse Foundation. URL http://www.eclipse.org/.
113. Brian R. Jackson. Maven: The Definitive Guide. Sebastopol, CA, USA: O’Reilly Media, Inc., 2nd edition, December 25,

2015. ISBN 144936280X and 978-1449362805.
114. Balaji Varanasi and Sudha Belida. Introducing Maven. New York, NY, USA: Apress, Inc., November 26, 2014. ISBN

1484208420 and 978-1484208427.
115. Kent Beck. JUnit Pocket Guide. Sebastopol, CA, USA: O’Reilly Media, Inc., 2009. ISBN 1449379028 and

9781449379025. URL http://books.google.de/books?id=Ur_zMK0WQwIC.
116. Vincent Massol and Ted Husted. Junit In Action. Greenwich, CT, USA: Manning Publications Co., 2004. ISBN

8177225383 and 9788177225389. URL http://books.google.de/books?id=P1mDmZUmje0C.
117. Joe B. Rainsberger and Scott Stirling. Junit Recipes: Practical Methods for Programmer Testing. Manning Pubs Co.

Greenwich, CT, USA: Manning Publications Co., 2005. ISBN 1932394230 and 9781932394238. URL
http://books.google.de/books?id=5h7oDjuY5WYC.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 70/75

http://coco.gforge.inria.fr/lib/exe/fetch.php?media=pdf2013:w0309-holtschulte.pdf
http://www.it-weise.de/documents/files/CWYT2010LSGOUCCWVIL.pdf
http://www.git-scm.com/book/en/v2
http://www.eclipse.org/
http://books.google.de/books?id=Ur_zMK0WQwIC
http://books.google.de/books?id=P1mDmZUmje0C
http://books.google.de/books?id=5h7oDjuY5WYC
http://www.optimizationBenchmarking.org

Software Development Process

In the optimizationBenchmarking project, we follow a distributed,
concurrent software development process

We use git [109] as versioning system

and gitHub [109–111] for hosting

For building and dependency management, we use Maven

As developer environment, we recomment Eclipse [112] (version ≥
Luna), as it natively supports git and Maven [113, 114].

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 71/75

http://www.optimizationBenchmarking.org

Software Development Process

In the optimizationBenchmarking project, we follow a distributed,
concurrent software development process

We use git [109] as versioning system

and gitHub [109–111] for hosting

For building and dependency management, we use Maven

As developer environment, we recomment Eclipse [112] (version ≥
Luna), as it natively supports git and Maven [113, 114].

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 71/75

http://www.optimizationBenchmarking.org

Software Development Process

In the optimizationBenchmarking project, we follow a distributed,
concurrent software development process

We use git [109] as versioning system and gitHub [109–111] for hosting

For building and dependency management, we use Maven

As developer environment, we recomment Eclipse [112] (version ≥
Luna), as it natively supports git and Maven [113, 114].

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 71/75

http://www.optimizationBenchmarking.org

Software Development Process

In the optimizationBenchmarking project, we follow a distributed,
concurrent software development process

We use git [109] as versioning system and gitHub [109–111] for hosting

For building and dependency management, we use Maven

As developer environment, we recomment Eclipse [112] (version ≥
Luna), as it natively supports git and Maven [113, 114].

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 71/75

http://www.optimizationBenchmarking.org

Software Development Process

In the optimizationBenchmarking project, we follow a distributed,
concurrent software development process

We use git [109] as versioning system and gitHub [109–111] for hosting

For building and dependency management, we use Maven

As developer environment, we recomment Eclipse [112] (version ≥
Luna), as it natively supports git and Maven [113, 114].

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 71/75

http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project
optimizationBenchmarking/optimizationBenchmarking

3 Add your code, e.g., an own evaluation module, in the appropriate
location (maybe an own package)

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites:

1 Obtain a gitHub account

2 Register a public/private key pair for your account
3 Join group optimizationBenchmarking

2 Fork project
optimizationBenchmarking/optimizationBenchmarking

3 Add your code, e.g., an own evaluation module, in the appropriate
location (maybe an own package)

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites:

1 Obtain a gitHub account
2 Register a public/private key pair for your account

3 Join group optimizationBenchmarking

2 Fork project
optimizationBenchmarking/optimizationBenchmarking

3 Add your code, e.g., an own evaluation module, in the appropriate
location (maybe an own package)

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites:

1 Obtain a gitHub account
2 Register a public/private key pair for your account
3 Join group optimizationBenchmarking

2 Fork project
optimizationBenchmarking/optimizationBenchmarking

3 Add your code, e.g., an own evaluation module, in the appropriate
location (maybe an own package)

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project
optimizationBenchmarking/optimizationBenchmarking

3 Add your code, e.g., an own evaluation module, in the appropriate
location (maybe an own package)

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.github.com/optimizationBenchmarking/optimizationBenchmarking
http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project

3 Add your code, e.g., an own evaluation module, in the appropriate
location (maybe an own package)

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project

3 Add your code

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project

3 Add your code

4 Test your code

add JUnit [115–117] tests if possible

provide examples, example data, and expected results

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project

3 Add your code

4 Test your code

add JUnit [115–117] tests if possible
provide examples, example data, and expected results

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project

3 Add your code

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project

3 Add your code

4 Test your code

5 Make sure your code is properly documented

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.optimizationBenchmarking.org

Contribution Lifecycle

1 Prerequisites

2 Fork project

3 Add your code

4 Test your code

5 Make sure your code is properly documented

6 Create a pull request

7 After a discussion, your code will (very likely) become part of the
main project

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 72/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Importing a project (or fork) from gitHub into Eclipse means to
clone it to a local repository and then to work on that repository.

Although gitHub offers cloning via HTTPS as the default, for me it
worked better with SSH.

After cloning and importing the clone into Eclipse, you need to
update the project with Maven to properly initialize the project
structure and dependencies.

In the following, I provide a step-by-step screenshot series on how to
do all of that. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Importing a project (or fork) from gitHub into Eclipse means to
clone it to a local repository and then to work on that repository.

Although gitHub offers cloning via HTTPS as the default, for me it
worked better with SSH.

After cloning and importing the clone into Eclipse, you need to
update the project with Maven to properly initialize the project
structure and dependencies.

In the following, I provide a step-by-step screenshot series on how to
do all of that. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Importing a project (or fork) from gitHub into Eclipse means to
clone it to a local repository and then to work on that repository.

Although gitHub offers cloning via HTTPS as the default, for me it
worked better with SSH.

After cloning and importing the clone into Eclipse, you need to
update the project with Maven to properly initialize the project
structure and dependencies.

In the following, I provide a step-by-step screenshot series on how to
do all of that. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Importing a project (or fork) from gitHub into Eclipse means to
clone it to a local repository and then to work on that repository.

Although gitHub offers cloning via HTTPS as the default, for me it
worked better with SSH.

After cloning and importing the clone into Eclipse, you need to
update the project with Maven to properly initialize the project
structure and dependencies.

In the following, I provide a step-by-step screenshot series on how to
do all of that. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Import Fork into Eclipse

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 73/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

In TSP Suite [72, 83], we found a nice solution for that and
BBOB [71, 80–82] follows a similar approach:

Do everything in the
objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function
It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

In TSP Suite [72, 83], we found a nice solution for that and
BBOB [71, 80–82] follows a similar approach:

Do everything in the
objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function
It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

In TSP Suite [72, 83], we found a nice solution for that and
BBOB [71, 80–82] follows a similar approach: Do everything in the
objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function
It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.
Do everything in the objective function!
The objective function loads the problem instance in its constructor
It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem
Whenever a candidate solution is evaluated via a provided evaluate
function

it increases the internal FE counter by one

it checks whether a log point should be taken
if so, it stores the log point in a pre-allocated memory location
it can store the objective value, the FE counter, and the ellapsed time

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.
Do everything in the objective function!
The objective function loads the problem instance in its constructor
It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem
Whenever a candidate solution is evaluated via a provided evaluate
function

it increases the internal FE counter by one
it checks whether a log point should be taken

if so, it stores the log point in a pre-allocated memory location
it can store the objective value, the FE counter, and the ellapsed time

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.
Do everything in the objective function!
The objective function loads the problem instance in its constructor
It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem
Whenever a candidate solution is evaluated via a provided evaluate
function

it increases the internal FE counter by one
it checks whether a log point should be taken
if so, it stores the log point in a pre-allocated memory location

it can store the objective value, the FE counter, and the ellapsed time
It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.
Do everything in the objective function!
The objective function loads the problem instance in its constructor
It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem
Whenever a candidate solution is evaluated via a provided evaluate
function

it increases the internal FE counter by one
it checks whether a log point should be taken
if so, it stores the log point in a pre-allocated memory location
it can store the objective value, the FE counter, and the ellapsed time

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function, a log point may be taken

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function, a log point may be taken

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function, a log point may be taken

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number
the global optimum was found (which we know from evaluate)

a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function, a log point may be taken

It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number
the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function, a log point may be taken

It also represents the termination criterion by providing a function
shouldTerminate

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

Do everything in the objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function, a log point may be taken

It also represents the termination criterion by providing a function
shouldTerminate

After the run, all the log points held in memory are written to a file.
No file operations during the run to not mess up time measurements!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 74/75

http://www.optimizationBenchmarking.org

Visit our website

http://www.optimizationBenchmarking.org

or

http://optimizationbenchmarking.github.io/optimizationBenchmarking

for downloading the software (version 0.8.4) and
obtaining more information.

System Requirements:

Java 1.7 (Ideally a JDK, under JRE slower with more memory requirements)

optional: a LATEX installation, such as TeXLive or MiKTeX (needed for generating pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 75/75

http://www.optimizationBenchmarking.org
http://optimizationbenchmarking.github.io/optimizationBenchmarking
http://www.optimizationBenchmarking.org

	Outline
	Highlights
	Introduction
	Section Outline
	Optimization Algorithms
	Algorithm Analysis and Comparison
	Performance and Anytime Algorithms
	Experimental Procedure

	Example 1: MAX-SAT
	Section Outline
	Example 1: MAX-SAT
	MAX-3SAT
	Investigated Algorithms
	Benchmark
	Experiments
	Example of Log File
	Obtained Data
	Example Results from
	Quick Guide
	ECDF
	ECDF for Different Values of n
	Progress for Different Values of k
	StdDev of for Different Values of n
	So… how to get there?
	The Flow
	The Flow
	Measured Dimensions
	Measured Dimensions: dimensions.xml
	Benchmark Instances
	Benchmark Instances: instances.xml
	Experiments
	Experiments: experiment.xml
	Specifying Evaluation Process
	Specifying Evaluation Process: evaluation.xml
	Gluing everything together
	Gluing everything together: config.xml
	Execute
	Result
	Usage Summary

	Example 2: BBOB
	Section Outline
	BBOB
	Quick Guide
	Experiment
	Evaluation
	ECDF over Everything
	ECDF by Dimension
	ECDF by Condition Number
	Progress by Separability
	Example Summary

	Conclusions
	Section Outline
	Conclusions
	Future Work: Short-Term
	Future Work: Long-Term

	Presentation End
	Bibliography
	Appendices
	Software Development Process
	Contribution Lifecycle
	Import Fork into Eclipse
	Log Points and Termination

