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Visit our website

http://www.optimizationBenchmarking.org

or

http://optimizationbenchmarking.github.io/optimizationBenchmarking

for downloading the software (version 0.8.4) and
obtaining more information.

System Requirements:

Java 1.7 (Ideally a JDK, under JRE slower with more memory requirements)

optional: a LATEX installation, such as TeXLive or MiKTeX (needed for generating pdf reports)
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Highlights

1 optimizationBenchmarking tool for evaluating and comparing
experimental results of optimization or Machine Learning algorithms

2 Can easily be configured to load virtually arbitrary experimental result
data

3 Comprehensive result and comparison reports with various diagrams
and performance metrics, (almost) ready-to-use for publications

4 Diagrams and evaluation criteria can freely be chosen (amongst
implemented modules)

5 Results can be grouped according to benchmark instance features
and/or algorithm parameters

6 Produces either XHTML web pages, LATEX documents (for several
different standard conference or article document classes), or exports
results

7 Easily extensible: Add your own evaluation modules for your own,
maybe problem-specific statistics
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Optimization Algorithms

Many questions in the real world are actually optimization problems

Many optimization problems are NP-hard, meaning that finding the
best possible solution will usually not be possible in feasible time.

We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.

Examples of such algorithms are Evolutionary Algorithms [1–9]

, Ant
Colony Optimization [9–13]

, Evolution Strategies [9, 14–19]

, Differential
Evolution [9]

, Particle Swarm Optimization [9]

, Estimation of
Distribution Algorithms [20–27]

, CMA-ES [28–35]

, and Local Search
methods [36–38]

such as Simulated Annealing [9, 39–47]

or Tabu
Search [48–52]

, as well as hybrids of local and global search, such as
Memetic Algorithms [53–59]

Which of them is best (for my problem)?

How can I make a good algorithm better (for my problem)?
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Find the shortest tour for a salesman to visit certain set of cities in
China and return to Hefei!

I need to transport n items from here to Feixi but they are too big to
transport them all at once. How can I load them best into my car so
that I have to travel back and forth the least times?
Which setting of x1, x2, x3, and x4 can make
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) become true
(or, at least, as many of its terms as possible)?
I want to build a large factory with n workshops. I know the flow of
material between each two workshops and now need to choose the
locations of the workshops such that the overall running cost incurred
by material transportation is minimized.
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Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?

Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated

since

algorithms are usually randomized

and
have many parameters (e.g., crossover rate, population size)

and
“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.
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Traditional Approach à la “QuickSort is better than Bubble Sort
because it needs O(n log n) while Bubble Sort needs O

(
n2
)
steps to

sort n elements in the average case.”

Complexity Analysis, Theoretical Bounds of Runtime and Solution
Quality
Usually not feasible

analysis extremely complicated since
algorithms are usually randomized and
have many parameters (e.g., crossover rate, population size)

and

“sub-algorithms” (e.g., crossover operator, mutation operator, selection
algorithm)
optimization problems also differ in many aspects
theoretical results only available for toy problems and extremely
simplified algorithms.
Currently, not mature enough to be an easy-to-use tool for practitioners

Experimental analysis and comparison only practical alternative.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 7/75

http://www.optimizationBenchmarking.org


Algorithm Analysis and Comparison

Which of the algorithms is best (for my problem)?
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Performance and Anytime Algorithms

“We use metaheuristic optimization algorithms to give us good
approximate solutions within acceptable runtime.”

Algorithm performance has two dimensions [71, 72]:

solution quality

and
required runtime

Anytime Algorithms [73] are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound [74–76] are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

Experiments must capture solution quality and runtime data.
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Experimental Procedure

In optimization or Machine Learning, the following experimental
procedure is often used

1 Select a benchmark instance

2 Do experiment
3 Evaluate the gathered data
4 Draw conclusions about algorithm performance and parameter settings
5 But this is all very cumbersome, involves much work and much data. . .

The optimizationBenchmarking Evaluator can automatize much of
this work
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Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org


Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org


Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org


Example 1: MAX-SAT

So much about theory.

But what is this “optimizationBenchmarking” and what can it do
for me?

Let us look at how research and experimentation on optimization or
Machine Learning can work on a practical example.

Assume that we are a researcher working on the MAX-3SAT problem,
with new and fresh ideas. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 11/75

http://www.optimizationBenchmarking.org


MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 12/75

http://www.optimizationBenchmarking.org


MAX-3SAT

Satisfiability Problems

The satisfiability problem (SAT) is one of the most prominent problems
in artificial intelligence, logic, theoretical computer science, and various
application areas. [65]

Given: formula B in Boolean logic consisting of n Boolean variables
~x = (x1, x2, . . . , xn)

T which each can be either true or false
Goal: find a setting for these variables so that B becomes true

CNF 3-SAT Problems
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MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

B consists of k clauses C1 . . . Ck

each clause consists of 3 literals
a literal can either be a variable (e.g., x5) or its negate (e.g., ¬x5)
in a clause, the 3 literals are combined with logical or (∨)
in the formula B, all k clauses are combined with logical and (∧)

MAX-3SAT
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B( ~x︸︷︷︸
n variables

) = (x7 ∨ x4 ∨ ¬x2)︸ ︷︷ ︸
1 clause (C1)

∧ (¬x7︸︷︷︸

1 literal

∨ ¬x4 ∨ x3) ∧ (xx ∨ ¬x1 ∨ x2︸ ︷︷ ︸

3 literals in 1 clause

) ∧ . . .

︸ ︷︷ ︸
k clauses (C1 . . . Ck)

(1)
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MAX-3SAT

Satisfiability Problems

CNF 3-SAT Problems

MAX-3SAT

CNF 3-SAT turned into an optimization problem [36]

make as many clauses become true as possible
if all are true =⇒ B is satisfied
define objective function f(~x) = # clauses which are false

f(~x) = 0 =⇒ all clauses are true

f(~x) = k =⇒ all clauses are false

k + 1 different objective values possible
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Investigated Algorithms
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:
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2 1-flip Hill Climber with Restarts
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4 2-flip Hill Climber with Restarts
5 m-flip Hill Climber
6 m-flip Hill Climber with Restarts

Which of these algorithms performs best? When? Why?
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Benchmark

As benchmark, we use some instances from SATLib [65]

:

Instance Set n k Instance Set n k
uf020 20 91 uf150 150 645
uf050 50 218 uf175 175 753
uf075 75 325 uf200 200 860
uf100 100 430 uf225 225 960
uf125 125 538 uf250 250 1065

We pick the first ten instances from each set, i.e., test 100 instances
in total

All instances are satisfiable

The problem instances have the following features

:

n: the number of variables

k: the number of clauses (related to n)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 14/75
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Experiments

Now we want to do the experiments.

What data shall we collect?

1 Data should allow us to reproduce algorithm progress over time

2 We can collect one data point whenever the algorithm makes an
improvement in terms of f

(and one at the end of run)

3 k + 1 possible objective values =⇒ at most k + 2 log points
4 In each log point we record

the number of function evaluations (FEs) performed

the ellapsed runtime RT (in ns)
the best objective value F achieved so far
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Example of Log File

Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.
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Listing: Log File uf075-02 2FlipHCrs 01.txt.

1 9806 46

3 24643 28

17 106040 25

19 115529 23

20 120373 21

25 144087 18

31 172967 16

290 1550118 15

296 1576034 14

297 1579525 13

300 1592492 12

323 1692189 10

332 1732127 9

1082 5436999 8

1558 7670059 7

2008 9765759 6

2024 9830168 5

2809 13302012 4

5246 24105640 3

6330 28508740 2

17284 73166926 1

60865 238968738 0
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Obtained Data

OK, so after the experiment. . .

. . . we have 20 independent runs (log
files)

for each of the 6 algorithm setups,
on each of the 10 benchmark instances
of each of the 10 instance sets.
We have 6 ∗ 20 ∗ 10 ∗ 10 = 12 000 log
files!

(with 607 993 log points and
8.6 MiB total)!

How can we extract useful information
from them?

in order to answer the
questions which algorithm performs best,
when, and why?

What you most likely do: Write your own
small program.

What you now can do: Use our
optimizationBenchmarking Evaluator!

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 17/75
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Example Results from optimizationBenchmarking

In the following, I provide some examples for what our evaluator can
do.

First, a quick guide to download and run the example on your
computer is given

Then, I present some of the evaluation information generated by the
Evaluator

Finally, I will show how that gets done in detail.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 18/75
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Quick Guide

You can quickly download all example data and the Evaluator and run
the example on your PC by executing the following code snippet.

System Requirements:

Linux (for make.sh), Windows (for make.bat, tested: Win 8, should
work also under Win 7)
Java 1.7 (ideally a JDK under a JRE slower and higher memory
consumption)
svn

optional: a LATEX installation, such as TeXLive (needed for generating
pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

http://www.optimizationBenchmarking.org


Quick Guide

You can quickly download all example data and the Evaluator and run
the example on your PC by executing the following code snippet.

System Requirements:

Linux (for make.sh), Windows (for make.bat, tested: Win 8, should
work also under Win 7)
Java 1.7 (ideally a JDK under a JRE slower and higher memory
consumption)
svn

optional: a LATEX installation, such as TeXLive (needed for generating
pdf reports)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75

http://www.optimizationBenchmarking.org


Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)
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Listing: Linux: script make.sh for downloading & running the MAX-SAT example.

#!/bin/bash

jarName="optimizationBenchmarking-full.jar"

outputDir=`pwd`
echo "Writing output to folder '${outputDir}'"

echo "Downloading experimental results via 'svn export' from GitHub."

svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/results

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/evaluation

jarDownloadURL=$(wget "http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url" -q -O -)

echo "Downloading evaluator from '${jarDownloadURL}'."
wget -O "${outputDir}/${jarName}" "${jarDownloadURL}"

echo "Applying evaluator and obtaining reports in different formats."

cd "${outputDir}/evaluation"
java -jar "${outputDir}/${jarName}" -configXML=configForIEEEtran.xml

java -jar "${outputDir}/${jarName}" -configXML=configForLNCS.xml

java -jar "${outputDir}/${jarName}" -configXML=configForSigAlternate.xml

java -jar "${outputDir}/${jarName}" -configXML=configForXHTML.xml

java -jar "${outputDir}/${jarName}" -configXML=configForExport.xml

cd "${outputDir}"
echo "Done."
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Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
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Listing: Windows: script make.bat for downloading & running the MAX-SAT example.

echo "Downloading evaluator."

powershell -command "& {iwr http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url -OutFile version.txt}"

for /F "delims=" %i in (version.txt) do set downloadURL=%i

powershell -command "& {iwr %downloadURL% -OutFile optimizationBenchmarking.jar}"

del version.txt

echo "Downloading (but not installing!) required 3rd-party software: downloading SVN client and 7-Zip to extract it."

md svn

cd svn

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/7zip/7za.exe -OutFile 7za.exe}"

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/svn/svn.tar.lzma -OutFile svn.tar.lzma}"

7za x svn.tar.lzma

7za x svn.tar

cd..

echo "Downloading experimental results via 'svn-export' from GitHub."

svn\svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/results

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

svn\svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/maxSat/evaluation

rd /s /q svn

echo "Applying evaluator and obtaining reports in different formats."

cd evaluation

java -jar "..\optimizationBenchmarking.jar" -configXML=configForIEEEtran.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForLNCS.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForSigAlternate.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForXHTML.xml

java -jar "..\optimizationBenchmarking.jar" -configXML=configForExport.xml

cd..

echo "Done."
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Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports
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Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports

But now, let’s continue with the example. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 19/75
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ECDF

We can plot the Empirical (Cumulative) Distribution Function
(ECDF) [66, 72, 80, 84] for us, which provides the fraction of runs that have
found the solution for their respective problem at a given point in
time.
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The ECDF in over all 100 benchmark instances for time measure FEs (log-scaled).
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The ECDF in over all 100 benchmark instances for time measure FEs (log-scaled).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions
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The ECDF in over all 100 benchmark instances (log-scaled, optimized for LNCS and
two figures per row).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
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The ECDF in over all 100 benchmark instances (log-scaled, optimized for
sig-alternate and two figures per row).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions
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The ECDF in over all 100 benchmark instances (log-scaled, optimized for XHTML and
two figures per row).

the methods with
restarts solve more
problems (up to 90%!)

plain m-flips are better
than 2-flips are better
than 1-flips

oddly, for restart HCers,
there is a tie between the
m- and 1-flip versions
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ECDF for Different Values of n
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We now look at the
ECDF for different
values of n and a
goal of 1%
unsatisfied clauses
over RT
(log-scaled).

legend
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ECDF for Different Values of n
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For n = 20, the
methods with
restarts are better.

legend n = 20
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ECDF for Different Values of n
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But for n ≥ 50,
those without reach
the goal faster.

legend n = 20 n = 50
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ECDF for Different Values of n
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It seems that 1%
unsatisfied clauses
can be reached with
1-flips and without
restarts.

legend n = 20 n = 50

n = 75
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ECDF for Different Values of n
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The 2-flip operator
again performs
worst.

legend n = 20 n = 50

n = 75 n = 100
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ECDF for Different Values of n
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It looks as if it gets
easier to attain a
1% error margin if n
increases (all
ECDFs reach 1).

legend n = 20 n = 50

n = 75 n = 100 n = 125
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ECDF for Different Values of n
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For small problems,
1-flip is slightly
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For larger problems,
m-flip becomes
slightly faster.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200
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All in all, similar
behavior over all
scales (reaching 1%
error seems to be
easy).

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225
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Only required
runtime increases by
up to 100 times.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225 n = 250
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Progress for Different Values of k

1We normalize FEs with n in the hope to make the time measure comparable over
different n.
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We now look at the
progress curves (F
over FEs divided
by1 n, log-scaled)
for different values
of k.

legend
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For very small-scale
problems, all
algorithms behave
similar.

legend k = 91
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But soon, two
groups form: with
and without
restarts.

legend k = 91 k = 218
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Algorithms using
my example restart
policy seem to be
slower.

legend k = 91 k = 218

k = 325
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The gap increases
with rising k

legend k = 91 k = 218

k = 325 k = 430
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Thus, we find:
algorithms with my
restart policy are
slower than those
without. . .

legend k = 91 k = 218

k = 325 k = 430 k = 538
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. . . but from the
ECDF we know they
can solve more
problems eventually.

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645
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For all scales, the
initial random
solutions, seem to
have about 12% of
unsatisfied clauses
(in median).

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

k = 753
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Convergence seems
to happen between
100n and 1000n

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

k = 753 k = 860

http://www.optimizationBenchmarking.org


Progress for Different Values of k

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 22/75

Convergence seems
to happen between
100n and 1000n
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Convergence seems
to happen between
100n and 1000n

legend k = 91 k = 218

k = 325 k = 430 k = 538 k = 645

k = 753 k = 860 k = 960 k = 1065
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StdDev of F for Different Values of n

1Since F is always in 1 . . . k, dividing it by k normalizes it into [0, 1] and makes the
values comparable for different k or n.
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Let’s look at the
standard deviation
of the best objective
value F (divided
by1 k) found over
RT (log-scaled) for
different values of
n.

legend
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For small-scale
problems, the
standard deviation
seems to decrease
steadily.

legend n = 20
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The reason is
probably that the
algorithms converge
nicely.

legend n = 20 n = 50
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For the methods
with restarts, it
reaches very close
to 0.

legend n = 20 n = 50

n = 75
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For those without,
it remains constant
above 0 after some
time.

legend n = 20 n = 50

n = 75 n = 100
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These algorithms
probably get stuck
at different local
optima in different
runs.

legend n = 20 n = 50

n = 75 n = 100 n = 125
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For increasing
scales, the standard
deviation goes first
down, then up, then
farther down.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150
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Maybe there is
some kind of
hard-to-attain
improvement that
some runs find
earlier than others.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175
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The time of
convergence seems
to increase for the
methods with
restarts with n.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200
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The early standard
deviations are
usually below 0.03
and highest for
small n.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225

http://www.optimizationBenchmarking.org


StdDev of F for Different Values of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 23/75

The early standard
deviations are
usually below 0.03
and highest for
small n.

legend n = 20 n = 50

n = 75 n = 100 n = 125 n = 150

n = 175 n = 200 n = 225 n = 250
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So. . . how to get there?

So these are some of the things optimizationBenchmarking can
currently do.

But how to do them?
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The Flow

Let us now take a closer look on how the
optimizationBenchmarking evaluator is used (and works)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 25/75
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The Flow

We got a couple of log files for each experiment

: 6 experiments in our
example, each with 10× 10× 20 = 2000 log files

We specify which dimensions we have measured

: FEs, RT, and F in our
example

We specify which benchmark instances we have and what their features are

:
10× 10 instances in our example, with features n and k

For each experiment, we specify the parameters

: in our example, these are
algorithm, operator, restart
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The Flow

An “input driver” loads the data

: most commonly, the data will be in
CSV+EDI format, but we also support BBOB [71, 80–82], TSP Suite [72, 83], and
pure EDI

Via a configuration file, we choose which input and output formats to use,
as well as which file specifies the evaluation process

The evaluation.xml specifies how to evaluate the data, i.e., which
evaluation modules to apply
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The Flow

An evaluation module prints on particular type of information about an
experiment or experiment set, such as the ECDF, or a table with final
results, etc. . .

Evaluation modules can be applied multiple times, with different
configurations (e.g., we can plot ECDFs for different target solution
qualities)
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The Flow

We can choose among several different formats to be used for graphics,
including EPS [85], PDF [86], PGF (LATEX), SVG(Z), EMF, PNG [87], GIF [88],
BMP, and JPG
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The Flow

We can also choose among different formats for the report documents,
including. . .

LATEX [89–92]

:

can automatically be compiled to PDF [86], if a LATEX compiler (such as
TeXLive [93] or MiKTeX [94]) is auto-detected
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The Flow

We can also choose among different formats for the report documents,
including LATEX and XHTML [98] for quick viewing in a browser

Evaluation Modules as well as Input, Document, and Graphic Drivers can
easily be added

: implement the corresponding interface

, throw your class
into the classpath

, and tell the system to use it in the config.xml or
evaluation.xml. . .
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We can also choose among different formats for the report documents,
including LATEX, XHTML [98], and a plain text format to export results to
other applications
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: implement the corresponding interface
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Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements

Each such “kind” corresponds to one dimension

A dimension has

a name

a type
a direction
a data type
bounds which can be used in computations and for sanity checks
an optional description

With this information, the nature of measurements is defined and
data can be validated

Multiple time and quality dimensions can be specified

Diagrams can be plotted and values can be analyized according to
different dimensions
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Measured Dimensions

For each research subject, we may collect different “kinds” of
measurements
Each such “kind” corresponds to one dimension
A dimension has

a name,
a type, which is either

iterationAlgorithmStep, e.g., a generation in an EA (machine
independent)

iterationFE, a function evaluation, i.e., a fully constructed candidate
solution has been evaluated (machine independent)
iterationSubFE, a finer-grained machine independent measure, e.g.,
bit flips in SAT problems [66], distance evaluations in TSP [72]

runtimeCPU, i.e., processor time (machine dependent)
runtimeNormalized, a machine-independent time measure, maybe
runtimeCPU divide by a performance factor
qualityProblemDependent a problem-instance specific objective value
(e.g., number of unsatisfied clauses in SAT)
qualityProblemIndependent an objective value which can compared
over different instances (e.g., the fraction of unsatisfied clauses in SAT)

a direction
a data type
bounds which can be used in computations and for sanity checks
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Measured Dimensions: dimensions.xml

To specify all this, we can make an XML file called dimensions.xml

and put it into the results folder with our log files.

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 28/75

Listing: File dimensions.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<dimensions

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd">

<dimension name="FEs"

description="The number of function evaluations , i.e., the amount of

generated candidate solutions."

dimensionType="iterationFE" direction="increasingStrictly" dataType="long"

iLowerBound="1" />

<dimension name="RT" description="The elapsed runtime in nanoseconds."

dimensionType="runtimeCPU" direction="increasing" dataType="long"

iLowerBound="0" />

<dimension name="F" description="The number of unsatisfied clauses."

dimensionType="qualityProblemDependent" direction="decreasing"

dataType="int" iLowerBound="0" iUpperBound="2000" />

</dimensions >
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Benchmark Instances

In an experiment, an optimization algorithm is applied to different
benchmark instances

Each instance has

a name

features, such as n or k in our example
each feature has

a name (such as n)

a value (such as 250)
an optional description
an optional value description

optional bounds for each dimension
an optional description

Feature specifications allow us to explore relationship between
instance features and algorithm behavior
Any number of features can be defined, but all instances much specify
the same features (may with different values)
Any feature value type is possible, numerical features are
automatically detected
Numerical features can be used in formulas and computations, e.g.,
to normalize values
Bounds allow us to validate measured data and can be used in
computations
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Benchmark Instances: instances.xml

To specify all this, we can make an XML file called instances.xml

and put it into the results folder with our log files.
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Listing: Excerpt from file instances.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<instances

xmlns="http://www.optimizationBenchmarking.org/formats/experimentDataInterchange/experimentDataInterchange

.1.0. xsd">

<instance name="uf020 -01"

description="A uniformly randomly generated satisfiable 3-SAT instance with 20 variables and 91 clauses.">

<feature name="n" value="20" />

<feature name="k" value="91" />

</instance >

<instance name="uf020 -02"

description="A uniformly randomly generated satisfiable 3-SAT instance with 20 variables and 91 clauses.">

<feature name="n" value="20" />

<feature name="k" value="91" />

</instance >

<instance name="uf075 -01"

description="A uniformly randomly generated satisfiable 3-SAT instance with 75 variables and 325 clauses.">

<feature name="n" value="75" />

<feature name="k" value="325" />

</instance >

<instance name="uf075 -02"

description="A uniformly randomly generated satisfiable 3-SAT instance with 75 variables and 325 clauses.">

<feature name="n" value="75" />

<feature name="k" value="325" />

</instance >
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Experiments

An experiment is the application of an algorithm setup to some (or
all) of the benchmark instances, usually for several independent runs
on each

Each experiment has

a name

parameters, such as the search operation and whether we do restarts in
our example
each parameter has

a name (such as “operator”)

a value (such as “2-flip”)
an optional description
an optional value description

an optional description

Parameter specifications allow us to explore the relationship of
parameter settings and algorithm performance
The algorithm itself is treated as parameter as well
Any number of parameters can be defined, different experiments may
specify different parameters (e.g., an EA has a population size, HC
has not)
Any parameter value type is possible, numerical features are
automatically detected
Numerical parameter values can be used in computations (e.g., to
multiply a “generations” dimension of experiments with an EA with
the population size
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Experiments: experiment.xml

To specify all this, we can make a separate XML file called
experiment.xml for each experiment and put it into root folder of
the experiment, e.g., results/1FlipHC.
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Listing: Excerpt from file experiment.xml for the 1-flip Hill Climber without restarts.

<?xml version="1.0" encoding="UTF -8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd"

name="1FlipHC" description="An experiment with a 1-flip Hill

Climber without restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="1-flip" />

<parameter name="restart" value="false" />

</experiment >
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Experiments: experiment.xml

To specify all this, we can make a separate XML file called
experiment.xml for each experiment and put it into root folder of
the experiment, e.g., results/1FlipHCrs.
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Listing: Excerpt from file experiment.xml for the 1-flip Hill Climber with restarts.

<?xml version="1.0" encoding="UTF -8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd"

name="1FlipHCrs" description="An experiment with a 1-flip Hill

Climber with restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="1-flip" />

<parameter name="restart" value="true" />

</experiment >
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Experiments: experiment.xml

To specify all this, we can make a separate XML file called
experiment.xml for each experiment and put it into root folder of
the experiment, e.g., results/mFlipHCrs.
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Listing: Excerpt from file experiment.xml for the m-flip Hill Climber with restarts.

<?xml version="1.0" encoding="UTF -8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats/

experimentDataInterchange/experimentDataInterchange .1.0. xsd"

name="mFlipHCrs" description="An experiment with a m-flip Hill

Climber with restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="m-flip" />

<parameter name="restart" value="true" />

</experiment >
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Specifying Evaluation Process

Now that we have specified what kind of data we have, we need to
tell what to do with them.

The evaluation process of optimizationBenchmarking is based on
modules

Each module contributes performs one specific computation and adds
text and/or figures to the report

Modules can be configured, e.g., we can tell the “ECDF” module
which dimension we want as x-axis

A module can be applied multiple times with different configurations

A global basic configuration can be provided

To specify all this, we supply an XML file called evaluation.xml

In evaluation.xml, we can use the names and values of dimensions,
features, and parameters
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Specifying Evaluation Process: evaluation.xml

Global base configuration
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Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />
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Specifying Evaluation Process: evaluation.xml

Global base configuration: 2 figures per row

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />
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Specifying Evaluation Process: evaluation.xml

Global base configuration: 2 figures per row, figure series should have
dedicated sub-figure for legend
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Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />
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Specifying Evaluation Process: evaluation.xml

Global base configuration: 2 figures per row, figure series should have
dedicated sub-figure for legend, when benchmarks are grouped either
by n or by k, put those with same values of these features together
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Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />
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Specifying Evaluation Process: evaluation.xml

Execute one module: print pie charts showing how many benchmark
instances have which feature values
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Listing: Part 1 from file evaluation.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<e:evaluation

xmlns:e="http://www.optimizationBenchmarking.org/formats/

evaluationConfiguration/evaluationConfiguration .1.0. xsd"

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/configuration/

configuration .1.0. xsd">

<cfg:configuration >

<cfg:parameter name="figureSize" value="2 per row" />

<cfg:parameter name="makeLegendFigure" value="true" />

<cfg:parameter name="nGrouping" value="distinct" />

<cfg:parameter name="kGrouping" value="distinct" />

</cfg:configuration >

<e:module class="description.instances.InstanceInformation" />
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Specifying Evaluation Process: evaluation.xml

The ECDF module is applied two times
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Listing: Part 2 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0.01" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

</e:module >
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Specifying Evaluation Process: evaluation.xml

The ECDF module is applied two times: in order to aggregate the
ECDF over all problem instances, F is scaled by k and the ECDF is
computed for a goal value of F

k = 0. The x-axis in FEs is log-scaled
and figures are rendered page-wide

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 2 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0.01" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

</e:module >
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Specifying Evaluation Process: evaluation.xml

The ECDF module is applied two times: then one ECDF diagram is
drawn for each distinct value of n, the log-scaled time measure RT,
and a goal 0.01 for F

k , i.e., for reaching no more than 1% of
unsatisfied clauses (and the globally configured figure size)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 2 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="goal" value="0.01" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >

</e:module >
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Specifying Evaluation Process: evaluation.xml

The “Aggregation” module is applied twice as well
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Listing: Part 3 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/n)" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="k" />

</cfg:configuration >

</e:module >

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="aggregate" value="stddev" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >
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Specifying Evaluation Process: evaluation.xml

The “Aggregation” module is applied twice as well: once we plot the
median F over runtime measured in FEs and divided by n (log-scaled)
aggregated over benchmark instances with the same k feature

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 3 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/n)" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="k" />

</cfg:configuration >

</e:module >

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="aggregate" value="stddev" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >
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Specifying Evaluation Process: evaluation.xml

The “Aggregation” module is applied twice as well: then the

“standard deviation” is computed, for F
k but this time over the

absolute CPU time RT (log-scaled), with one diagram for each
distinct value of n

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 34/75

Listing: Part 3 from file evaluation.xml for our MAX-SAT example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/n)" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="k" />

</cfg:configuration >

</e:module >

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg RT" />

<cfg:parameter name="yAxis" value="F/k" />

<cfg:parameter name="aggregate" value="stddev" />

<cfg:parameter name="groupBy" value="n" />

</cfg:configuration >
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Gluing everything together

We now have all the information ready to start an evaluation process

we specified the measure dimensions

we specified the features of the benchmark instances
we specified the parameters of our experiments
we specified how we want to evaluate the data, what information we
want to get

In order to run the program, we need to tell it

Where all of this is

What format to use for the report document (LATEX/PDF? XHTML?
Export?)
What kind of figures to generate in the report (PDF? EPS? . . . )
In case of LATEX, what document class to use (IEEEtran? sig-alternate?
. . . )

So let’s glue everything together
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Gluing everything together: config.xml

Use csv+edi as input format (as in our example)
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Use csv+edi as input format (as in our example, but we could also
use tspSuite or bbob as input format)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Specify path to input folder, relative to current path

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Specify path to input folder, relative to current path (but we could
also specify a URL or the path to a ZIP file)

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Specify path to input folder, relative to current path (but we could
also specify a URL or the path to a ZIP file, actually, we can specify
multiple paths, URLs, and ZIP files)
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >

http://www.optimizationBenchmarking.org


Gluing everything together: config.xml

Choose LATEX as output format
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Choose LATEX as output format (but we could also choose XHTML or
export)
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Choose LATEX as output format (but we could also choose XHTML or
export, LATEX documents will automatically be compiled to PDF if
LATEX installation is auto-detected)
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.
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<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Choose PDF as graphics format
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Gluing everything together: config.xml

Choose PDF as graphics format (but we could also choose EPS, PNG,
TEX, . . . )
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />
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<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Specify output path relative to current directory
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.
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<cfg:configuration
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<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Specify base name of output document
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.
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</cfg:configuration >

http://www.optimizationBenchmarking.org


Gluing everything together: config.xml

If LATEX is the output format, specify document class (here IEEEtran)
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Gluing everything together: config.xml

If LATEX is the output format, specify document class (here IEEEtran,
but we could also choose LNCS, sig-alternate, . . . )
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />
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</cfg:configuration >

http://www.optimizationBenchmarking.org


Gluing everything together: config.xml

Specify path to evaluation.xml, relative to current directory
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />
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</cfg:configuration >
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Gluing everything together: config.xml

Specify path to evaluation.xml, relative to current directory (but
we could also specify a URL or the path to a ZIP file)
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Optional: Tell the system to produce lots of log output to the console
and detailed error messages, if any
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Listing: Example file configForIEEEtran.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/IEEEtran/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="IEEEtran" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Now let’s use the LATEX document class for Springer’s LNCS instead. . .
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Listing: Example file configForLNCS.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="LaTeX" />

<cfg:parameter name="graphicDriver" value="pdf" />

<cfg:parameter name="output" value="../ reports/LaTeX/LNCS/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="documentClass" value="LNCS" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Now let’s create an XHTML web page with PNG figures instead. . .

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 36/75

Listing: Example file configForXHTML.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="XHTML" />

<cfg:parameter name="graphicDriver" value="png" />

<cfg:parameter name="output" value="../ reports/XHTML/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Gluing everything together: config.xml

Now let’s export all figures to CSV text files instead, so that we can
load them into GnuPlot, MatLab, or whatever for post-processing
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Listing: Example file configForExport.xml for our MAX-SAT example.

<?xml version="1.0" encoding="UTF -8"?>

<cfg:configuration

xmlns:cfg="http://www.optimizationBenchmarking.org/formats/

configuration/configuration .1.0. xsd">

<cfg:parameter name="inputDriver" value="csv+edi" />

<cfg:parameter name="inputSource" value="path (../ results /)" />

<cfg:parameter name="documentDriver" value="export" />

<cfg:parameter name="output" value="../ reports/export/" />

<cfg:parameter name="docName" value="report" />

<cfg:parameter name="evaluationSetup" value="path(evaluation.xml)" />

<cfg:parameter name="logger" value="global;ALL" />

</cfg:configuration >
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Execute optimizationBenchmarking

1 Now we can finally execute the optimizationBenchmarking

Evaluator

2 Open a new terminal (command line)

3 cd into the directory with the configuration file

4 Then execute

:

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForIEEEtran.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForLNCS.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForXHTML.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=configForExport.xml

or

java -jar optimizationBenchmarking-0.8.4-full.jar -configXML=whatever.xml

5 . . . and that’s it.

6 Requirement: Java 1.7
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Result

The Evaluator will now produce report documents containing the
requested information (and figures)
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Evaluation Report on Six Experiments
Anne Anonymous

Abstract—This is the evaluation report on six experiments,
namely 1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has been
generated with the version 0.8.4 of the Evaluator Component of
the Optimization Benchmarking Tool Suite.

I. INSTANCE INFORMATION

Experiments were conducted on 100 benchmark instances,
which can be distinguished by two features.

The benchmark instances are characterized by two features:
• n (ten values, ranging from 20 to 250)
• k (ten values, ranging from 91 to 1065)
In Figure 2 we illustrate the relative amount of benchmark

instances per feature value over all 100 benchmark instances.
The slices in the pie charts are the bigger, the more benchmark
instances have the associated feature value in comparison
to the other values. The more similar the pie sizes are, the
more evenly are the benchmark instances distributed over the
benchmark feature values, which may be a good idea for fair
experimentation.

II. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 FEs. The

ECDF
(

FEs, F
k ≤ 0

)
represents the fraction of runs which

reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over
the runs of an experiment for a given benchmark instance.
If runs for multiple instances are available, we aggregate the
results by computing their arithmetic mean. The x-axis does
not represent the values of FEs directly, but instead log10 FEs.
The ECDF is always between 0 and 1 — and the higher it is,
the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k over log10 RT.

The ECDF
(

RT, F
k ≤ 0.01

)
represents the fraction of runs

which reach a value of F
k less than or equal to 0.01 for a

given ellapsed runtime measured in RT . The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of RT directly, but
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feature value over all 100 benchmark instances. The slices in the pie charts are
the bigger, the more benchmark instances have the associated feature value in
comparison to the other values. The more similar the pie sizes are, the more
evenly are the benchmark instances distributed over the benchmark feature val-
ues, which may be a good idea for fair experimentation.

2 Performance Comparisons

2.1 Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [2,3,1] com-
puted based on F

k over log10 FEs. The ECDF
(
FEs, Fk ≤ 0

)
represents the frac-

tion of runs which reach a value of F
k less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed over the runs of an
experiment for a given benchmark instance. If runs for multiple instances are
available, we aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead log10 FEs. The
ECDF is always between 0 and 1 — and the higher it is, the better.

The corresponding plot is illustrated in Figure 1.
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x-axis does not represent the values of FEs directly, but in-
stead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better.
The corresponding plot is illustrated in Figure 1.

2.2 Estimated Cumulative Distribution Func-
tion

We analyze the estimated cumulative distribution func-
tion (ECDF) [2, 3, 1] computed based on F

k
over log10 RT.

The ECDF
(
RT, F

k
≤ 0.01

)
represents the fraction of runs

which reach a value of F
k

less than or equal to 0.01 for a
given ellapsed runtime measured in RT . The ECDF is al-
ways computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate the results by computing their arithmetic
mean. The x-axis does not represent the values of RT di-
rectly, but instead log10 RT. The ECDF is always between
0 and 1 — and the higher it is, the better. The instance
run sets belonging to instances with the same value of the
feature n grouped together.
The corresponding plots are illustrated in Figure 3.

2.3 Median of Medians
We analyze the median of medians (med med) of F over

log10
(
FEs
n

)
. The med med(FEs,F) represents the median of

the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple in-
stances are available, we aggregate these medians by com-
puting their median. The x-axis does not represent the val-
ues of FEs directly, but instead log10

(
FEs
n

)
. The instance

run sets belonging to instances with the same value of the
feature k grouped together.
The corresponding plots are illustrated in Figure 4.

2.4 Median of Standard Deviations
We analyze the median of standard deviations (med stddev)

computed based on F
k
over log10 RT. The med stddev

(
RT, F

k

)

represents the standard deviation of the F
k

for a given el-
lapsed runtime measured in RT . The standard deviation is
always computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate these standard deviations by computing
their median. The x-axis does not represent the values of
RT directly, but instead log10 RT. The instance run sets
belonging to instances with the same value of the feature n
grouped together.
The corresponding plots are illustrated in Figure 5.
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Fig. 1.1. The fractions of instances with specific feature values.

    In Figure 1.1 we illustrate the relative amount of benchmark instances per feature value over all 100 benchmark instances. The slices in the pie charts are the bigger, the more
benchmark instances have the associated feature value in comparison to the other values. The more similar the pie sizes are, the more evenly are the benchmark instances distributed
over the benchmark feature values, which may be a good idea for fair experimentation.

2. Performance Comparisons
2.1. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [1], [2], [3] computed based on 
F
k over log10FEs. The ECDF(FEs, Fk≤0) represents the fraction of runs which reach a

value of 
F
k less than or equal to 0 for a given ellapsed runtime measured in FEs. The ECDF is always computed over the runs of an experiment for a given benchmark instance. If runs for

multiple instances are available, we aggregate the results by computing their arithmetic mean. The x-axis does not represent the values of FEs directly, but instead log10FEs. The ECDF is
always between 0 and 1 ‒ and the higher it is, the better.
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Usage Summary

1 Implement your optimization or Machine Learning or whatever
algorithm

2 Select a well-known set of benchmark instances

3 Run experiments and obtain one output folder per experiment with
log files

4 Put dimensions.xml into results folder

5 Put instances.xml into results folder

6 Put one experiment.xml into each experiment output folder

7 Define your evaluation process in a file evaluation.xml

8 Execute optimizationBenchmarking evaluator
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BBOB

Since 2009, the Black-Box Optimization Benchmarking (BBOB)
workshops [71, 80–82] regularly take place at GECCO (now also at CEC)

Researchers can use the COmparing Continuous Optimisers (COCO)
framework to benchmark their numerical optimization algorithms

COCO/BBOB defines a set of 24 numerical optimization problems

,
which differ in features such as dimension

, degree of separability

,
conditioning

, etc.

COCO can automatically run experiments, collect log files, and
evaluate them

The framework and the results of past BBOBs are available at
http://coco.gforge.inria.fr

optimizationBenchmarking has an experimental input driver for
COCO data

No need to specify dimensions.xml and instances.xml, as these
are fixed and known for COCO/BBOB.
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Quick Guide

You can quickly download all example data and the Evaluator and run
the example on your PC by executing the following code snippet.

System Requirements:

Linux (for make.sh), Windows (for make.bat, tested: Win 8, should
work also under Win 7)
Java 1.7 (ideally a JDK under a JRE slower and higher memory
consumption)
svn

optional: a LATEX installation, such as TeXLive (needed for generating
pdf reports)
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Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)
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Listing: Linux: script make.sh for downloading & running the BBOB example.

#!/bin/bash

jarName="optimizationBenchmarking-full.jar"

bbobDownloadBaseURL="http://coco.lri.fr/BBOB2013/rawdata"

outputDir=`pwd`
echo "Writing output to folder '${outputDir}'"

echo "Downloading selected experimental results from '${bbobDownloadBaseURL}'."
mkdir -p "${outputDir}/results"
cd "${outputDir}/results"
for archive in "hutter2013_CMAES.tar.gz" "liao2013_IPOP.tar.gz" "liao2013_IPOP-500.tar.gz" "liao2013_IPOP-tany.tar.gz" \

"liao2013_IPOP-texp.tar.gz" "tran2013_P-DCN.tar.gz" "pal2013_DE.tar.gz" "pal2013_fmincon.tar.gz" \

"pal2013_simplex.tar.gz" "pal2013_HMLSL.tar.gz" "holtschulte2013_hill.tar.gz" "holtschulte2013_ga100.tar.gz"

do

wget -O "${outputDir}/results/${archive}" "${bbobDownloadBaseURL}/$archive"
tar -xvf "${outputDir}/results/${archive}"
rm "${outputDir}/results/${archive}"

done

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

cd "${outputDir}"
svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/bbob/evaluation

jarDownloadURL=$(wget "http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url" -q -O -)

echo "Downloading evaluator from '${jarDownloadURL}'."
wget -O "${outputDir}/${jarName}" "${jarDownloadURL}"

echo "Applying evaluator and obtaining report in IEEEtran format."

cd "${outputDir}/evaluation"
java -jar "${outputDir}/${jarName}" -configXML=configForIEEEtran.xml

cd "${outputDir}"
echo "Done."
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Listing: Windows: script make.sh for downloading & running the BBOB example.

echo "Downloading evaluator."

powershell -command "& {iwr http://optimizationbenchmarking.github.io/optimizationBenchmarking/currentVersion.url -OutFile version.txt}"

for /F "delims=" %i in (version.txt) do set downloadURL=%i

powershell -command "& {iwr %downloadURL% -OutFile optimizationBenchmarking.jar}"

del version.txt

echo "Downloading (but not installing!) required 3rd-party software: downloading SVN client and 7-Zip to extract it."

md svn

cd svn

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/7zip/7za.exe -OutFile 7za.exe}"

powershell -command "& {iwr https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/raw/master/tools/windows/svn/svn.tar.lzma -OutFile svn.tar.lzma}"

7za x svn.tar.lzma

7za x svn.tar

cd..

echo "Downloading experimental results from http://coco.lri.fr/BBOB2013/rawdata/

md results

cd results

for %i in (hutter2013_CMAES.tar liao2013_IPOP.tar liao2013_IPOP-500.tar liao2013_IPOP-tany.tar ^

liao2013_IPOP-texp.tar tran2013_P-DCN.tar pal2013_DE.tar pal2013_fmincon.tar ^

pal2013_simplex.tar pal2013_HMLSL.tar holtschulte2013_hill.tar holtschulte2013_ga100.tar) do ^

powershell -command "& { iwr http://coco.lri.fr/BBOB2013/rawdata/%i.gz -OutFile %i.gz }" && ^

..\svn\7za x %i.gz && ^

..\svn\7za x %i && ^

del %i.gz && ^

del %i

cd ..

echo "Downloading evaluation/configuration via 'svn export' from GitHub."

svn\svn export https://github.com/optimizationBenchmarking/optimizationBenchmarkingDocu/branches/master/examples/bbob/evaluation

rd /s /q svn

echo "Applying evaluator and obtaining report in IEEEtran format."

cd evaluation

java -jar "..\optimizationBenchmarking.jar" -configXML=configForIEEEtran.xml

cd..

echo "Done."
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Quick Guide

Enter (or create) a folder where you want to have everything, then
execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports
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execute this script via copy-paste to the terminal (it may need quite a
while to run due to the downloads)

After the script, you will have

a folder results with the log files which have been evaluated
a folder evaluation with the configuration files and the
evaluation.xml file defining what to do
a filder reports with the generated reports

But now, let’s continue with the example. . .
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Experiment

We select a set of experiments from the BBOB 2013 workshop for
evaluation with the optimizationBenchmarking Evaluator

:
1 CMA-ES: hutter2013 CMAES.tar.gz [99]

2 IPOP-CMA-ES: liao2013 IPOP.tar.gz [100]

3 IPOP-CMA-ES: liao2013 IPOP-500.tar.gz [100]

4 IPOP-CMA-ES: liao2013 IPOP-tany.tar.gz [101]

5 IPOP-CMA-ES: liao2013 IPOP-texp.tar.gz [101]

6 Multi-Objectivization with NSGA-II [102]tran2013 P-DCN.tar.gz [103]

7 Differential Evolution (DE): pal2013 DE.tar.gz [104]

8 Quasi-Newton Type Algorithm: pal2013 fmincon.tar.gz [105]

9 Nelder-Mead Simplex [106]: pal2013 simplex.tar.gz [105]

10 Hybrid Multi-Level Single Linkage Algorithm (HMLSL):
pal2013 HMLSL.tar.gz [104]

11 Hill Climber: holtschulte2013 hill.tar.gz [107]

12 Generational GA: holtschulte2013 ga100.tar.gz [107]

We can directly download them from
http://coco.lri.fr/BBOB2013/rawdata

. . .

. . . and unpack them into one common folder
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Evaluation

All we need to supply to the Evaluator is

1 the evaluation.xml file specifying what kind of information we want
to obtain from the experimental data

and
2 the a configuration file (let’s call it configForIEEEtran.xml) telling

the Evaluator where everything is and what document driver or
document class to use (guess which).

We now look at the interesting parts of the evaluation.xml file (the
file in general has been discussed in the previous example)
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ECDF over Everything

Let’s first plot the ECDF aggregated over all benchmark instances

We set the goal “error” to 1 · 10−8

For the time measured in FEs and log-scaled, we plot the fraction of
runs achieving this goal
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Listing: Part 1 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="figureSize" value="page wide" />

<cfg:parameter name="makeLegendFigure" value="false" />

</cfg:configuration >

</e:module >
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It seems that IPOP-texp can reach
F ≤ 1 · 10−8 on more instances than
the other tested algorithms

The different IPOP variants in
general reach this value more often
than the other algorithms

pal2013 fmincon and
pal2013 HMLSL both solve more
problems during approximately the
first 2500 FEs, i.e., are initially faster

The Hill Climber and GA
(holtshulte) solve the least
problems in the comparison
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ECDF by Dimension

Let’s now plot the ECDF aggregated over each distinct value of the
benchmark feature dimension

The goal “error” to achieve is again 1 · 10−8

and

also use the (only) time measured in FEs, log-scaled.
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Listing: Part 2 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-8" />

<cfg:parameter name="groupBy" value="dim" />

</cfg:configuration >

</e:module >
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ECDF by Dimension

Let’s now plot the ECDF aggregated over each distinct value of the
benchmark feature dimension
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legend dim = 2 dim = 4

dim = 5 dim = 10 dim = 20
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ECDF by Dimension

We find that for larger dimension, fewer problems can be solved

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 46/75

legend dim = 2 dim = 4

dim = 5 dim = 10 dim = 20

http://www.optimizationBenchmarking.org


ECDF by Dimension

While the overall performance of pal2013 fmincon and
pal2013 simplex look similar when considering all problems, we find
that the simplex algorithm is very heavily influenced by the dimension
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ECDF by Dimension

Similarly, the performance of DE breaks down when the dimension
increases
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legend dim = 2 dim = 4
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ECDF by Dimension

The performance of the IPOP algorithm family, on the other hand,
degenerates gracefully with rising dimension
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ECDF by Condition Number

Let’s now plot the ECDF aggregated over the benchmark instances
with the same value of feature condition number

“the condition number corresponds to the square root of the ratio
between the largest axis of the ellipsoid and the shortest axis” [82]

As goal “error” to achieve, this time we pick 1 · 10−5
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Listing: Part 3 from file evaluation.xml for our BBOB example.

<e:module class="all.ecdf.AllECDF">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg FEs" />

<cfg:parameter name="yAxis" value="F" />

<cfg:parameter name="goal" value="1e-5" />

<cfg:parameter name="groupBy" value="cond" />

</cfg:configuration >

</e:module >
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ECDF by Condition Number

Let’s now plot the ECDF aggregated over the benchmark instances
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legend cond = 1 cond = 10 cond = 25
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ECDF by Condition Number

The influence of the condition number on problem hardness does not
seem to obvious at first glance
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legend cond = 1 cond = 10 cond = 25
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ECDF by Condition Number

Some algorithms perform bad on some mediocre condition numbers
while performing better on smaller and larger ones (e.g., P-DCN on
cond = 1000)
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ECDF by Condition Number

For some problems, there doesn’t seem to be a direct relationship
between conditioning and performance (e.g., DE)
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ECDF by Condition Number

Possible reason: The problems in the benchmark belonging to a
certain condition number may have various other features making
them hard or easy
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ECDF by Condition Number

Possible reasons: The problems in the benchmark belonging to a
certain condition number may have various other features making
them hard or easy and the number of problems per condition number
differs largely
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The relative amounts of BBOB benchmark functions according to their features.
(This diagram has also been created with optimizationBenchmarking.)
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ECDF by Condition Number

Possible reason: The problems in the benchmark belonging to a
certain condition number may have various other features making
them hard or easy, the number of problems per condition number
differs largely, and the goal value 1 · 10−5 may be too easy to achieve,
leading to a large variance in the results
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Progress by Separability

Finally, let’s see how the algorithms progress on problems of different
degrees of separability

The x-axis be again the log-scaled FEs divided by the square of the
benchmark instance dimension1

and

on the y-axis, we plot the median of the log-scaled objective value F

1Yes, the square. Because why not. You can do arbitrary mathematical expressions
(as long as the preserve the order of the values)
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Listing: Part 4 from file evaluation.xml for our BBOB example.

<e:module class="all.aggregation2D.AllAggregation2D">

<cfg:configuration >

<cfg:parameter name="xAxis" value="lg(FEs/dim 2 )" />

<cfg:parameter name="yAxis" value="lg F" />

<cfg:parameter name="aggregate" value="median" />

<cfg:parameter name="groupBy" value="sep" />

</cfg:configuration >

</e:module >
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Progress by Separability

We find that pal2013 fmincon and pal2013 HMLSL are quite good
in solving fully and partially separable problems but both (and
especially pal2013 fmincon) perform worse on non-separable
problems
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Progress by Separability

Here seems to be the strength of the IPOP family of algorithms

Intro to the optimizationBenchmarking.org Evaluator, September 14, 2015 Thomas Weise 48/75

le
g

en
d

fu
ll
y

se
p

ar
a

b
le

p
ar

ti
a

ll
y

se
p

ar
a

b
le

n
o

n
-s

ep
ar

a
b

le

http://www.optimizationBenchmarking.org


Progress by Separability

Generally, a decrease in separability, i.e., stronger “variable
interactions” [108], makes optimization problems harder for numerical
optimization algorithms, which either need longer to or cease to
achieve high-quality solutions
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Example Summary

We can use the
optimizationBenchmarking

Evaluator to analyze data gathered
by COCO for BBOB.

Benchmark instances can be grouped
according to features, allowing for
convinient analysis of an algorithm’s
strengths and weaknesses.

Evaluator modules implemented
once can be used for benchmark
data from various algorithms and
various optimization problems.
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1

Evaluation Report on Twelve Experiments
Anne Anonymous

Abstract—This is the evaluation report on twelve experiments,
namely P-DCN, holtschulte2013_ga100, holtschulte2013_hill,
hutter2013_CMAES, liao2013_IPOP, liao2013_IPOP-500,
liao2013_IPOP-tany, liao2013_IPOP-texp, pal2013_DE,
pal2013_HMLSL, pal2013_fmincon, and pal2013_simplex
on 144 benchmark instances. This report has been generated
with the version 0.8.4 of the Evaluator Component of the
Optimization Benchmarking Tool Suite.

I. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead
log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-8) represents the fraction of runs which
reach a value of F less than or equal to 1.E-8 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of FEs directly, but
instead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature dim grouped
together.

The corresponding plots are illustrated in Figure 2.

C. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution func-
tion (ECDF) [1], [2], [3] of F over log10 FEs. The
ECDF(FEs,F ≤ 1.E-5) represents the fraction of runs which
reach a value of F less than or equal to 1.E-5 for a given
ellapsed runtime measured in FEs. The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available, we
aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead

log10 FEs. The ECDF is always between 0 and 1 — and the
higher it is, the better. The instance run sets belonging to
instances with the same value of the feature cond grouped
together.

The corresponding plots are illustrated in Figure 3.

D. Median of Medians

We analyze the median of medians (med med)
computed based on log10 F over log10

(
FEs
dim2

)
. The

med med(FEs, log10 F) represents the median of the log10 F
for a given ellapsed runtime measured in FEs. The median
is always computed over the runs of an experiment for a
given benchmark instance. If runs for multiple instances are
available, we aggregate these medians by computing their
median. The x-axis does not represent the values of FEs
directly, but instead log10

(
FEs
dim2

)
. The instance run sets

belonging to instances with the same value of the feature sep
grouped together.

The corresponding plots are illustrated in Figure 4.
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Conclusions

I have presented a very first version of the Evaluator component of
optimizationBenchmarking

It still lacks several features you are used from TSP Suite or COCO

But it can already load and evaluate performance data from your
optimization or Machine Learning algorithm

It can help you to understand what the strengths and weaknesses of
your algorithm are

It produces figures ready for use in your publication

. . . and these figures are optimized (size, fonts) for the journal or
conference you want to submit to.

Btw, you could even compare general algorithms (like GAs and HC)
on entirely different problem types at once (like MAX-SAT and
BBOB) by making the problem type an instance feature. . .
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Future Work: Short-Term

Add the missing text to the different evaluation modules
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Publicize the use optimizationBenchmarking about colleagues
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Write an overview paper about our system to publish it more widely
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Future Work: Long-Term

Scout for new interesting ways to evaluate optimization and Machine
Learning algorithms and implement them as evaluator modules

Idea: We could use clustering to group algorithms by their behavior or
problems by their hardness

Idea: We could use Machine Learning to predict algorithm
performance or result quality based on problem features

Idea: We could use regression or curve fitting to find curves fitting to
measured progress or ECDF functions and then use these to compare
with or develop new theoretical concepts

Btw: This is Big Data, since we can collect much information. . .
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Visit our website

http://www.optimizationBenchmarking.org

or

http://optimizationbenchmarking.github.io/optimizationBenchmarking

for downloading the software (version 0.8.4) and
obtaining more information.

System Requirements:

Java 1.7 (Ideally a JDK, under JRE slower with more memory requirements)

optional: a LATEX installation, such as TeXLive or MiKTeX (needed for generating pdf reports)
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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11. Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Books. Cambridge, MA, USA: MIT Press, July 1,
2004. ISBN 0-262-04219-3 and 978-0-262-04219-2. URL http://books.google.de/books?id=_aefcpY8GiEC.

12. Michael Guntsch and Martin Middendorf. Applying population based aco to dynamic optimization problems. In Marco
Dorigo, Gianni A. Di Caro, and Michael Samples, editors, From Ant Colonies to Artificial Ants – Proceedings of the Third
International Workshop on Ant Colony Optimization (ANTS’02), volume 2463/2002 of Lecture Notes in Computer
Science (LNCS), pages 111–122, Brussels, Belgium, 2002. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/3-540-45724-0 10. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6580.

13. Mark Zlochin, Mauro Birattari, Nicolas Meuleau, and Marco Dorigo. Model-based search for combinatorial optimization:
A critical survey. Annals of Operations Research, 132(1-4):373–395, November 2004. doi:
10.1023/B:ANOR.0000039526.52305.af.

14. Ingo Rechenberg. Cybernetic Solution Path of an Experimental Problem. Farnborough, Hampshire, UK: Royal Aircraft
Establishment, August 1965. Library Translation 1122.

15. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD
thesis, Berlin, Germany: Technische Universität Berlin, 1971. URL http://books.google.de/books?id=QcNNGQAACAAJ.

16. Ingo Rechenberg. Evolutionsstrategie ’94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Bad Cannstadt,
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Günther R. Raidl, Kay Chen Tan, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’05), volume 2, pages 1777–1784, Edinburgh, Scotland, UK, 2005. Piscataway, NJ, USA: IEEE
Computer Society. doi: 10.1109/CEC.2005.1554903. URL http://www.lri.fr/~hansen/cec2005localcmaes.pdf.
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60. David Lee Applegate, Robert E. Bixby, Vašek Chvátal, and William John Cook. The Traveling Salesman Problem: A
Computational Study. Princeton Series in Applied Mathematics. Princeton, NJ, USA: Princeton University Press,
February 2007. ISBN 0-691-12993-2 and 978-0-691-12993-8. URL http://books.google.de/books?id=nmF4rVNJMVsC.

61. Eugene Leighton (Gene) Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Estimation, Simulation, and Control –
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience,
September 1985. ISBN 0-471-90413-9 and 978-0-471-90413-7. URL http://books.google.de/books?id=BXBGAAAAYAAJ.

62. Gregory Z. Gutin and Abraham P. Punnen, editors. The Traveling Salesman Problem and its Variations, volume 12 of
Combinatorial Optimization. Norwell, MA, USA: Kluwer Academic Publishers, 2002. ISBN 0-306-48213-4, 1-4020-0664-0,
and 978-1-4020-0664-7. doi: 10.1007/b101971. URL http://books.google.de/books?id=TRYkPg_Xf20C.

63. Weiqi Li. Seeking global edges for traveling salesman problem in multi-start search. Journal of Global Optimization, 51
(3):515–540, November 2011. doi: 10.1007/s10898-010-9643-4.
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Software Development Process

In the optimizationBenchmarking project, we follow a distributed,
concurrent software development process

We use git [109] as versioning system

and gitHub [109–111] for hosting

For building and dependency management, we use Maven

As developer environment, we recomment Eclipse [112] (version ≥
Luna), as it natively supports git and Maven [113, 114].
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Contribution Lifecycle

1 Prerequisites

2 Fork project
optimizationBenchmarking/optimizationBenchmarking

3 Add your code, e.g., an own evaluation module, in the appropriate
location (maybe an own package)

4 Test your code

5 Make sure your code is properly documented and that your commits
contain sufficient explanations

6 Create a pull request, i.e., ask me to include your code in the
main project

7 After a discussion, your code will (very likely) become part of the
main project
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Import Fork into Eclipse

Importing a project (or fork) from gitHub into Eclipse means to
clone it to a local repository and then to work on that repository.

Although gitHub offers cloning via HTTPS as the default, for me it
worked better with SSH.

After cloning and importing the clone into Eclipse, you need to
update the project with Maven to properly initialize the project
structure and dependencies.

In the following, I provide a step-by-step screenshot series on how to
do all of that. . .
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Log Points and Termination

When benchmarking, the questions how to collect log points and
when to terminate arises.

In TSP Suite [72, 83], we found a nice solution for that and
BBOB [71, 80–82] follows a similar approach:

Do everything in the
objective function!

The objective function loads the problem instance in its constructor

It thus can provide information, like the number of clauses k or
variables n in a MAX-SAT problem

Whenever a candidate solution is evaluated via a provided evaluate

function
It also represents the termination criterion by providing a function
shouldTerminate, which becomes true, e.g., when

the FE counter reaches a certain maximum number

the global optimum was found (which we know from evaluate)
a certain time has ellapsed

After the run, all the log points held in memory are written to a file.

No file operations during the run to not mess up time measurements!
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Visit our website

http://www.optimizationBenchmarking.org

or

http://optimizationbenchmarking.github.io/optimizationBenchmarking

for downloading the software (version 0.8.4) and
obtaining more information.

System Requirements:

Java 1.7 (Ideally a JDK, under JRE slower with more memory requirements)

optional: a LATEX installation, such as TeXLive or MiKTeX (needed for generating pdf reports)
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