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Abstract—Robustness is critical for ensuring that software
functions correctly under adverse conditions. Exception-handling
mechanisms in programming languages enable developers to deal
with these adverse conditions. However, implementing exception-
related code can present significant challenges to developers.
We investigated exception-related code contributions across Java
projects in the Apache ecosystem. We analyzed exception-
related pull requests (exception-PRs), which were detected using
a validated heuristicc. We produced a comprehensive dataset
of 988 exception-PRs. We observed no statistically significant
differences in complexity metrics between exception-PRs and
non-exception-PRs. We also found no significant differences in
developers’ behavior metrics, indicating consistent engagement
regardless of whether the pull request addressed exception-
related code. A manual analysis revealed that most exception-PRs
focused on system improvements rather than bug fixes, suggesting
proactive efforts to enhance software robustness. Moreover, the
most frequently addressed aspects of exceptional code in these
exception-PRs were: (i) the external representation of adverse
situations to end-users (more than 40% of the PRs) and (ii) the
implementation of effective error-handling actions (nearly 35%
of the PRs) to promote program recoverability. Interestingly, a
significant proportion of exception-PRs simultaneously addressed
multiple aspects. By understanding the nature and characteristics
of exception-PRs, we expect to better support developers in man-
aging erroneous conditions and improving software robustness.

Index Terms—software robustness, exception handling, excep-
tions, maintenance, evolution

I. INTRODUCTION

Software robustness is of paramount importance to the
success of a system. Robustness is described as the “de-
gree to which a system or component can function correctly
in the presence of invalid inputs or stressful environmental
conditions” [1]. Thus, the essential part of a program to
achieve software robustness is the one that manages such
erroneous inputs or conditions [2]-[6]. Certain programming
languages offer a specific mechanism, the so-called exception
mechanism or exception handling mechanism [5], [7]-[10], to
deal with these erroneous conditions and structure this part of
the program.

Java is an example of a programming language with a
built-in exception-handling mechanism. Java enables devel-
opers to define try, catch, and finally blocks as well
as raise or propagate exceptions with throw and throws
statements [11].! With these language features, developers

Thttps://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

can ensure the system’s recoverability (i.e., catch or handle
exceptions) from invalid or stressful conditions [7], [12].
Developers can also represent these conditions as exceptions,
as well as propagate them to upper layers. They can also
implement the system’s cleanup actions through finally
blocks [10], [13]. The part of the program that manages (i.e.,
raise, protect, clean up, and handle) exceptions can be called
the exception-related code.

Over the decades, various studies have investigated the in-
herent challenges in properly implementing exception-related
code [14]-[16]. In the early 80s, Black er al. [17] warned
developers about the complexity of exception-related code in
object-oriented programs. In the late 2000s, Shah et al. [2]
examined the quality of exception-related code in certain
industrial software projects, concluding that, despite its impor-
tance to program robustness, its quality might be overlooked
by developers. Further analysis of the same authors suggests
that using exception mechanisms is hard for less experienced
developers [3]. Given these reasons, Shah et al. [2] even
proposed the introduction of a new role of exception engineer
to industrial software projects; this role would be dedicated to
the design, implementation, and maintenance of the exception
behavior of a software system.

In the context of open-source systems, one might ques-
tion the nature of the contributions to the exception-related
code and how they differ from other types of contributions.
However, no empirical study has characterized and classified
contributions to the exception-related code in open-source
systems. Previous studies have focused on analyzing the
frequency of changes to different sections of the exception-
related code [9] and how these changes relate to bugs [6],
[18]. While some studies [4], [19], [20] have investigated the
nature of exception-related bugs, other studies (e.g., [21]-
[25]) focused on providing automatic repair for such bugs.

This paper reports a study we performed aimed at under-
standing the nature of contributions to the exception-related
code, or exception-related pull requests (exception-PRs, for
short), in Java projects of the Apache ecosystem. Our study
also aimed to analyze the attention devoted by developers to
exception-PRs as compared to other types of contributions
in these projects. To achieve our aims, we implemented
a heuristic to detect exception-PRs that, according to our
validation, reached a precision of 90.7% (254) of the 280
manually evaluated PRs. Our study included several metrics,



such as number of reviews, the number of requests for reviews,
the number of comments. Our statistical analysis to compare
the dynamics of exception-PRs with non-exception-PRs is
inconclusive in determining differences in developers working
on these two categories of PRs.

We also manually analyzed the information in these 254
exception-PRs to understand the types of contributions made
by developers. The results of this analysis reveal the mul-
tifaceted aspects of these contributions. The principal aim
for opening an exception-PR is improvement, accounting for
55.12% (140 out of 254) of the PRs. Bug fix is the second
most frequent aim, representing 40.55% (103 out of 254) of
the PRs. The most frequently modified aspect of exception-
PRs involves the external error representation, appearing at
least once in approximately 42.52% (108 out of 254) of the
PRs. This means that the primary focus of these PRs is
enhancing the clarity of error messages for users. Effective
error handling is the second most frequent focus of the
PRs, occurring in 36.22% (92 out of 254). Effective error
handling concerns the proper implementation of exception
handlers (catch blocks) to ensure the system’s recoverability.
Although addressed less frequently, contributions related to
error detection and propagation were still notable, appearing
in 23.62% (60 out of 254) and 16.54% (42 out of 254) of the
PRs. Notably, when looking at these aspects of the exception-
related code, external error representation often appears alone
in about 18.50% of cases and roughly twice as frequently as
part of combined modifications in 35.04% of PRs. Similarly,
error detection and propagation are more often involved in
combined contributions.

II. RELATED WORK

Shah et al. [2] conducted an empirical study to characterize
exception-handling practices in industrial projects. The authors
interviewed developers to understand their perspective on
exception handling and their strategies for handling exception
constructs. The results revealed developers’ dissatisfaction
with exception mechanisms in programming languages (such
as Java) mainly due to the language imposition to implement
such constructs. Also, developers claimed to have limited
support in implementing exception-handling constructs. Based
on these results, the authors propose the new role of exception
engineer, who should focus on designing, implementing, and
maintaining the exception-related code in software systems.

In a following study, Shah er al. [3] interviewed developers
from the industry to characterize the problems and obsta-
cles they face when designing and implementing exception
handling. The results revealed a trend that novice developers
usually ignore exceptions and frequently use them primarily
to support debugging activities. In contrast, experts consider
both regular and exception-related functionalities similarly
important, using exception-handling mechanisms to convey
important information to users.

Nakshatri ef al. [26] conducted an empirical study to vali-
date the findings from Shah et al. [2]. The authors examined
common practices for exception handling in Java projects,

comparing them to the best practices outlined in the book Ef-
fective Java [27]. Furthermore, they analyzed the comparison
results alongside the evidence provided by Shah et al. [2]. The
results revealed that most developers often overlook checked
exceptions and tend to use higher-level exception classes more
frequently than lower-level ones.

Sawadpong et al. [28] conducted an exploratory study
investigating the defect density in exception handling and
the overall source code. The authors explored the code of
six releases in the Eclipse IDE and computed the defect
ratios. Their results suggested that the exception defect density
is roughly three times the overall code defect density. This
observation reinforces previous works’ findings that exception
handling is usually neglected.

Ebert et al. [4], [29] conducted an exploratory study
on exception-handling bugs. They classified 220 bugs from
Eclipse and Tomcat repositories in terms of frequency, severity,
and difficulty in fixing them. Next, they surveyed 154 develop-
ers to understand organizational policies and perceptions about
exception handling bugs. As a result, the authors proposed a
categorization for exception-handling bugs and their causes.
Also, they found in their analysis that exception-handling bugs
are less ignored than other bugs. According to the survey, only
27% of the respondents claimed that their organization has
practices for implementing exception-handling mechanisms.

Viviani et al. [30], [31] investigated pull request discussions
through manual classification of three open-source systems
to find design-related topics. The results revealed that the
three most frequent topics were maintainability, code, and
robustness. Moreover, while the studies above suggest that
exception-related code is often overlooked in coding activities,
robustness remains a crucial concern of design discussions.
These findings present an intriguing opportunity for further
exploration, which could lead to a more comprehensive under-
standing of the challenges faced by implementing exception-
related code in software systems.

Our present study differs from the existing literature in
various ways. First, we examine the content of exception-
related pull requests to understand the types of contributions
to exception-related code in open-source systems. Second,
we study how the dynamics of exception-related and non-
exception-related contributions differ. Third, we depict and
classify the aspects of exception-related code contributions.

III. STUDY DESIGN

This section describes the research questions and the
methodology we employed to answer them. We gathered data
from three Apache systems. Subsequently, we categorized the
PRs into exception-PRs and non-exception-PRs and conducted
quantitative and qualitative analyses, as described below.

A. Research Questions

We aim to analyze the characteristics of contributions con-
cerning the exception-related code in open-source projects. To
this end, we compared PRs related to exceptions (exception-
PRs) with the other PRs (non-exception-PRs). Additionally,



we examined the dynamics among developers within these
contributions to identify the presence of exception experts.
Finally, we also examined the exception aspects commonly
addressed in exception-PRs. Our study is structured around
the following research questions:

RQ1: How does the dynamics of exception-PRs and non-
exception-PRs differ? To answer this research question,
we compare exception-PRs metrics with non-exception-PRs
ones. We hypothesize that exception-PRs are more complex
than non-exception-PRs due to some characteristics. Firstly,
exception-related code often addresses issues to ensure the
resilience and stability of software systems under diverse
operational conditions. Thus, a deeper understanding of the
system’s architecture and the potential fault lines that could
compromise its integrity is required. Furthermore, exception-
related code usually requires rigorous testing activities to cover
a broader range of scenarios, including edge and uncommon
cases. Concluding that exception-PRs are more complex may
imply that they require more attention from team managers
regarding resource allocation and process optimization.

In this RQ, we also aim to understand whether developers’
behavior changes between exception-PRs and non-exception-
PRs. For instance, we want to understand whether developers
put more effort into exception-PRs than non-exception-PRs
and identify developers whose team often relies on performing
exception-related code changes. This analysis is grounded
in results from previous work [30] that reveal the experts’
participation in discussions related to robustness. Also, Shah et
al. [2] suggests that developers working on the system’s
exception-related code should have specialized knowledge.

RQo: What are the aspects addressed by exception-PRs?
Given that robustness requirements are often retrofitted during
development, and previous research has strongly emphasized
bug-fixing of exception-related code, this research question
is driven by the need to understand why developers submit
exception-related code contributions. We seek to systemati-
cally classify the aims of exception-PRs, determining whether
they introduce new functionalities, enhance existing ones,
or address defects. Additionally, we aim to comprehend the
aspects of exception-related code frequently addressed by
such contributions, focusing on error representability, error
recoverability, error detection, error propagation, and their
subcategories. By answering this research question, we aim
to enrich our understanding of how contributions manage
exception-related code issues and whether existing tools de-
signed to aid in writing exception-related code effectively
support developers. To our knowledge, no previous research
has undertaken efforts to understand the characteristics of
exception-related code contributions in this manner.

B. Data Collection

We focused our studies on a set of projects that satisfied the
following criteria:

Open-source systems. As aforementioned, the primary
focus of our investigation lies on open-source systems, which

also favors data availability and the future replication of
this research. Open-source systems are typically maintained
through version control systems, which provide unrestricted
access to historical data. This access would be difficult to
have in closed-source systems. We selected projects with
repositories in GitHub since the platform has an application
programming interface (API) for retrieving repository data,
including pull requests, issues, comments, users, and commits.
We rely on this data to answer the aforementioned RQs.

Java language. This study focuses on Java projects, as
the language provides mechanisms that push for robustness
guarantees [6], [9], [18]. Java also has an exception-handling
mechanism, allowing developers to determine exception-
related conditions and explicitly handle them. This mechanism
helps developers build resilient applications that recover from
exception-related situations without crashing. As the language
provides explicit exception-handling features, we can more
objectively analyze how systems deal with robustness require-
ments. Java is a statically typed language, meaning that type-
checking is performed at compile-time. Many exceptions are
checked for having at least a handler defined at compile time.
This language characteristic may help catch various errors
early in development, reducing the likelihood of runtime errors
and enhancing the program’s robustness.

Apache ecosystem. The Apache ecosystem comprises a
collection of open-source systems developed and maintained
by a diverse community. Due to factors such as the relevance
of systems, the number of contributors, and the need for robust
non-functional requirements, several studies have chosen the
Apache ecosystem to empirically investigate reliability [32]-
[34]. In this study, we selected three projects from this
ecosystem considering the following criteria: (i) the repository
should have more than 5,000 commits; (ii) the repository
contains commits pushed a month before our data collection;
(iii) the repository should have recent discussions on PRs and
issues; and (iv) the repositories are from different domains.

Under the criteria above, we selected the following repos-
itories: Apache Druid, Apache Pulsar, and Apache Flink. We
systematically mined and collected data from these reposito-
ries, covering their entire history until July 2023. By choosing
repositories from different domains, we aspire to foster het-
erogeneity in our study.

1) Heuristic: After defining the repositories, we designed
a heuristic to filter contributions related to exceptions. This
heuristic is aimed to be conservative regarding labeling con-
tributions as exception-related in an attempt to enhance preci-
sion. Therefore, the heuristic comprised three conditions:

C1 The title must contain the keyword exception or throw

or catch or its derivatives 2; and

C5 Body must contain the keyword exception or throw or

catch or its derivatives; and

Cs The PR must not have been opened by a bot.

We employed the heuristic approach for each PR within the
repository to determine its association with exception-related

20One of the considered words with the addition of a prefix or a suffix.



code. Initially, the heuristic analyzed the title and description
of the PR to check its adherence to the criteria C; and Cs.
Subsequently, the criterion C'5 was checked by leveraging a
feature provided by the GitHub API v3. Thus, the heuristic
identified PRs initiated by bots and disregarded them in an
attempt to remove noise from our dataset. Table I provides
an overview of the collected data. The 1%' column shows
the repository name. The 2"¢ column shows the amount and
percentage of exception-PRs in the repository. The 3"¢ column
shows the total amount of PRs in the repository. Finally, the
4*h column describes the domain of the system. As the data
implies, we obtained 988 or 2.12% of the PRs classified as
exception-PRs. In related work, Ebert et al. [4] obtained a
similarly low number when analyzing only exception-handling
bugs from Bugzilla in the Eclipse and Tomcat repositories.

TABLE 1
REPOSITORIES AND DETAILS ABOUT DATA COLLECTION.

Repository  exception-PRs  Total PRs Domain

druid 126 (1.30%) 9675 Real-time analytics database
pulsar 294 (2.07%) 14198 Messaging/streaming platform
flink 568 (2.49%) 22728 Distributed processing engine

2) Metrics: To support the analyses to answer R(Q);, we
collected a set of metrics from pull requests and the devel-
opers. Table II presents these metrics and their descriptions.
For each pull request, we computed the number of reviews, the
number of requests to review, and the number of comments. For
each developer, we calculated the percentage of pull requests,
percentage of reviews, percentage of requests to review, and
percentage of comments. Before computing these metrics, we
split the PRs and developers according to their relation to
exceptions using our heuristic. For instance, we calculated
the developers’ metrics for exception-PRs and non-exception-
PRs, instead of computing their metrics in all PRs. In other
words, the developer’s metric reviews ratio has one value for
exception-PRs and another for non-exception-PRs. In this way,
we can perform statistical metrics analyses for both scenarios.

TABLE I
PULL REQUESTS’ AND DEVELOPERS’ METRICS DESCRIPTION.

Metric Description

Number of reviews made by
contributors on that pull request.
Number of comments made by
contributors on that pull request.
Number of contributors marked
as reviewers on that pull request.
Percentage of pull requests
opened by that user in the sample.
Percentage of reviews made by
that user in the sample.
Percentage of requests to review
for that user in the sample.
Percentage of comments made by
that user in the sample.

Number of reviews

Pull request Number of comments

Number of requests to review

Pull requests ratio

Reviews ratio

Developer
Requests to review ratio

Comments ratio

3) Manual validation: We conducted a manual validation
process with experienced validators, focusing on two main
objectives. The first was to evaluate the precision of our
heuristics in identifying real exception-PRs, thereby ensuring
confidence in the analysis conducted for R@;. The second,

addressing R()5, was to characterize the aim of exception-PRs
and exception-related code aspects impacted by contributions.

We initially calculated the sample size of exception-PRs
needed for manual validation, ensuring it would represent our
entire population of 988 with 95% confidence. The estimated
sample size was 277 PRs. Therefore, we randomly selected
280 exception-PRs from the dataset, distributed as follows:
160 from Flink, 82 from Pulsar, and 38 from Druid.

We requested participants to collaborate in the validation
process by sending an invitation message. The message con-
tained the invitation and instructions for participating. Eight
developers joined the manual validation process, each evalu-
ating 70 PRs. Table III provides the demographics of these
developers in terms of self-rated experience with software
development, software exceptions, and pull request collabo-
rations. Notice that we managed the validation process so that
we had a double validation for each of the 280 PRs.

TABLE III
VALIDATOR’S DEMOGRAPHICS.

Experience with Experience with Experience with

Jalidaton Software Devel t  Software Exceptions Pull Requests
Vi Moderate Moderate Very high
V2 Very high High Very low
V3 High Moderate Moderate
V4 High Low High

V5 Very high High Very high
V6 Moderate Moderate Low

V7 High Moderate Moderate
V8 High Very high High

Below, we present the three questions that validators an-
swered for each PR. We have the complete description of
options in our supplementary material [35].

Q1 What was the aim of the pull request? Single choice
question, with the following alternatives:

— New feature: addition of a completely new feature
to the system.

— Improvement: extension or refactoring of existing
code structures.

— Bug fix: correction of a malfunction.

— Test: addition/change in code for test.

— Other: other non-covered aim.

Q2 Is this pull request related to an exception? Single choice
question, with the following alternatives:

— Yes: the pull request is related to exception.
— No: the pull request is not related to exception.

Q3 Which exception-related aspect(s) was touched by the
code contribution? Multiple choice question, with the
following alternatives:

— Error representability: whether errors are properly

represented/specified.

+ Internal: whether errors are properly represented
in the software.

+x External: whether information about error detec-
tion, propagation, or handling is properly spec-
ified, traced, or logged for further consideration
by the developer or user.



— Error recoverability: whether proper exception
handling and clean-up actions are executed after
an exception is raised, and the program’s normal
behavior returns to a consistent/safe state after those
actions are executed.

x Effective error handling: whether the proper
handlers and their actions are statically or dynam-
ically attached to exceptions.

* Program continuity: whether the continuation of
the program after error recovery is returned to
the proper place in the program or the program
abruptly stopped.

* Cleanability: whether the clean-up actions are
properly chosen and activated in the program
through the exception flow.

— Error detectability: whether errors are properly
detected/thrown, i.e., whether errors are raised and
with the proper raising conditions.

— Error propagation: whether the error is properly
propagated by either remapping to another error type
or directly propagated to upper levels.

— Other (non-exception-related code): whether the
error was solved without touching any of the afore-
mentioned attributes.

As we performed a double validation process, disagreements
were expected. To resolve disagreements on questions ()1
and @5, four authors collaboratively reviewed and reconciled
differences. For (D3, we consolidated responses by merging the
responses of both validators, since we understand that one code
contribution could address complementary aspects perceived
by different validators.

C. Data Analysis

This section describes the methods for analyzing the col-
lected data and answering the RQs. We explain the steps
performed in our data analysis as follows.

Step 1. As illustrated in Table II, we gathered a set of met-
rics for each repository in this study. We then analyzed these
metrics in two subsets: exception-PRs and non-exception-
PRs. Both sets were created using the heuristic described in
Section III-B1. We were expecting in our initial hypothesis
that exception-PRs would demonstrate greater complexity than
non-exception-PRs. By complexity, we refer to a high degree
of interaction between developers and the code review process.
Consequently, we conducted hypothesis tests to evaluate each
PR metric (Table II) to address R@;. Below, we present the
null and alternative hypotheses considered in our tests:

Hy The PR’s metric in exception-PRs is not greater than non-
exception-PRs.

H, The PR’s metric in exception-PRs is greater than non-
exception-PRs.

We conducted the Mann—Whitney test [36] for each metric
of PRs. In this scenario, the null hypothesis (Hj) suggests
that the PR’ metric in exception-PRs is not greater than that
in non-exception-PRs. In contrast, the alternative hypothesis

(H,) indicates that the PR’ metric in exception-PRs is greater
than in non-exception-PRs.

In addition to the hypothesis test, we applied Cliff’s delta
analysis [37] to obtain valuable insights into the magnitude of
the differences observed between the PR metrics in exception-
PRs and non-exception-PRs. While the Mann-Whitney test
would establish a statistically significant difference between
the two groups of metrics, Cliff’s delta complements this
analysis by quantifying the effect size, thereby offering a more
comprehensive understanding of the practical significance of
the findings.

Step 2. In the previous step, we examined the complexity
of exception-PRs and non-exception-PRs. Here, we aim to
investigate whether there is a difference in developers’ be-
havior when dealing with exception and non-exception PRs.
As mentioned in Section III-B2, we computed the developer’s
metrics for both subsets of exception-PRs and non-exception-
PRs. We rely on these metrics (Table II) to observe the
developers’ behavior. To compare the resulting measures, we
conducted a statistical test based on the following hypotheses:

Hy The developer’s metric in exception-PRs is not greater
than non-exception-PRs.

H, The developer’s metric in exception-PRs is greater than in
non-exception-PRs.

Since we expected to compare the mean values of variables
in the same population, we employed the paired Wilcoxon
test [38] for statistical analysis. This test is well-suited for
analyzing matched pairs of data. Additionally, we utilized
Cliff’s Delta to assess the magnitude of the observed results.

IV. RESULTS AND DISCUSSIONS
A. Heuristic Precision

As outlined in Section III-B3, a manual validation process
was conducted to assess the heuristic precision in detecting
exception-PRs. The validators agreed that 90.7% (254 out of
280) of the PRs analyzed were related to exception, in contrast
to 9.3% (26 out of 280) that were not. These results confirm
the heuristic’s high precision in identifying exception-PRs,
bolstering confidence in our analyses for R(Q);.

We gathered further insights by analyzing cases where val-
idators disagreed on their relationship to exceptions. The anal-
ysis provided valuable information on the limitations of the
heuristic and helped us refine our understanding of what con-
stitutes an exception-related contribution. Notice PR #17078?
from Flink, which involved a change in test procedures.
Specifically, it threw the original exception rather than failing
with a JUnit assertion if OpenSSL was not found. This change,
impacting only test files and not system behavior, underscores
the heuristic’s challenge in distinguishing between changes
that affect system exception-related code and those that do
not. Another example, PR #14207* from Pulsar, involved un-
necessary state transition handling in the TransactionCoordina-
torClientImpl.startAsync method. The decision to remove the

3https://github.com/apache/flink/pull/17078
“https://github.com/apache/pulsar/pull/14207



redundant exception also does not affect the system behavior,
illustrating the nuanced nature of contributions that impact
the system’s exception-related code. In summary, most of the
non-exception-PRs classified by validators, cited exceptions.
However, these contributions did not change the system’s
functional behavior; therefore, the validators considered them
unrelated to exception management.

B. Categorizing the Aims of Exception-PRs

During the manual validation, we requested participants to
classify the developers’ aim for opening PRs. We obtained
the following results by examining only the exception-PRs
(254). The principal aim for opening an exception-PR was
improvement, accounting for 55.12% (140) of the PRs. Bug fix
was the second most frequent aim, representing 40.55% (103)
of the PRs. Test was the aim of 3.15% (8) of the PRs, followed
by new feature as the fourth most frequent aim, with 0.79%
(2) of the cases. Finally, only 0.39% (1) PR was attributed to
other miscellaneous reasons.

This result was interesting from the perspective of the
existing literature on mining exception changes. Even though
most of the previous studies focus on investigating the na-
ture of exception bugs and their fixes (e.g., [4], [20], [28],
[29]), such fixes were only the second most frequent aim
in the analyzed PRs. In the projects analyzed, developers
more frequently perform a wide range of exception-related
improvements (than bug fixes), which we will discuss in more
detail in Section IV-E. These improvements may vary from
enhancing preventive or clean-up actions to altering error
messages. This leads to our first finding.

Finding 1: While most empirical studies in the literature focus
on characterizing and classifying exception bugs (e.g., [4], [20],
[28], [29]), there is a limited understanding about the most
recurring forms of exception-related improvements made in
open source projects.

Another surprising result was the low occurrence of
exception-PRs aimed at creating new features. Our rationale
is that since Java forces developers to handle exceptions as
soon as functional features are added, new features related
to robustness (i.e., creating a new exception type) come
up with regular features. Thus, since the PR is meant to
introduce the new functional feature, the robustness aspect
of the contribution can be left aside in the PR’s title and
description. Then, when our heuristic looks for the exception-
PRs, contributions aimed at new features are less frequent.

Finding 2: New features concerning the exception-related code
are often introduced as a secondary or tertiary aim; they are
often intertwined with the introduction of functional features.

C. The Dynamics of Exception-PRs and Non-exception-PRs

In this section, we aim to present the answers for RQ;.
With our heuristic proven reliable for detecting exception-
PRs, we selected two datasets of respective exception-PRs
and non-exception-PRs. We investigated PR’s metrics and
aimed to find significant differences, supporting the hypothesis

TABLE IV
HYPOTHESIS TEST FOR PR’S METRICS
Metric p-value  Cliff’s Delta Outcome

Number of reviews 0.412 negligible Fail to reject Hop.
Druid — Number of requests to review 0.074 negligible Fail to reject Hp.

Number of comments 0.033 negligible H rejected.

Number of reviews 0.999 negligible Fail to reject Hop.
Flink — Number of requests to review 0.071 negligible Fail to reject Hp.

Number of comments 0.810 negligible Fail to reject Hy.

Number of reviews 0.565 negligible Fail to reject Hop.
Pulsar  Number of requests to review 0.354 negligible Fail to reject Hy.

Number of comments 0.937 negligible Fail to reject Hy.

that exception-PRs are more complex than non-exception-PRs.
This complexity was quantified using metrics like the number
of reviews, the number of requests to review, and the number of
comments on PRs. We hypothesized that exception-PRs would
involve more detailed discussions and feedback, reflected in
higher values for these metrics. The results for the hypothesis
tests are presented in Table IV.

The statistical analysis fails to reject the Hy across the
three repositories for most metrics, except for the number
of comments for Druid. In this repository, the number of
comments on exception-PRs showed a statistically significant
difference compared to non-exception-PRs, with a p-value of
0.033, indicating rejection of the Hy. However, the effect size
was negligible as measured by Cliff’s Delta.

For the other two repositories, Flink and Pulsar, the hy-
pothesis tests for all the metrics did not result in rejecting
the Hy. The p-values were substantially higher than the
conventional alpha level of 0.05, which would be required
to declare a statistically significant difference. The effect sizes
were negligible, suggesting that any differences between the
exception-PRs and non-exception-PRs for these metrics are of
minimal practical significance. Such results imply that while
exceptions are an essential aspect of software development,
we cannot reject Hy in favor of H,, which suggests more
complexity in exception-PRs. This leads to our third finding.

Finding 3: Contributions to exception-related code are so
intertwined with the implementation of regular features that
naturally lead to both receiving a similar amount of review
comments and catching the attention of the same developers.
This finding does not seem to back up the need for the role
of “exception engineering” (Section II), as a previous study [2]
suggested.

D. Developers in Exception-PRs and Non-exception-PRs

The earlier analysis indicates that the lack of difference
is apparent between the composition of exception-PRs and
non-exception-PRs when considering PR metrics. Looking
further, we also explored developer metrics across these two
categories of PRs. We still wanted to understand whether an
“exception engineering” occurs in these projects. To this end,
we calculated individual metrics for developers and applied
a paired statistical hypothesis testing method. This approach
helped identify significant differences in developers’ activities
when working on exception-PRs versus non-exception-PRs.
Table V presents the results for the hypothesis tests; in the
following paragraphs, we discuss them in detail.



TABLE V
HYPOTHESIS TEST FOR DEVELOPER’S METRICS
Metric p-value Outcome
Pull requests ratio 0.008 Hy rejected.
Druid Reviews ratio . . 0.846 Fa?l to reject Ho.
Requests to review ratio 0.965 Fail to reject Hp.
Comments ratio 0.353 Fail to reject Hop.
Pull requests ratio 0.160 Fail to reject Hop.
Flink Reviews ratio ] ] 0.990 Fa%l to reJ:ect Hop.
Requests to review ratio 0.430 Fail to reject Hop.
Comments ratio 0.990 Fail to reject Ho.
Pull requests ratio 0.006 Hy rejected.
Pulsar Reviews ratio 0.645 Fail to reject Hp.
Requests to review ratio 0.429 Fail to reject Hop.
Comments ratio 0.611 Fail to reject Ho.

For both systems Druid and Pulsar, the Hj that there is
no difference in the developers’ pull requests ratio between
exception-PRs and non-exception-PRs was rejected (p-values
of 0.008 and 0.006, respectively). Initially, it suggests that
developers in these projects are significantly more likely to
open exception-PRs than non-exception-PRs. This result could
indicate a specialization or higher focus on exception-related
issues within these projects. However, for Flink, the p-value
of 0.160 suggests no significant difference in the engagement
level in exception-PRs compared to other non-exception-PRs.

Across all three projects, the p-values for reviews ratio, re-
quests to review ratio, and comments ratio were high, leading
to a failure to reject the Hy. This indicates that the number
of reviews conducted, requests to review made, or comments
posted between exception-PRs and non-exception-PRs is not
different. This consistent lack of significant differences across
these metrics suggests that despite there being developers that
might be more likely to initiate exception-PRs in specific
projects, once these PRs are created, they do not attract
more reviews or comments than other PRs, reinforcing the
observations in the Section IV-D.

The significant findings in the pull requests ratio for Druid
and Pulsar, but not for Flink, could indicate varying cultural or
procedural norms in these projects or differences in the com-
plexity or impact of exception-related code issues identified in
these contexts. It suggests that projects having developers with
a higher propensity to submit exception-PRs might benefit
from specialized training or resources to enhance the quality
and effectiveness of these contributions, thereby improving the
overall exception management of the software.

In summary, our analysis for R(); reveals that we were
unable to reject the Hy in favor of the H,, indicating no differ-
ences in interaction levels, such as number of reviews, requests
for reviews, and number of comments between exception-PRs
and non-exception-PRs, except a slight increase in comments
within the Druid repository. Interestingly, despite this statisti-
cal significance, the Cliff ’s Delta for this metric was negligible,
suggesting that the practical impact of these differences is
minimal. In contrast, developer metrics performed notable
differences in the pull request ratios for Druid and Pulsar,
suggesting a propensity for developers to initiate exception-

PRs in these projects.

Finding 4: Although exception-PRs do not generally attract
more engagement than non-exception-PRs, the results indicate
that specific projects may culturally or procedurally highlight
the importance of triggering exception-PRs.

E. Exception Aspects in Contributions

Previous studies focus only on characterizing exception
bugs (Section II). In the following sections, we present results
related to R(Q)2, where we observed a much wider variety
of exception contributions. This research question aims to
determine which aspects exception-PRs frequently address. In
this section, we present frequencies for the following exception
aspects: Error representability (internal or external), Error
recoverability (effective error handling, program continuity or
cleanability), Error detection, and Error propagation. In the
next section IV-F, we analyze the PRs that address multiple
of these aspects combined as part of a single contribution.

During our manual validation, we categorized each
exception-PR according to up to three exception aspects. After
that validation, we calculated the prevalence of exception
aspects across the 254 exception-PRs. Table VI illustrates our
results. The 1% column lists each exception aspect, 2"¢ and
374 respectively present the percentage and number of PRs
where that aspect shows up. The subsequent columns detail
the aim of the PRs having that aspect.

1) Error representability: is a critical aspect of software
robustness, ensuring that errors are accurately and effectively
communicated both within the system (internal representation)
and to its users (external representation), see Section III-B3.
Ideally, each project should have its own guidelines for crafting
internal and external error messages, though not all do, or they
may rely on very generic guidelines. Writing effective error
messages that adhere to these guidelines can be challenging.
Such representations must consider the semantic context of
where the error was raised and propagated, as well as align
with changes in the overall system.

External error representability: This exception aspect was
the most frequently modified, accounting for 42.52% (108
PRs). The primary aim for these changes was overwhelmingly
for program improvements, representing 77.77% of the cases.
Bug fixes constituted 19.44%, while new feature implementa-
tions and tests were relatively minor. The high percentage of
improvements suggests a significant focus on enhancing the
clarity and usefulness of error messages for end-users. This
leads us to another interesting finding.

Internal error representability: This aspect was the fourth
most modified, accounting to 20.47% (52 PRs). Improvements
were again the dominant aim, making up 63.46%, followed
by bug fixes at 36.53%. There were no new features or tests
associated with these changes. The focus on improvements
here indicates efforts to refine how exceptions are represented
internally within the system, which is important for better
supporting program debugging and maintenance.



TABLE VI
EXCEPTION ASPECTS AND THE AIM OF THE CONTRIBUTION IN EXCEPTION-PRS.

Exception aspect occurrence

Pull Request Aim

Aspect % # Bug fix Improvement New feature Test Other
External error representability 42.52% 108 | 19.44% 77.77% 1.85% 0.92%  0.00%
Error recoverability - Effective error handling ~ 36.22% 92 48.91% 46.73% 2.17% 1.08%  1.08%
Error detectability 23.62% 60 | 40.00% 56.67% 0.00% 333% 0.00%
Internal error representability 20.47% 52 36.53% 63.46% 0.00% 0.00%  0.00%
Error recoverability - Program continuity 20.47% 52 55.76% 42.30% 0.00% 1.92%  0.00%
Other (non-exception-related code) 19.69% 50 68.00% 26.00% 0.00% 6.00%  0.00%
Error propagation 16.54% 42 26.19% 69.05% 2.38% 2.38%  0.00%
Error recoverability - Cleanability 7.48% 19 36.84% 63.15% 0.00% 0.00%  0.00%

Finding 5: Most automated solutions in the literature (e.g., [22],
[23], [25], [39]-[41]) focus on assisting developers in improving
or repairing catch-block handlers. However, most improvements
in exception-PRs aim to enhance the usability and usefulness
of error messages.

2) Error recoverability: is crucial for maintaining system
stability and reliability in the face of errors. It is usual for
developers to postpone the implementation of comprehensive
error-handling practices until the latter stages of development,
prioritizing the integration of new features. Also, in the latter
stages, the developer has more insights into error patterns.
Effective Error recoverability involves error handling practices
and considerations for program continuity and cleanability (see
Section III-B3). Below, we discuss the frequency of each sub-
aspect of recoverability.

Effective error handling: Overall, this was the second most
frequently touched aspect, appearing in 36.22% (92 PRs). The
distribution of aims was balanced, with 48.91% for bug fixes
and 46.73% for improvements. New features and tests were
minimal. The significant proportion of bug fixes may indicate
a reactive approach to addressing error-handling issues as they
arise, while the substantial number of improvements points to
ongoing efforts to enhance error recovery mechanisms.

Program Continuity: Touched by 20.47% (52 PRs), this
attribute saw 55.76% of changes aimed at bug fixes and
42.30% at improvements. The high frequency of bug fixes
highlights the need to ensure the system continue operating
smoothly even when errors occur, minimizing user disruptions.

Cleanability: This attribute was the less touched, appearing
in only 7.48% (19 PRs). The contributions to aspects aimed at
improvements (63.15%) and bug fixes (36.84%). The focus on
improvements suggests efforts to enhance the system’s ability
to recover from errors and clean up appropriately, preventing
error accumulation and potential system degradation over time.

In summary, effective error handling, the second most
addressed exception aspect, shows a notable focus on bug
fixes, maybe indicating a reactive approach to resolving issues
that disrupt the correct system functioning. Program continu-
ity and cleanability, though less modified, reflect efforts to
maintain uninterrupted system functionality and improve error
recovery mechanisms. These findings underscore the system’s
proactive behavior in mitigating disruptions caused by errors
and enhancing overall reliability.

3) Error detectability: ensures that errors are identified
promptly and accurately; see the Section III-B3. This aspect
was the third most modified accounting 23.62% (60 PRs).
Improvements were the principal aim (56.67%), followed by
bug fixes (40.00%) and tests (3.33%). The higher numbers of
improvements may indicate an effort to enhance the system’s
ability to catch errors early since issues with Error detectabil-
ity may result in failures raising to end-user. Conversely, the
percentage of bug fixes may suggest challenges in managing
error detection in early development phases.

4) Error propagation: concerns the management of error
propagation throughout the system (refer to Section III-B3.
This aspect received less attention, accounting for 16.54%
(42 PRs). The changes aimed at improvements constituted
69.05%, with bug fixes at 26.19%, and both new features
and tests at 2.38%. The significant focus on improvements
may suggest a delayed attention to error propagation. One
rationale is that errors are initially only handled locally (where
they occur), and as the system evolves, they are propagated
and handled in the proper layers. Since error propagation is
primarily an architectural concern, the low percentage of bug
fixes may be due to this aspect not directly impacting the end-
user experience as significantly as other issues do.

5) Other  (non-exception-related  code): not  all
exception-related contributions necessarily modify the
exception-related aspects of the code. For example, a
FileNotFoundException might be thrown during a file
read operation, and the fix could involve inserting an if block
to check for the file’s existence before attempting to read it.
For this and other scenarios, we allowed validators to classify
some exception-PRs touching other aspects. Other was the
sixth most modified aspect, accounting for 19.69% (50
PRs) of the cases. Unlike the other aspects discussed, Other
was related to bug fixes 68.00% of the time, improvements
26.00% of the time, and tests 6.00% of the time.

Our analysis reveals a stronger emphasis on improvements
across all exception aspects, indicating a proactive approach to
enhancing the system’s exceptions. Bug fixes also constitute
significant changes, underscoring the ongoing need to address
existing issues. The relatively low focus on new features may
also suggest that, for Java, exception management is more
about refining and solidifying existing capabilities rather than
introducing new ones. While present, tests are less frequent
since validators classified most PRs as only handling test files



TABLE VII
COMBINATION OF EXCEPTION ASPECTS AND THE AIM OF CONTRIBUTION IN EXCEPTION-PRS

Exception aspects occurrence (combinations) Pull Request Aim
Aspect % # Bug fix Improvement New feature Test Other
Error recoverability, Error representability 12.99% 33 | 39.39% 57.58% 3.03% 0.00%  0.00%
Error detectability, Error recoverability, Error representability ~ 7.09% 18 | 44.44% 55.56% 0.00% 0.00%  0.00%
Error propagation, Error recoverability, Error representability 5.51% 14 | 42.86% 50.00% 7.14% 0.00%  0.00%

unrelated to exceptions.

F. Multiple Exception Aspects Touched by Contributions

In the previous section, we examined the frequency excep-
tion aspects disregarding combinations. In this section, we
focus on analyzing the combinations of exception aspects.
By exploring how these elements co-occur within exception-
PRs, we aim to gain deeper insights into the integrated
strategies employed to enhance system exceptions. The Table
VII illustrates the top three most frequent combinations in
exception-PRs. The complete list of combinations is available
in our supplementary material [35]. The 1%% column lists
each exception aspect combination, 2"¢ and 3" respectively
present the percentage and number of exception-PRs where
that aspect occurred. The following sections discuss the top
three combinations with real examples.

1) Error recoverability and Error representability: was the
most common combination found in our manual validation,
constituting 12.99% (33 PRs). This combination mainly char-
acterizes contributions that bond how errors are classified,
handled, and reported. The principal aim of contributions with
this combination were improvements in 57.58% and bug fixes
in 39.39%, revealing a slight tendency for improvement in
these aspects rather than bug fix issues. For instance, we
identified examples on improving the understandability of
the exception handling. In one of these cases’, a developer
stated that “It’s hard to investigate [issue number]. Adding
the thread dump might help us to identify the cause, or at
least having a pointer to what to focus on”. In this case,
the developer was investigating an issue and found that the
existing error reporting mechanisms were insufficient, so he
made changes to improve that. We also observed cases where
developers encountered the opposite situation (i.e., excessive
error reporting). An example of this was a situation described
by a developer in a PR #1107%: “This [situation described in
the issue] can print several thousand exception stack traces.”
Since he found this behavior excessive, he proposed a solution
to reduce the number of exceptions logged.

Another prevalent scenario that we observed was where the
existing class modeling an exception was not satisfactory (e.g.,
because it does not adequately describe the error, there is
a more fitting exception that already exists elsewhere in the
code’, etc.). While fixing a bug®, one developer described this
as adding a “meaningful exception” to the error handling. We

Shttps://github.com/apache/flink/pull/21463
Ohttps://github.com/apache/pulsar/pull/1 107
7https://github.com/apache/flink/pull/4701
8https://github.com/apache/flink/pull/2969

also observed cases’ where the existing exceptions in the code
were insufficient to express (and report) a specific error, so a
new exception class was introduced.

2) Error detectability, Error recoverability, and Error rep-
resentability: was the second most frequent in our analysis,
representing 7.09% (18 PRs), and its distribution in terms
of aim is similar to the previous combination, improvements
55.56% and bug fixes 44.44%. In our observation, this combi-
nation mainly emerged for two reasons: (i) disagreement be-
tween validators and (ii) large and complex PRs. While these
reasons can be observed separately, they blend into each other,
as most disagreements emerged from PRs that were not easy
for the validators to understand. This is understandable, given
that while the validators had extensive language experience,
they may not be experts in the project.

PRs exhibiting these aspects of the combination were typ-
ically very complex, with varied characteristics. However,
most shared the common trait of affecting multiple parts of
the exception pipeline. For example, consider a PR #2264'°
submitted to the Druid project. When an exception occurred,
the system would simply return a generic error to the user. To
address this, the developer proposed a significant change by
introducing a module called CustomExceptionMapper,
designed to handle specific exception types. This module
generates a detailed error message tailored to the particular
exception and uses it to provide the user with more informative
feedback. Additionally, the module was designed to be generic,
enabling it to handle other exception types similarly. This
change exemplifies the pattern by addressing three key aspects:
detectability, recoverability, and representability.

3) Error propagation, Error recoverability, Error repre-
sentability: was the third most frequent combination, mirror-
ing the characteristics described in the previous pattern. This
specific pattern accounts for 5.51% (14 PRs) of the cases, with
its goals distributed as follows: 50.00% aimed at improvement
and 42.86% at bug fixes. We observe that contributions to
that aspect also address complex issues, primarily on Error
propagation. Propagation is often a challenging topic for
developers [42], as it requires in-depth knowledge of how
exceptions are handled at an architectural level. This handling
is often far from trivial in large systems like those we
analyzed, a fact noted by validators. This complexity also
makes validating these types of PRs more difficult, especially
since the validators were not project experts. Consequently,
PRs adhering to this pattern often propose extensive and

“https://github.com/apache/flink/pull/8509
10https://github.com/apache/druid/pull/2264/



intricate changes, such as altering handlers so that exceptions
are managed at a different architectural level (e.g., client-side
instead of server-side'!), or fixing exception handling within
asynchronous environments'?.

G. Single versus Combined Exception Aspects

Table VIII illustrates that exception aspects frequently occur
in combination rather than isolation. For example, Error
representability appears in combination in 35.04% of PRs,
compared to only 18.50% focusing exclusively on this aspect.
Similarly, Error recoverability is observed in 33.46% of PRs
in combined scenarios, contrasting with 12.20% as a single
aspect. This trend suggests developers often address multi-
ple exception-related aspects simultaneously when suggesting
exception-related contributions.

TABLE VIII
ASPECTS OF EXCEPTION-PRS APPEARING SINGLE OR IN COMBINATION.
Single  Combination
Error representability ~ 18.50% 35.04%
Error recoverability 12.20% 33.46%
Error detectability 5.51% 18.11%
Error propagation 2.76% 12.20%
Other 17.32% 2.35%

The prevalence of combined exception aspects may indi-
cate two points about exception-related contributions. First,
it underscores the interconnection of exception aspects. For
example, improving error handling may concurrently require
adjustments in Error representability to maintain message
consistency. Second, it highlights the complexity of mod-
ern software systems, where exception management is not
achieved through isolated contributions but through integrated
strategies. Interestingly, we observe an inverse pattern for
the other category, which happened more separately than
combined. This result suggests that contributions not touching
the exception-related code occur in isolation without impacting
other exception aspects.

Finding 6: Developers frequently address multiple exception
aspects simultaneously in exception-PRs, emphasizing the in-
terrelation and complexity of exception management in modern
software systems.

V. THREATS TO VALIDITY

Internal Validity. Our study analyzed three projects from
Apache. While this limited scope might suggest a potential
threat to the generality of our findings, the selected projects
provided a substantial amount of data from different domains,
allowing for robust analysis within a specific community. Re-
garding the heuristic, which was designed to select exception-
PRs, it may not capture all pertinent changes. However, our
heuristic was specifically designed to capture changes focused
on exception, aligning closely with our research objectives.
Additionally, by concentrating on human code contributions,

https://github.com/apache/pulsar/pull/7430
Zhttps://github.com/apache/flink/pull/9115

we prioritized the quality and relevance of the data, ensuring
its significance for our study.

External Validity. The results of this study are based
on a carefully selected set of projects. In this matter, this
selection process ensures depth and relevance in the studied
context, even while limiting the applicability of our findings to
similar environments or communities. We conducted manual
validations by specialized validators using a sized sample. This
may induce a subjective interpretation, potentially affecting the
replicability of the validation process. However, the process
included a double validation, where four authors resolved
conflicts collaboratively. This approach minimizes human error
and bias, ensuring high reliability of the data validation.

VI. CONCLUSION

In this study, we explored the nature of exception-PRs in
Java projects within the Apache ecosystem to understand the
contributions to exception-related code and the attention they
receive from developers compared to other types of contri-
butions. Using a heuristic, we collected 988 exception-PRs
from three repositories and selected 280 for manual analysis.
We confirmed a precision of 90.7%, identifying 254 accurate
exception-PRs out of the 280 evaluated. Our statistical analysis
found no significant differences in developer engagement
metrics, such as reviews and comments, between exception-
PRs and non-exception-PRs. A detailed manual analysis of the
254 exception-PRs revealed that 55.12% aimed at improve-
ments, 40.55% focused on bug fixes, with the most frequently
modified aspect being external error representation (42.52%),
followed by effective error handling (36.22%).

These results suggest that, while exception handling is
recognized for its critical role in software robustness, it
does not necessarily command more or less attention from
developers in the review process compared to other types of
contributions. This finding raises important questions about the
prioritization and attention of exception-related code, requiring
further investigation. Moreover, by understanding the nature
and characteristics of exception-PRs, we can better support
developers in managing erroneous conditions and improving
software robustness. Future work could explore automated
tools and techniques to assist developers in creating and
maintaining high-quality, exception-related code, ultimately
contributing to more reliable and robust software systems.
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